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Figure S1: A,B: Experimental set-up for sunlight induced photopolymerization. C: Photopolymer obtained under 

sunlight exposure. D: Emission spectra of the sun on the day of the experiment (behind glass window) 
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Figure S2: A: Experimental set-up used for the photopolymerization of the model resin (thickness = 9 cm) 

(LED@405 nm); Pasteur pipette wrapped in black tape with polymerizable medium containing: 0.13 wt% of 

Cu(I) / 2.0 wt% Iod / 6 wt% Tin(II)). B: 9  cm cured polymer after breaking the glass (Pasteur Pipette) 

surrounding the polymer 
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Figure S3: Photopolymers obtained for the model resin, under air, with 3 mm of the sample irradiated by a 

LED@405 nm (as illustrated in Figure 6). Initiating system: 0.17 wt% Cu(I); 2.0 wt% Iod. Upon 4 mW/cm² 

irradiance with Tin(II)=8.0 wt% and Tin(II)=1.3 wt% and upon 27 mW/cm² with Tin(II)=1.3 wt%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. ESR spectra in toluene/DCM (85/15 v/v) under air, without light activation when mixing 0.5 mM Cu(I) with 2 mM 

R’’OOH.  Red curve: simulation fitting. 

 

Proposed interpretation for Figure S4: Two  species corresponding to oxygen-centered radicals 

R’’OO
●1

 (Simulated: 30 % for aN = 13.2 G and aH = 1.3 G) and  R’’O
●2

(Simulated: 44 % for aN = 14.3 G 

and aH = 2.0 G). The hyperfine coupling constants of R’’O● are lower than the one in figure 8B as a 

result of a lower polarity (no Tin(II)) as demonstrated by  Beckwith et al.
3
 The carbon-centered 

radicals (two species) might be related to hydrogen abstraction (Simulated: 4 % for aN = 14.2 G and aH 

= 3.9 G; 22 % for aN = 14.7 G and aH = 3.5).  
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