Purely visible-light induced photochromism in Ag-TiO₂ nanoheterostructures

D.M. Tobaldi,^{a*} M. Hortigüela Gallo,^b G. Otero-Irurueta,^b M.K. Singh,^b R.C. Pullar,^a M.P. Seabra,^a and J.A.

Labrincha^a

^a Department of Materials and Ceramic Engineering / CICECO–Aveiro Institute of Materials, University of Aveiro,

Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

^b Center for Mechanical Technology and Automation – TEMA, Department of Mechanical Engineering, University of

Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal

* Corresponding author. Tel.: +351 234 370 041

E-mail addresses: <u>david.tobaldi@ua.pt</u>; <u>david@davidtobaldi.org</u>

Fig. S1 – Emission spectrum of the visible lamp used in the photochromic experiments, from www.philips.com

Fig. S2 – Emission spectrum of the white LED lamp used in the photocatalytic experiments, from www.philips.com

Electronic Supplementary Information

Fig. S3a – Evolution of the CIE L* value with the increase in visible-light irradiation time, specimen Ag-Ti450.

Electronic Supplementary Information

Fig. S3b – Evolution of the CIE L* value with the increase in visible-light irradiation time, specimen **2Ag-Ti450**.

Electronic Supplementary Information

Fig. S3c – Evolution of the CIE L* value with the increase in visible-light irradiation time, specimen **5Ag-Ti450**.

Electronic Supplementary Information

Fig. S3d – Evolution of the CIE L* value with the increase in visible-light irradiation time, specimen **10Ag-Ti450**.

Electronic Supplementary Information 0.25 min 0 min 0.50 min 0.75 min 1 min 3 min 7 min 15 min 5 min 10 min 30 min 45 min 120 min 180 min 60 min 90 min 300 min 240 min

Fig. S4a – Visual RGB colour rendering of Ag-Ti450 specimens after the different visible-light exposure time.

Electronic Supplementary Information 0.25 min 0 min 0.50 min 0.75 min 1 min 3 min 7 min 15 min 5 min 10 min 30 min 45 min 60 min 90 min 120 min 180 min 240 min 300 min

Fig. S4b – Visual RGB colour rendering of **2Ag-Ti450** specimens after the different visible-light exposure time.

Electronic Supplementary Information 0 min 0.25 min 0.50 min 0.75 min 1 min 3 min 30 min 7 min 15 min 5 min 10 min 45 min 60 min 90 min 120 min 180 min 240 min 300 min

Fig. S4c – Visual RGB colour rendering of **5Ag-Ti450** specimens after the different visible-light exposure time.

Electronic Supplementary Information 0.25 min 0.50 min 1 min 0 min 0.75 min 3 min 30 min 7 min 15 min 45 min 5 min 10 min 60 min 90 min 120 min 180 min 240 min 300 min

Fig. S4d – Visual RGB colour rendering of **10Ag-Ti450** specimens after the different visible-light exposure time.

Fig. S5a – Chromaticity diagrams of unmodified and Ag-modified TiO_2 prior to exposure to visible-light. The inset shows a magnification of the region in the square, in which the yellow dot is the unmodified TiO_2 , while the dashed arrow is a guide for the eye showing the increase with Ag mol%.

Fig.S5b – Chromaticity diagrams of **Ag-Ti450** after visible-light exposure; the inset shows a magnification of the region in the square, in which the dashed arrow is just a guide for the eye, indicating the evolution of the x, y chromaticity coordinates with the increase in visible-light exposure time. The yellow dot represents the x and y chromaticity coordinates of the specimen **BEFORE** irradiation with the visible lamp.

Fig.S5c – Chromaticity diagrams of **2Ag-Ti450** after visible-light exposure; the inset shows a magnification of the region in the square, in which the dashed arrow is just a guide for the eye, indicating the evolution of the x, y chromaticity coordinates with the increase in visible-light exposure time. The yellow dot represents the x and y chromaticity coordinates of the specimen **BEFORE** irradiation with the visible lamp.

Fig.S5d – Chromaticity diagrams of **5Ag-Ti450** after visible-light exposure; the inset shows a magnification of the region in the square, in which the dashed arrow is just a guide for the eye, indicating the evolution of the x, y chromaticity coordinates with the increase in visible-light exposure time. The yellow dot represents the x and y chromaticity coordinates of the specimen **BEFORE** irradiation with the visible lamp.

Fig.S5e – Chromaticity diagrams of **10Ag-Ti450** after visible-light exposure; the inset shows a magnification of the region in the square, in which the dashed arrow is just a guide for the eye, indicating the evolution of the x, y chromaticity coordinates with the increase in visible-light exposure time. The yellow dot represents the x and y chromaticity coordinates of the specimen **BEFORE** irradiation with the visible lamp.

Electronic Supplementary Information

Fig. S6 – Reflectance spectra of specimen **5Ag-Ti450** showing the photochromic recovery with repeated visible-light (red line) / dark @ 100 °C (blue line) cycles.

Fig. S7 – Digital photographs of the change produced on the samples by XPS (a), and a focussed electron beam (b).

Stored in oven at 60 °C for 24 h

X-ray irradiated (after XPS measurement)

UVA-light irradiated

Fig. S8 – Digital photographs of specimen **2Ag-Ti450**: a) stored in a dark oven at 60 °C for 24 h prior to assessing the XPS analysis; b) after XPS analysis (the dark-region was that irradiated with X-ray); c) fresh specimen as in figure S7a, but irradiated with a UVA-lamp, as visual comparison.

Table S1 – Rietveld agreement factors and crystalline phase composition of the unmodified and Ag-
modified TiO ₂ . ⁺

Sample	No. of variables	Agreement factors		Phase	composition	ı (wt%)	
		<i>R</i> (_F ²) (%)	R _{wp} (%)	χ²	anatase	rutile	brookite
Ti450	20	3.54	4.03	1.74	56.5±0.1	19.8±0.2	23.6±0.6
Ag-Ti450	21	4.14	3.28	1.75	85.5±0.1	5.2±0.2	8.3±0.5
2Ag-Ti450	21	4.36	3.10	1.70	86.8±0.1	5.4±0.3	7.9±0.5
5Ag-Ti450	20	5.12	3.06	1.85	83.3±0.1	7.8±0.4	8.8±0.6
10Ag-Ti450	22	6.95	3.01	1.82	84.4±0.2	7.4±0.4	8.2±0.8

Note: there were 2285 observations for every refinement; the number of anatase, rutile and brookite reflections was 32, 31 and 106, respectively.

⁺ From reference [40].

Table S2 – $CIEL^*a^*b^*$ change of coordinates of **Ag-Ti450** after incremental visible-light exposure time.

Visible-light	L*	a*	b*
irradiation time, min			
0	96.61	-1.71	13.79
0.25	95.73	-0.22	10.11
0.50	95.17	0.26	10.28
0.75	94.48	0.66	10.45
1	94.12	1.01	10.55
3	91.07	2.92	11.47
5	89.86	3.80	11.72
7	89.03	4.36	11.96
10	88.23	4.78	11.93
15	86.12	5.13	11.64
30	84.80	4.84	10.94
45	81.53	5.34	10.59
60	79.38	5.65	10.31
90	76.50	5.76	9.71
120	73.87	5.97	9.21
180	70.78	6.03	8.54
240	68.51	6.04	8.05
300	66.98	6.02	7.77

Table S3 – CIE $L^*a^*b^*$ change of coordinates of **2Ag-Ti450** after incremental visible-light exposure time.

Visible-light	L*	a*	b *
irradiation time, min			
0	92.94	0.18	17.20
0.25	84.18	4.74	8.21
0.50	80.46	5.81	7.55
0.75	77.29	6.42	7.33
1	74.89	6.87	6.89
3	64.62	7.64	5.48
5	59.80	7.24	4.37
7	56.94	6.87	3.67
10	54.63	6.32	2.97
15	52.84	5.80	2.31
30	51.76	4.75	1.43
45	51.13	4.44	1.22
60	50.46	4.30	1.18
90	49.51	4.10	1.02
120	49.23	4.10	1.11
180	47.92	3.79	0.89
240	47.87	3.81	0.98
300	47.49	3.74	0.98

Table S4 – $CIEL^*a^*b^*$ change of coordinates of **5Ag-Ti450** after incremental visible-light exposure time.

Visible-light	L*	a*	b*
irradiation time, min			
0	79.48	0.80	14.31
0.25	66.51	3.38	3.98
0.50	62.71	3.82	2.76
0.75	60.23	3.98	2.08
1	58.35	4.11	1.63
3	51.15	4.16	0.23
5	47.82	3.90	-0.48
7	45.65	3.60	-0.87
10	43.56	3.37	-1.12
15	41.58	3.00	-1.36
30	38.95	2.20	-1.74
45	37.90	1.96	-1.67
60	37.45	1.87	-1.53
90	36.96	1.73	-1.44
120	36.70	1.65	-1.35
180	36.63	1.70	-1.13
240	36.51	1.67	-1.05
300	36.53	1.82	-0.89

Table S5 – $CIEL^*a^*b^*$ change of coordinates of **10Ag-Ti450** after incremental visible-light exposure time.

Visible-light	L*	a*	b*
irradiation time, min			
0	65.67	2.21	12.08
0.25	61.03	2.11	7.00
0.50	58.63	2.12	5.03
0.75	56.72	2.09	3.71
1	55.34	2.11	2.91
3	49.59	2.03	0.28
5	46.70	2.04	-0.62
7	44.57	1.91	-1.16
10	42.68	1.82	-1.57
15	40.60	1.64	-1.94
30	37.69	1.31	-2.24
45	36.49	1.16	-2.26
60	35.76	1.04	-2.17
90	34.96	0.92	-1.98
120	34.54	0.89	-1.80
180	33.94	0.79	-1.52
240	33.81	0.78	-1.37
300	33.73	0.73	-1.25