Supporting Information for

Diastereoselective Base-Catalyzed Formal [4+2] Cycloadditions of N-Sulfonyl Imines and Cyclic Anhydrides

Stephen W. Laws, Lucas C. Moore, Michael J. Di Maso, Q. Nhu N. Nguyen, Dean J. Tantillo, and Jared. T Shaw*

Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616

Email: Jared T. Shaw - jtshaw@ucdavis.edu

Experimental Details and Compound Characterization

Table of Contents Page

1. Materials and Instrumentation SO2
2. Experimental procedures for the synthesis of lactams 16a-u S03
3. Computational NMR Spectroscopy Data S20
4. Stereochemical Supplement for Lactam 16p Assignment S28
5. X-ray Crystallography Data S29
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S43

1. Materials and Instrumentation

Unless otherwise specified, all commercially available reagents were used as received. All reactions using dried solvents were carried out under an atmosphere of argon in oven-dried glassware with magnetic stirring. Dry solvent was dispensed from a solvent purification system that passes solvent through two columns of dry neutral alumina. ${ }^{1} \mathrm{H}$ NMR spectra and protondecoupled ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a 400 MHz Bruker or 600 MHz Varian NMR spectrometer. ${ }^{1} \mathrm{H}$ Chemical shifts (δ) are reported in parts per million (ppm) relative to TMS (s, δ 0). Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), and m (multiplet). Complex splitting will be described by a combination of these abbreviations, i.e. dd (doublet of doublets). ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to $\mathrm{CDCl}_{3}(\mathrm{t}, \delta 77.4)$ unless otherwise noted. High-resolution mass spectra were recorded on positive ESI mode unless otherwise noted. Melting points were taken on an EZ-melting apparatus and were uncorrected. Infrared spectra were taken on a Bruker Tensor 27 spectrometer. Chromatographic purifications were performed by flash chromatography with silica gel (Fisher, 40-63 $\mu \mathrm{m}$) packed in glass columns. The eluting solvent for the purification of each compound was determined by thin-layer chromatography (TLC) on glass plates coated with silica gel 60 F254 and visualized by ultraviolet light.

2. Experimental procedures for the synthesis of lactams 16a-u.

methyl (3R,4R)-2-((4-nitrophenyl)sulfonyl)-1-oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4carboxylate (16a). Imine 15a ($49.5 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride 8 ($27.7 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.7 mL) and diisopropylethylamine ($30 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and three times with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.67 \mathrm{~mL}$) and acetyl chloride ($6 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 15 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography (25-40\% EtOAc:hex) to yield 16a ($67.9 \mathrm{mg}, 86 \%$), a single diastereomer, as a white amorphous solid: mp $80.6-84.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (td, $J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (td, $J=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21-7.29 (m, 4H), 7.16-7.07 (m, 2H), 6.49 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,162.5$, $150.5,144.3,137.9,134.4,132.9,131.0,129.9,129.1,129.0,128.8,128.5,127.3,126.2,123.4$, 59.9, 53.2, 51.2; IR: $1739,1668,1532,1310,1159 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 467.0907$, found 467.0927.

methyl (3R,4R)-1-oxo-3-phenyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16b). Imine 15b ($44.0 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride 8 ($27.5 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}$
(1.7 mL) and diisopropylethylamine ($30 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 24 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and three times with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.68 \mathrm{~mL})$ and acetyl chloride ($6 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 15 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography ($25-40 \%$ EtOAc:hex) to yield 16b ($70.3 \mathrm{mg}, 95 \%$), a single diastereomer, as a white amorphous solid; mp $75.8-77.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.06 (dd, $J=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{td}, J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=1.2$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-708(\mathrm{~m}, 8 \mathrm{H}), 6.51(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.5,140.8,123.1,116.7,114.3,112.1,111.3,107.9,107.9$, 107.3, 107.1, 107.0, 106.4, 106.4, 104.5, 55.6, 38.2, 31.4, 30.0; IR: 1734, 1683, 1352, 1242, 1165 cm^{-1}; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 436.1213$, found 436.1230.

16b Scale-up. Imine 15b ($350 \mathrm{mg}, 1.35 \mathrm{mmol}$) and anhydride 8 ($219 \mathrm{mg}, 1.350 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(13.5 \mathrm{~mL}$) and diisopropylethylamine ($47 \mu \mathrm{~L}, 0.27 \mathrm{mmol}, 20 \mathrm{~mol} \%$) was added. The reaction mixture was allowed to stir for 24 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and three times with EtOAc. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(13.5 \mathrm{~mL})$ and $\mathrm{EtOAc}(5 \mathrm{~mL})$, and acetyl chloride ($96 \mu \mathrm{~L}, 1.4 \mathrm{mmol}$) was added. After 15 h , esterification was incomplete so another portion of acetyl chloride ($96 \mu \mathrm{~L}, 1.4 \mathrm{mmol}$) was added. After 24 h , the reaction mixture was concentrated in vacuo. The crude mixture was purified by flash column chromatography (25-50\% EtOAc:hexanes) to yield a spectroscopically identical sample of $\mathbf{1 6 b}$ as a single disasteroemer ($530 \mathrm{mg}, 90 \%$).

methyl
(3R,4R)-1-oxo-3-phenyl-2-((2-(trimethylsilyl)ethyl)sulfonyl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16c). Imine 15 c ($40.4 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride 8 ($24.6 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and tetramethylguanidine ($20 \mu \mathrm{~L}, 0.15$ mmol) was added. The reaction mixture was allowed to stir for 22 h , and then water and 10\% HCl in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.60 \mathrm{~mL}$) and acetyl chloride ($5 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 19 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography (25-35\% EtOAc:hex) to yield 16c ($55.4 \mathrm{mg}, 83 \%$), a single diastereomer, as a white amorphous solid: $\mathrm{mp} 160.7-161.8{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (dd, J = 1.8, 7.5 Hz, 1H), 7.55-7.42 (m, 2H), 7.28-7.12 (m, 6H), 6.19 (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 1.06-0.89(\mathrm{~m}, 2 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,163.8,138.6,134.0,133.1,129.4,129.0,128.9,128.8,128.3$, 128.2, 126.2, 59.4, 53.0, 51.7, 51.1, 9.5, -2.0; IR: 1732, 1672, 1349, 1236, $1155 \mathrm{~cm}^{-1}$; AMM (ESITOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 446.1452$, found 446.1474.

methyl (3R,4R)-2-((4-nitrophenyl)sulfonyl)-1-oxo-3-(o-tolyl)-1,2,3,4-tetrahydroisoquinoline-4carboxylate (16d). Imine 15d ($60.9 \mathrm{mg}, 0.20 \mathrm{mmol}$) and anhydride 8 ($32.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and tetramethylguanidine ($25 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined
organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ (0.80 mL) and acetyl chloride ($8 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography (20-25\% EtOAc:hex) to yield 16d ($74.0 \mathrm{mg}, 77 \%$), a single diastereomer, as a white amorphous solid: mp 78.1-81. $5^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.26 (d, $J=1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $8.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{td}, J=1.6,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{td}, \mathrm{J}=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.59 ($\mathrm{dd}, J=1.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.96(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.2,162.8,150.5,144.3,135.7,134.5,134.3,132.6,131.4,131.0,130.1,129.1,128.7$, $128.5,127.4,126.3,125.7,123.4,56.8,53.3,49.5,19.3$; IR: $1738,1681,1527,1244,1170 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 481.1064$, found 481.1086.

methyl
(3R,4R)-3-(4-chlorophenyl)-2-((4-nitrophenyl)sulfonyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16e). Imine 15 e ($55.2 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride 8 ($27.4 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and diisopropylethylamine ($30 \mu \mathrm{~L}, 0.17$ mmol) was added. The reaction mixture was allowed to stir for 22 h , and then water and 10\% HCl in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.68 \mathrm{~mL}$) and acetyl chloride ($6 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 14 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography ($25-40 \%$ EtOAc:hex) to yield 16e ($61.5 \mathrm{mg}, 72 \%$), a single diastereomer, as a white amorphous solid: mp 84.9-88.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.37-8.31(\mathrm{~m}, 2 \mathrm{H}), 8.31-8.26(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{dd}, \mathrm{J}=1.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, \mathrm{J}=1.5$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=1.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.49-6.43(\mathrm{~m}, 1 \mathrm{H})$, $4.10(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.9,162.3,150.7,144.2,136.6$, $134.5,132.6,131.1,129.9,129.3,129.2,128.9,127.5,127.2,123.6,59.3,53.3,51.1$; IR: 1732,

1676, 1347, 1256, $1168 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 501.0518$, found 501.0535.

methyl
(3R,4R)-3-(4-cyanophenyl)-2-((4-nitrophenyl)sulfonyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16f). Imine 15 f ($53.7 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride 8 ($27.6 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL}$) and diisopropylethylamine ($30 \mu \mathrm{~L}, 0.17$ mmol) was added. The reaction mixture was allowed to stir for 22 h , and then water and 10\% HCl in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.68 \mathrm{~mL})$ and acetyl chloride ($6 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 14 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography (30-35\% EtOAc:hex) to yield 16f ($51.0 \mathrm{mg}, 61 \%$), a single diastereomer, as a white amorphous solid: mp $65.7-70.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~s}, 4 \mathrm{H}), 8.04(\mathrm{dd}, J=1.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{td}, \mathrm{J}=1.5$, $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.44(\mathrm{td}, J=1.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.49$ $(\mathrm{m}, 1 \mathrm{H}), 4.11(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6$, $162.0,150.8,144.0,143.3,134.7,132.9,132.1,131.1,129.8,129.4,128.9,127.0,126.9,123.6$, 117.9, 112.7, $59.5,53.4,50.7$; IR: 1734, 1681, 1535, 1245, $1169 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$492.0860, found 492.0880.

methyl
(3R,4R)-3-(4-methoxyphenyl)-2-((4-nitrophenyl)sulfonyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate ($\mathbf{1 6 g}$). Imine $15 \mathrm{~g}(54.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ and anhydride 8 ($27.7 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL}$) and diisopropylethylamine ($30 \mu \mathrm{~L}, 0.17$ mmol) was added. The reaction mixture was allowed to stir for 22 h , and then water and 10\% HCl in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.68 \mathrm{~mL})$ and acetyl chloride ($6 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography ($25-40 \%$ EtOAc:hex) to yield $\mathbf{1 6 g}$ ($59.2 \mathrm{mg}, 70 \%$), a single diastereomer, as a white amorphous solid: mp $68.5-70.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33-8.25(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=1.5$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=1.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=1.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ (d, J = $1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.80-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,162.5,159.6,150.5,144.5,134.4,133.1,131.0$, 129.9, 129.9, 129.0, 128.8, 127.5, 127.4, 123.5, 114.3, 59.5, 55.3, 53.2, 51.3; IR: 1734, 1684, 1530, 1349, $1243 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 497.1013$, found 497.1028.

methyl
(3R,4R)-3-(naphthalen-2-yl)-2-((4-nitrophenyl)sulfonyl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16h). Imine 15 h ($68.1 \mathrm{mg}, 0.20 \mathrm{mmol}$) and anhydride 8 ($32.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}$) and tetramethylguanidine ($25 \mu \mathrm{~L}, 0.20$
mmol) was added. The reaction mixture was allowed to stir for 2 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.80 \mathrm{~mL})$ and acetyl chloride ($8 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography (20-25\% EtOAc:hex) to yield $\mathbf{1 6 h}$ ($\mathbf{7 3 . 9} \mathbf{~ m g}$, $72 \%)$, a single diastereomer, as a white amorphous solid: mp 86.3-95. $6^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.32-8.25(\mathrm{~m}, 4 \mathrm{H}), 8.08(\mathrm{dd}, J=1.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 1 \mathrm{H})$, 7.59-7.52 (m, 1H), 7.50-7.43 (m, 3H), $7.39(t d, J=1.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H})$, $4.26(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.1,162.6,144.4,135.2,134.4$, 133.0, 132.9, 132.9, 131.1, 129.9, 129.1, 129.1, 128.9, 128.1, 127.6, 127.4, 126.8, 126.8, 125.7, $123.5,123.3,60.1,53.3,51.2$; IR: $1735,1676,1532,1349,1165 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$517.1064, found 517.1080.

methyl (3S,4R)-2-((4-nitrophenyl)sulfonyl)-1-oxo-3-((E)-styryl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16i). Imine 15 i ($53.8 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride $\mathbf{8 (2 7 . 6 \mathrm { mg } , 0 . 1 7 \mathrm { mmol }) \text { were }}$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.7 mL) and diisopropylethylamine ($30 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.68 \mathrm{~mL})$ and acetyl chloride ($6 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 16 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography ($25-40 \%$ EtOAc:hex) to yield $\mathbf{1 6 i}$ ($42.5 \mathrm{mg}, 51 \%$), a single diastereomer, as a white amorphous solid: mp 83.6-88.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~d}$,
$J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{dd}, J=1.2,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{td}, J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{td}, J=1.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.80(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.10-5.97 (m, 2H), $4.05(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.8,161.2$, $150.6,144.6,135.1,134.9,134.4,133.5,131.0,129.9,129.1,129.1,128.7,127.1,126.8,124.6$, 123.6, $77.3,58.9,53.2,49.2$; IR: 1734, 1686, 1530, $1348,1170 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 493.1064$, found 493.1085.

methyl (3S,4R)-1-oxo-3-phenethyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16j). Imine 15 j ($48.9 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride $8(27.6 \mathrm{mg}, 0.17 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.7 \mathrm{~mL})$ and tetramethylguanidine ($20 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ $(0.68 \mathrm{~mL})$ and acetyl chloride ($6 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 16 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography ($30-35 \%$ EtOAc:hex) to yield $\mathbf{1 6 j}$ ($26.8 \mathrm{mg}, 34 \%$), a single diastereomer, as a white amorphous solid: mp $102.5-105.0^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-7.93(\mathrm{~m}, 3 \mathrm{H}), 7.51$ (td, $J=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.08(\mathrm{~m}, 5 \mathrm{H})$, 5.38 (ddd, $J=1.7,5.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.88(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.80$ (dddd, $J=5.9,10.3$, 13.9, $42.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,161.8,144.8,140.2,136.1,133.7,133.6,129.5,129.4,129.0,129.0,128.7,128.5,128.2$, 127.9, 126.3, $57.7,52.8,47.7,36.4 ; 32.6,21.6$; IR: 1729, 1689, 1341, $1244,1160 \mathrm{~cm}^{-1}$; AMM (ESITOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 464.1526$, found 464.1542.

methyl (3S,4R)-3-isopropyl-1-oxo-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16k). Imine 15k (45.1 mg, 0.20 mmol$)$ and anhydride 8 ($32.2 \mathrm{mg}, 0.20 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2.0 \mathrm{~mL})$ and tetramethylguanidine ($25 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ $(0.80 \mathrm{~mL})$ and acetyl chloride $(7 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ was added. The reaction mixture was allowed to stir for 17 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography (20-25\% EtOAc:hex) to yield 16k ($36.7 \mathrm{mg}, 46 \%$), a single diastereomer, as a white amorphous solid: $\mathrm{mp} 60.3-63.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.99$ (dd, $J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, \mathrm{J}=1.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=1.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{dd}, J=1.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 1.89(\mathrm{dp}, J=6.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,162.1,144.7,136.0,134.3,133.6,129.9,129.0,128.9,128.9,128.6,128.4$, $63.5,52.8,46.2,32.4,21.7,20.3,19.6$; IR: $1727,1684,1349,1243,1164 \mathrm{~cm}^{-1} ;$ AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$402.1370, found 402.1388 .

methyl 3-((S)-1-(benzyloxy)ethyl)-1-oxo-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16I)

Imine 151 ($93 \mathrm{mg}, 0.29 \mathrm{mmol}, 1$ equiv.) and homophthalic anhydride ($48 \mathrm{mg}, 0.29 \mathrm{mmol}, 1$ equiv.) were combined in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(2.9 \mathrm{~mL})$. Tetramethylguanidine ($37 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$, 1 equiv.) was added, and the reaction mixture immediately turned bright orange. After $23 \mathrm{~h}, 10 \%$ aqueous HCl solution (1.5 mL) and brine (1.5 mL) were added. The layers were separated, and the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude acid was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(1.2 \mathrm{~mL})$ and treated with $\mathrm{AcCl}(11 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 0.5$ equiv.). After 19 h , the reaction mixture was concentrated in vacuo. The crude product mixture was purified by flash column chromatography (100:0 to 70:30 hexanes:EtOAc) to produce ester 161 ($102 \mathrm{mg}, 71 \%$) as an 88:12:0:0 mixture of diastereomers. Major product: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.45 (td, J = 7.5, 1.4 Hz, 1H), 7.35-7.27 (m, 3H), 7.24-7.21 (m, 3H), 7.16 (d, J = 7.6 Hz, 1H), 7.02 $-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{dd}, J=7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ ($d, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.61(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta$ 170.9, 162.0, 144.7, 137.6, 136.0, 134.4, 133.4, 129.8, 129.1, 128.9, 128.6, 128.2, 128.1, 127.6, $127.5,110.0,75.7,71.2,61.1,52.7,44.3,21.6,16.5$. IR (thin film) 1733, 1686, 1348, 1243, 1166 cm^{-1}; AMM (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 494.1632$, found 494.1634.

methyl 3-((S)-methoxy(phenyl)methyl)-1-oxo-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4carboxylate (16m)

Aminosulfone 15 m ($60 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.) and homophthalic anhydride ($22 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1 equiv.) were combined in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.35 \mathrm{~mL}$). Tetramethylguanidine ($17 \mu \mathrm{~L}, 0.13$ mmol, 1 equiv.) was added, and the solution immediately turned bright orange. After $24 \mathrm{~h}, 10 \%$ aqueous HCl solution (1.5 mL) and brine (1.5 mL) were added. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$), and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
concentrated in vacuo. The crude acid was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{~mL})$ and treated with AcCl (10 $\mu \mathrm{L}, 1$ equiv.). After 22 h , the reaction mixture was concentrated in vacuo. The crude product mixture was purified by flash column chromatography (100:0 to 60:40 hexanes:EtOAc, $R_{f}=0.42$ in 60:40 hexanes:EtOAc) to produce ester $\mathbf{1 6 m}$ ($54 \mathrm{mg}, 83 \%$ over 2 steps) as a 79:21:0:0 mixture of diastereomers. Spectroscopic data for major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00$ (dd, J = 7.9, 1.4 Hz, 1H), $7.94(d, J=8.4 H z, 2 H), 7.52(t d, J=7.5,1.4 H z, 1 H), 7.42-7.35(m, 4 H)$, 7.33 - 7.29 (m, 3H), 7.27 (dd, J = 1.4, $0.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.47 (dd, J = 5.2, 1.4 Hz, 1H), 4.56 (d, J = 5.1 Hz , $1 \mathrm{H}), 4.05(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 170.7, 162.6, 144.5, 136.9, 134.5, 133.2, 129.5, 128.9, 128.8, 128.6, 128.6, 128.4, 128.2, 128.0, 127.4, 127.1, 85.5, 61.0, 58.1, 52.7, 43.5, 21.6. IR (thin film) 1734, 1687, 1241, 1164, $699 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 480.1475$, found 480.1491 .

methyl 3-((S)-1-(((benzyloxy)carbonyl)amino)ethyl)-1-oxo-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16n)

Aminosulfone 15n ($150 \mathrm{mg}, 0.282 \mathrm{mmol}, 1$ equiv.) and homophthalic anhydride ($46 \mathrm{mg}, 0.28$ $\mathrm{mmol}, 1$ equiv) were combined in dry $\mathrm{CH}_{3} \mathrm{CN}(2.8 \mathrm{~mL})$ and treated with TMG ($35 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$, 1 equiv.). After $23 \mathrm{~h}, 3 \mathrm{M}$ aqueous HCl solution (3 mL) and brine (1 mL) were added. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 7 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude acid was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(2.8 \mathrm{~mL})$ and treated with $\mathrm{AcCl}(20 \mu \mathrm{~L}, 0.28 \mathrm{mmol}, 1$ equiv). After 15 h , the mixture was concentrated in vacuo. The crude product mixture was purified by flash column chromatography (100:0 to 50:50 hexanes:EtOAc) to produce ester $\mathbf{1 6 n}$ ($95 \mathrm{mg}, 63 \%$) as a 78:22:0:0 mixture of diastereomers. Major product: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06$ - 7.97 (m, $4 \mathrm{H}), 7.48(\mathrm{td}, \mathrm{J}=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 6 \mathrm{H}), 5.16(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05$ (dd, J = 11.0, $4.3 \mathrm{~Hz}, 2 \mathrm{H}$), $4.87(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{tt}, J=11.7,6.1 \mathrm{~Hz}$,

1H), 3.57 (s, 3H), 2.38 (s, 3H), 1.31 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$). IR (thin film) 1709, 1682, 1528, 1228, 1165 cm^{-1}; AMM (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 537.1690$, found 537.1704.

methyl 3-((S)-1-(((benzyloxy)carbonyl)amino)-2-methylpropyl)-1-oxo-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (160)

Aminosulfone 150 ($73 \mathrm{mg}, 0.19 \mathrm{mmol}, 1$ equiv.) and homophthalic anhydride ($31 \mathrm{mg}, 0.19 \mathrm{mmol}$, 1 equiv) were dissolved in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(1.9 \mathrm{~mL})$. Tetramethylguanidine ($24 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$, 1 equiv.) was added, and the solution immediately became an orange-brown color. After 22 h , $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}), 1 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$, and brine $(1 \mathrm{~mL})$ were added, and the aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 15 \mathrm{~mL}$). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude acid was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.57 \mathrm{~mL})$ and THF (1.9 mL). TMSCHN_{2} in hexane ($115 \mu \mathrm{~L}, 0.226 \mathrm{mmol}, 1.2$ equiv.) was added. After $1.5 \mathrm{~h}, 10 \% \mathrm{HCl}(1 \mathrm{~mL})$ was added, and the resulting mixture was diluted to 10 mL with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous portion was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product mixture was purified by flash column chromatography (100:0 to $50: 50$ hexanes:EtOAc, $\mathrm{R}_{\mathrm{f}}=0.37$ in 50:50 hexanes:EtOAc) to produce 160 ($103 \mathrm{mg}, 97 \%$ over two steps) as an 85:15:0:0 mixture of diastereomers. Spectroscopic data for major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-7.98(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46-7.21(\mathrm{~m}, 10 \mathrm{H}), 5.26(\mathrm{dd}, J=9.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=10.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{td}, J=10.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}$, $3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,161.9,156.8,144.8,136.6,136.0,133.5,132.6,129.8,129.2,129.1,129.0$, 128.9, 128.6, 128.4, 128.2, 127.9, 67.3, 59.7, 56.5, 52.9, 46.9, 28.8, 21.7, 20.5, 15.2. IR (thin film)

1689, 1721, 1162, 1234, $1347 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 565.2003$, found 565.2038.

methyl (3S,4R)-4-methyl-1-oxo-3-phenyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16p). Imine 15p ($44.2 \mathrm{mg}, 0.17 \mathrm{mmol}$) and anhydride 17a ($30.3 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.7 \mathrm{~mL})$ and tetramethylguanidine ($21 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.52 \mathrm{~mL})$, THF (1.7 mL), and $\mathrm{TMSCHN}_{2}(105 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ was added. The reaction mixture was allowed to stir for 1 h , and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was purified by flash column chromatography ($25-30 \%$ EtOAc:hex) to yield $\mathbf{1 6 p}$ ($55.9 \mathrm{mg}, 73 \%$), a single diastereomer, as a white amorphous solid: mp 73.9-76.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.10(\mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.16$ (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.1 Hz, 2H), 6.97-6.91 (m, 2H), $6.25(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, $1.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0,162.5,144.5,138.0,136.0,135.6,133.9,129.3$, $128.8,128.7,128.6,128.6,128.5,128.4,126.6,77.2,65.3,53.4,50.5,21.6,21.3$; IR: 1729, 1682, 1355, 1248, $1167 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 450.1370$, found 450.1384.

methyl (3S,4R)-3-(4-chlorophenyl)-4-methyl-1-oxo-2-tosyl-1,2,3,4-tetrahydroisoquinoline-4carboxylate ($\mathbf{1 6 q}$). Imine 15 q ($294.3 \mathrm{mg}, 1.0 \mathrm{mmol}$) and anhydride $\mathbf{1 7 a}$ ($176.2 \mathrm{mg}, 1.0 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ and tetramethylguanidine ($125 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(3.0 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$, and $\mathrm{TMSCHN}_{2}(0.6 \mathrm{~mL}$, 1.2 mmol) was added. The reaction mixture was allowed to stir for 1 h , and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was purified by flash column chromatography (20-30\% EtOAc:hex) to yield 16q ($316.5 \mathrm{mg}, 65 \%$), a single diastereomer, as a white amorphous solid: mp 70.4-74.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.09$ (dd, $J=7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.66(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{td}, J=1.3,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{td}, J=$ 1.2, $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8$, $162.3,144.8,137.7,135.9,134.7,134.3,134.1,130.0,129.3,128.9,128.7,128.7,128.6,128.5$, 126.7, 64.7, 53.4, 50.4, 21.7, 21.2; IR: 1732, 1672, 1349, 1236, $1155 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClNO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 484.0980$, found 484.0996.

methyl
(3R,4R)-7-bromo-2-((4-nitrophenyl)sulfonyl)-1-oxo-3-phenyl-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (16r). Imine 15a ($58.3 \mathrm{mg}, 0.20 \mathrm{mmol}$) and anhydride 17b
($47.9 \mathrm{mg}, 0.20 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ and tetramethylguanidine ($25 \mu \mathrm{~L}, 0.20$ mmol) was added. The reaction mixture was allowed to stir for 22 h , and then water and 10\% HCl in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.80 \mathrm{~mL})$ and acetyl chloride ($8 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 19 h , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography (20-30\% EtOAc:hex) to yield 16r ($56.0 \mathrm{mg}, 53 \%$), a single diastereomer, as a white amorphous solid: mp 87.8-93.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.20-8.15(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=2.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.22$ ($\mathrm{m}, 3 \mathrm{H}$), $7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5,161.2,150.6,143.9,137.4,137.3,131.7,131.6,131.5$, 131.1, 129.1, 128.9, 128.7, 126.1, 123.5, 123.2, 59.8, 53.4, 50.8; IR: 1743, 1676, 1525, 1352, 1166 cm^{-1}; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrN}_{2} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 545.0013$, found 545.0032.

methyl
(7R,8R)-6-((4-nitrophenyl)sulfonyl)-5-oxo-7-phenyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline-8-carboxylate (16s). Imine 15a (49.2 mg, 0.17 mmol) and anhydride 17c ($35.0 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and tetramethylguanidine ($21 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.68 \mathrm{~mL})$ and acetyl chloride ($6 \mu \mathrm{~L}, 0.09$ mmol) was added. The reaction mixture was allowed to stir for 1.5 d , and then concentrated in vacuo. The crude mixture was purified by flash column chromatography ($30-40 \%$ EtOAc:hex) to yield 16s ($63.9 \mathrm{mg}, 74 \%$), a single diastereomer, as a white amorphous solid: mp 97.3-103.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.16(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.26$
(m, 2H), $723(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}$, $2 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,161.8,152.7,150.5$, 148.6, 144.4, 137.9, 130.9, 129.0, 128.5, 126.2, 123.4, 121.5, 109.4, 107.9, 102.3, 77.2, 59.7, 53.2, 51.1; IR: 1733, 1677, 1529, 1259, $1169 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 511.0806, found 511.0823.

methyl (7S,8R)-5-oxo-7-((E)-styryl)-6-((2-(trimethylsilyl)ethyl)sulfonyl)-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline-8-carboxylate (16t) Imine 15t (150 mg, 0.51 mmol) and 4,5methylenedioxyhomophthalic anhydride (17c) ($105 \mathrm{mg}, 0.510 \mathrm{mmol}$) were dissolved in acetonitrile (5.1 mL) and tetramethylguanidine ($64 \mu \mathrm{~L}, 0.51 \mathrm{mmol}$) was added. The reaction was stirred for 19 h , and then water and 10% aq. $\mathrm{HCl}(30 \mathrm{~mL})$ were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude material was purified by flash column chromatography ($0: 100 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $10: 90 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to yield acid ($197 \mathrm{mg}, 77 \%$).

Purified acid ($1.38 \mathrm{~g}, 2.75 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(11 \mathrm{~mL})$ and treated with acetyl chloride $(90.0 \mu \mathrm{~L}, 1.38 \mathrm{mmol})$. The mixture was stirred for 19 hours and then concentrated in vacuo. The crude material was purified by flash column chromatography (20:80 EtOAc:hexanes) to yield ester 16t ($593 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.75-6.70$ ($\mathrm{m}, 2 \mathrm{H}$), 6.06-5.99 (m, 3H), 5.69 (ddd, J = 7.4, 1.5, 1.5 Hz, 1H), 3.86 (d, J = $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 3.66-3.51 (m, 3H), 3.05-3.00 (m, 1H), 1.11-1.05 (m, 1H), 1.04-0.94 (m, 2H), -0.02 (s, 9H); 13C NMR (151 MHz, CDCl3) $\delta 170.1,162.6,152.6,148.6,135.6,134.6,129.9,128.7,126.9,125.2,122.3$, 109.3, 108.7, 102.4, 58.2, 53.1, 51.7, 49.3, 11.1, 10.2, -1.9; IR: 1736, 1672, 1342, 1253, $1149 \mathrm{~cm}^{-}$ ${ }^{1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NO}_{7} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}]^{+} 516.1507$, found 516.1519.

1-((4-nitrophenyl)sulfonyl)-4,6-diphenyl-5,6-dihydropyridin-2(1H)-one (16u). Imine 15a (37.2 $\mathrm{mg}, 0.13 \mathrm{mmol})$ and anhydride $17 \mathrm{~d}(24.4 \mathrm{mg}, 0.13 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.3 \mathrm{~mL})$ and tetramethylguanidine ($16 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$) was added. The reaction mixture was allowed to stir for 22 h , and then water and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(0.39 \mathrm{~mL}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1.3 mL), and $\mathrm{TMSCHN}_{2}(80 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ was added. The reaction mixture was allowed to stir for 1 h , and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $10 \% \mathrm{HCl}$ in water were added to the mixture. The biphasic mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated in vacuo. The crude mixture was purified by flash column chromatography (20-30\% EtOAc:hex) to yield 16u (11.8 mg, 17\%) as a white amorphous solid: mp 196.0-197.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.43-7.21 (m, 7H), $7.16(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.30(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (ddd, $J=17.7,7.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=17.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3$, $152.3,150.4,144.1,139.2,136.2,130.8,130.8,129.0,129.0,128.6,126.5,126.1,123.3,118.4$, $57.8,35.3$; IR: $1669,1526,1348,1237,1168 \mathrm{~cm}^{-1}$; AMM (ESI-TOF) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 435.1009$, found 435.1025.

3. Computational NMR Spectroscopy Data

For each diastereomer of the 2 compounds of interest ($\mathbf{1 6 0}$ and $\mathbf{1 6 m}$), we first performed conformational search using Spartan10, ${ }^{1}$ and kept 100 lowest-energy conformers that were within 200 $\mathrm{kcal} / \mathrm{mol}$ of electronic energy computed with MMFF force field. ${ }^{2}$ Using Gaussian09, ${ }^{3}$ for each conformer library, we computed electronic energies of all the conformers (without optimization) with DFT method, M06-2X/6-31G(d), ${ }^{4,5}$ to rank them in relative uncorrected electronic energies. The conformers, which were within $\sim 17 \mathrm{kcal} / \mathrm{mol}$ of the lowest-energy structure, were then fully optimized with frequency calculation (to check for true minima) with B3LYP/6-31G(d). ${ }^{6,7}$ To ensure that we have adequately sample the conformational space, we used the lowest-energy conformer for each diastereomer to perform 2 more rounds of conformational searches in Spartan10, until we see redundant outputs of conformations.

Proton-proton Fermi constants were then calculated, using B3LYP/6-31+G(d,p), for conformers that were within $2 \mathrm{kcal} / \mathrm{mol}$ of the B3LYP/6-31G(d) Free energy and then scaled to coupling constant using the scaling factor of $0.9117 .{ }^{8}$ Boltzmann weighed average of coupling constants were also determined to account for conformational flexibility.

For the conformers that were within $10 \mathrm{kcal} / \mathrm{mol}$ of Free energy determined by B3LYP/6-31G(d), full optimization and frequency calculations were performed using B3LYP/6-31+G(d,p) to determine a more accurate Free energy profile. NMR calculations were then calculated for conformers that were within 2 $\mathrm{kcal} / \mathrm{mol}$ of the new energies, using mPW1PW91/6-311+G(2d,p) ${ }^{9}$ in chloroform (SMD solvation model). ${ }^{10}$ Chemical shifts were scaled using scaling factors available at the cheshirenmr.info website (slope $=-1.0936$ for ${ }^{1} \mathrm{H}$, and intercept $=31.8018$ for ${ }^{1} \mathrm{H}$). ${ }^{11}$ For methyl group, averages of the computed values of the three hydrogens were used to compare to the experimental numbers. Boltzmann weighed average chemical shifts were also determined to account for conformational flexibility in real time NMR, and DP4 statistical analysis ${ }^{12}$ were performed to check for the probability that our assignment were correct.

160:

A

B
Scheme S1: Structures of two possible diastereomers 160.
Since there are only one set of experimental NMR data, which was for the observed major product, we calculated the computed NMR for both \mathbf{A} and \mathbf{B} to compare. Boltzmann weighed average chemical shifts from all the contributing conformers of \mathbf{A} and \mathbf{B} indicated that \mathbf{A} is the major diastereomer product as its chemical shifts, as well as proton-proton coupling constants, matched better to the experimental values.

Structure A	
opt/freq	B3LYP/6-31+G(d,p)
Name	\% of the population
conf 4	48.61
conf 9	15.59
conf 1	12.10
conf 6	8.95
conf 5	7.13
conf 2	4.66
conf 38	1.50
conf 40	1.45

Structure B
opt/freq B3LYP/6-31+G(d,p) Name \% of the population conf 51 80.79 conf 14 9.39 $\operatorname{conf} 47$ 6.22 $\operatorname{conf} 8$ 2.35 $\operatorname{conf} 34$ 1.25

Table S1: contributing conformers of \mathbf{A} and \mathbf{B} (conformers within $2 \mathrm{kcal} / \mathrm{mol}$ of Free energy)

opt/freq	B3LYP/6-31+G(d,p)		
NMR	mPW1PW91/6-311+G(2d,p)		
	Conformers of A		Conformers of B
	Boltzmann. Ave $\boldsymbol{\delta}$ (ppm)	Exp. $\boldsymbol{\delta}(\mathbf{p p m})$	Boltzmann. Ave $\boldsymbol{\delta}(\mathbf{p p m})$
$\mathbf{H b}$	5.17	5.29	4.77
$\mathbf{H c}$	4.00	3.97	4.12
$\mathbf{H a}$	3.54	3.67	3.43
Hi-Pr	1.90	1.94	2.38
DP4 Stat.	$\mathbf{9 7 . 9 0 \%}$		$\mathbf{2 . 1 0 \%}$

Table S2: Computed Boltzmann weighed average chemical shifts, and experimental NMR of major product.

opt/freq	B3LYP/6-31+G(d,p)		
NMR	mPW1PW91/6-311+G(2d,p)		
	Average Conformers of A		Average Conformers of B
	$\boldsymbol{\Delta}$ (comp - exp)	Exp. $\boldsymbol{\delta}(\mathbf{p p m})$	$\boldsymbol{\Delta}$ (comp - exp)
$\mathbf{H b}$	-0.12	5.29	-0.52
$\mathbf{H c}$	0.03	3.97	0.15
$\mathbf{H a}$	-0.13	3.67	-0.24
$\mathbf{H i}-\mathrm{Pr}$	-0.04	1.94	0.44
DP4 Stat.	$\mathbf{9 7 . 9 0 \%}$		$\mathbf{2 . 1 0 \%}$

Table S3: shift by shift deviations and experimental NMR of major product.

opt/freq	B3LYP/6-31G(d)		
NMR	B3LYP/6-31G(d,p)		
	Conformers of A	Exp. Coupling	Conformers of B
	Boltzmann. Ave coupling (Hz)	constant (Hz)	Boltzmann. Ave coupling (Hz)
$\mathbf{H a - - H b}$	9.07	$9.8-10.3$	6.34
$\mathrm{Hb}-\mathrm{Hc}$	1.89	$1.7-1.8$	1.45
$\mathrm{Ha}-\mathrm{Hi}-\mathrm{Pr}$	4.73	$3.7-3.8$	10.30

Table S4: proton-proton coupling constant and experimental coupling constants of major product.

Figure S1: Bond-and-stick pictures of the optimized lowest-energy conformers of \mathbf{A} and \mathbf{B} for $\mathbf{1 6 0}$.

16m:

Unlike the previous system, we also have experimental NMR for the minor diastereomer product for this system. First when we calculated the coupling constant for A and B after taking into consideration all the contributing conformers based on the calculated B3LYP/6-31G(d) Free energies, the coupling constant of A match well to the experimental data of the major diastereomer; however, the computed values of B did not match to either the major or minor. Upon inspecting the optimized conformers that were within $5 \mathrm{kcal} / \mathrm{mol}$ of free energies, we notice that some conformers give computed coupling constant that matched well to the experimental value, but their B3LYP Free energies were much higher, making them not weighed much in the Boltzmann average. As the result, we reoptimized with frequency calculation for all the conformers of A and B that were within the $5 \mathrm{kcal} / \mathrm{mol}$ energy window, using $\omega B 97 X D / 6$ $31+G(d, p)$ and used the new energies to calculate the Boltzmann distribution, while using the same NMR method. Boltzmann weighed average chemical shifts and coupling constant from all the contributing conformers of \mathbf{A} and \mathbf{B} indicated that \mathbf{A} is the major diastereomer product as its chemical shifts matched better to the experimental values.

A
B
Scheme S2: Structures of two possible diastereomers of $\mathbf{1 6 m}$.

structure \mathbf{A}	B3LYP/6-31+G(d,p)	$\omega B 97 X D / 6-31+G(\mathrm{~d}, \mathrm{p})$
conf name	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$
1.first	0.00	0.00
10.first	1.02	0.10
11.first	-1.10	-1.02
23.first	-0.97	1.00
25.first	-0.97	1.00
29.first		-0.03
33.first	2.78	1.54
35.first	2.78	
36.first		1.52
41.first	2.31	3.64
45.first	2.31	3.64
47.first		2.96
71.first	3.38	4.74
9.first	0.00	0.00
13.second	3.96	5.32
15.second	3.37	4.75
18.second	1.61	1.31
2.second	-0.01	0.00
21.second	1.30	0.13
3.second	-1.10	-1.01
36.second	-1.01	1.01
4.second		-0.04
7.second	1.21	0.24
8.second	2.39	4.19
9.second	1.92	4.03

structure B	B3LYP/6-31+G(d,p)	$\omega B 97 X D / 6-31+G(d, p)$
conf name	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$
1.first	0.00	0.00
13.first	1.46	
15.first	1.41	
17.first	1.41	1.79
19.first	2.36	
20.first	2.36	
21.first	2.36	
23.first	1.41	
25.first	1.40	
31.first	4.97	
5.first	-1.22	0.13
55.first	1.39	
56.first	2.45	
57.first	2.44	
1.second	0.00	0.00
10.second	4.60	
14.second	1.39	-0.07
15.second	2.55	0.64
16.second	2.42	-0.47
2.second	-1.22	
21.second	1.47	1.55
25.second	1.39	1.45
26.second	1.58	1.16
3.second	1.09	1.24
35.second	1.08	1.46
39.second	1.09	1.24
5.second	2.36	1.54
6.second	1.40	1.55
7.second	4.80	1.33
1.third	1.98	0.82
28.third	2.43	-0.47
2.third	1.44	-0.04
33.third	2.55	0.64

Table S5: Free energies computed at B3LYP/6-31+G(d,p) and ω B97XD/6-31+G(d,p) for conformers of \mathbf{A} and \mathbf{B}.

Structure A

opt/freq	ω B97XD/6-31+G(d,p)
Name	\% of the population
conf 11	59.02
conf 29	11.07
conf 2	10.59
conf 10	8.92
conf 21	8.45
conf 36	1.94

Structure B

opt/freq	ω B97XD/6-31+G(d,p)
Name	$\%$ of the population
conf 28	32.35
conf 14	16.62
conf 2	15.85
conf 1a	14.70
conf 5	11.83
conf 33	4.96
conf 1	3.69

Table S6: contributing conformers of \mathbf{A} and \mathbf{B} (conformers within $2 \mathrm{kcal} / \mathrm{mol}$ of Free energy.

opt/freq	B3LYP/6-31+G(d,p)		
NMR	mPW1PW91/6-311+G(2d,p)		
	Conformers of A	major prod	Conformers of B
	Boltzmann. Ave $\boldsymbol{\delta}$ (ppm)	Exp. δ (ppm)	Boltzmann. Ave $\boldsymbol{\delta}$ (ppm)
Ha	4.55	4.56	3.98
Hb	5.44	5.46	5.45
Hc	4.44	4.05	4.51
MeEster	3.44	3.57	3.39
MeEther	3.18	3.06	2.80
MeTosyl	2.43	2.39	2.36
MAD =	0.12		0.25
DP4 Stat.	99.80\%		0.20\%

Table S7: Computed Boltzmann weighed average chemical shifts, and experimental NMR of major product.

opt/freq	B3LYP/6-31+G(d,p)		
NMR	mPW1PW91/6-311+G(2d,p)		
	Average Conformers of A	major prod	Average Conformers of B
	$\boldsymbol{\Delta}$ (comp - exp)	Exp. $\boldsymbol{\delta}(\mathbf{p p m})$	$\boldsymbol{\Delta}$ (comp - exp)
	-0.01	4.56	-0.58
$\mathbf{H a}$	-0.02	5.46	-0.01
$\mathbf{H b}$	0.39	4.05	0.46
Hc	-0.13	3.57	-0.18
MeEster	0.12	3.06	-0.26
MeEther	0.04	2.39	-0.03
MeTosyl			
	$\mathbf{0 . 1 2}$		$\mathbf{0 . 2 5}$
MAD $\boldsymbol{y y y y}$	$\mathbf{9 9 . 8 0 \%}$		$\mathbf{0 . 2 0 \%}$
DP4 Stat.			

Table S8: shift by shift deviations and experimental NMR of major product.

opt/freq	B3LYP/6-31+G(d,p)		
NMR	mPW1PW91/6-311+G(2d,p)		
	Conformers of A	minor prod	Conformers of B
	Boltzmann. Ave $\boldsymbol{\delta}$ (ppm)	Exp. δ (ppm)	Boltzmann. Ave δ (ppm)
Ha	4.55	4.14	3.98
Hb	5.44	5.57	5.45
Hc	4.44	3.81	4.51
MeEster	3.44	3.62	3.39
MeEther	3.18	3.17	2.80
MeTosyl	2.43	2.41	2.36
MAD $=$	0.23		0.27
DP4 Stat.	46.90\%		53.10\%

Table S9: Computed Boltzmann weighed average chemical shifts, and experimental NMR of minor product.

opt/freq	B3LYP/6-31+G(d,p)		
NMR	mPW1PW91/6-311+G(2d,p)		
	Average Conformers of A	minor prod	Average Conformers of B
	$\mathbf{\Delta}$ (comp - exp)	Exp. $\boldsymbol{\delta}(\mathbf{p p m})$	$\boldsymbol{\Delta}$ (comp - exp)
	0.41	4.14	-0.16
$\mathbf{H a}$	-0.13	5.57	-0.12
$\mathbf{H b}$	0.63	3.81	0.70
$\mathbf{H c}$	-0.18	3.62	-0.23
MeEster	0.01	3.17	-0.37
MeEther	0.02	2.41	-0.05
MeTosyl			
	$\mathbf{0 . 2 3}$		$\mathbf{0 . 2 7}$
MAD $=$	$\mathbf{4 6 . 9 0 \%}$		$\mathbf{5 3 . 1 0 \%}$
DP4 Stat.			

Table S8: shift by shift deviations and experimental NMR of minor product.
The computed and experimental chemical shifts together suggest that \mathbf{B} is the minor product; however, the Boltzmann average of Hc chemical shift is off by 0.7 ppm from the experimental value. As we look closer at all the structures of the contributing conformers, this proton is pointing directly at the ether oxygen and on average is just $2.3 \AA ̊$ apart (figure S2; conf 28). This suggests that the deviation could be the result of this proton involving in $\mathrm{CH}-\mathrm{O}$ interaction. In supporting this hypothesis, conf 1a and conf 5 (figure S 2), where Hc isn't in close proximity to the ether oxygen, Hc 's chemical shifts are both at around 3.94 ppm , which is only 0.13 ppm away from the experimental value of 3.81 ppm . We are currently investigating the effect of this $\mathrm{CH}-\mathrm{O}$ interaction in computed chemical shifts for hexa-cyclic peptide, and deviations are typically observed when C-H is about 2-2.5 Å away from the oxygen, and the effect can be alleviated by elongating these distance to about $3.0 \AA$ (more details to follow).
Also, as another experiment, we elongated the distance between the problematic CH and ether- O and then optimized the molecules with the distance constrained. From that geometry, we calculated the chemical shifts, and Hc (in the original conf $\mathbf{2 8}$ deviated by 0.9 ppm from the experimental value) is now only 0.4 ppm off from the experimental chemical shift.
In addition, we are confident that \mathbf{B} is the minor product as its computed coupling constant matched well with the experimental minor product.
Conf 28
Conf 1a

Conf 28 optimized with constraint With $\mathrm{CH}-\mathrm{O}$ distance fixed at about 3 Angstrom, and allowing the rest of the molecule to relax

Figure S3: Bond-and-stick pictures of the conformers with the problematic proton, Hc. Distance shown are in Å.

Proton-proton coupling constants:

opt/freq	B3LYP/6-31G(d)	
NMR	B3LYP/6-31G(d,p)	
	Conformers of A	Exp. Coupling constant (Hz)
	Boltzmann. Ave coupling (Hz)	Major Prod
	5.82	5.2
$\mathrm{Ha}-\mathrm{-Hb}$	1.00	$1.4-1.5$
$\mathrm{Hb}-\mathrm{Hc}$		

	Conformers of B	Exp. Coupling constant (Hz)
	Boltzmann. Ave coupling (Hz)	
		$8.2-8.4$
$\mathrm{Ha}-\mathrm{Hb}$	7.94	$1.4-1.5$
$\mathrm{Hb}-\mathrm{Hc}$	1.80	

Table S11: Computed and experimental proton-proton coupling constants.

Figure S3: Bond-and-stick pictures of the optimized lowest-energy conformers of \mathbf{A} and \mathbf{B} for $\mathbf{1 6 m}$.

Full Gaussian09 Citation:

Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.

[^0]
4. Stereochemical Supplement for Lactam 16p Assignment

Relative stereochemistry of $\mathbf{1 6 p}$ (major) by analogy to literature spectra for compounds \mathbf{A} and \mathbf{B}

A 1

$B^{2} \mathrm{CN}$

16p (major)

Compound	$\delta(\mathrm{H})$	$\delta\left(\mathrm{CH}_{3}\right)$
\mathbf{A}	4.92	1.37
B	5.58	1.61
16p (major)	6.23	1.50

-

Relative stereochemistry of $\mathbf{1 6} \mathbf{p}$ (minor) by analogy to literature spectra for compounds \mathbf{C} and \mathbf{D}

C^{1}

$D^{2} \mathrm{CN}$

16p (minor)

Compound	$\delta(\mathbf{H})$	$\delta\left(\mathrm{CH}_{3}\right)$
\mathbf{C}	4.60	1.77
D	5.23	1.97
$\mathbf{1 6 p}$ (minor)	5.87	1.88

Compound \mathbf{E} has been converted to both \mathbf{C} and (\pm)-6-oxocorynoline, which matches spectroscopic data of authentic natural product samples ${ }^{1,3}$

(\pm)-6-oxocorynoline ${ }^{1,3}$

E^{1}

References:
$A^{1} ; B^{2} ; C^{1} ; D^{2} ; E^{1} ; 6$-oxocorynoline ${ }^{1,3}$
(1) Cushman, M.; Abbaspour, A.; Gupta, Y. P. J. Am. Chem. Soc 1983, 105, 2873-2879.
(2) Cushman, M.; Wong, W. C. J. Org. Chem. 1984, 49, 1278-1280.
(3) Nonaka, G.; Nishioka, I. Chem. Pharm. Bull. 1975, 23, 521-526.

5. X-ray Crystallography Data

16e

Table 1 Crystal data and structure refinement for $16 e$.
Identification code
mo_MJD011_0m
Empirical formula
$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SCl}$
Formula weight
500.89

Temperature/K
Crystal system
Space group
90.15
triclinic
a/Å
b/Å
c/Å
P-1
/Å 9.1593(7)
$11.0566(8)$
$\alpha /{ }^{\circ}$
12.4050(9)
$\beta /{ }^{\circ}$
64.9500(10)
(76.9800(10)
$\gamma /{ }^{\circ}$
Volume/ \AA^{3}
89.3270(10)
1103.85(14)

Z
$\varrho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.507$
$\mu / \mathrm{mm}^{-1} \quad 0.317$
$\mathrm{F}(000) \quad 516.0$
Crystal size $/ \mathrm{mm}^{3} \quad 0.385 \times 0.28 \times 0.224$

Radiation
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 3.736$ to 66.388
Index ranges $\quad-14 \leq h \leq 13,-16 \leq k \leq 16,-18 \leq 1 \leq 18$
Reflections collected 19981
Independent reflections $\quad 7848\left[\mathrm{R}_{\text {int }}=0.0233, \mathrm{R}_{\text {sigma }}=0.0275\right]$
Data/restraints/parameters 7848/0/308
Goodness-of-fit on F^{2} 1.021

Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0373, \mathrm{wR}_{2}=0.0984$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0451, \mathrm{wR}_{2}=0.1034$
Largest diff. peak/hole / e \AA^{-3} 0.73/-0.42

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic
Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for mo_MJD011_0m. $U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Ato \mathbf{m}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U}(\mathbf{e q})$
S1	$5259.9(3)$	$6953.5(3)$	$1658.7(2)$	$14.57(6)$
C11	$8079.4(4)$	$162.4(3)$	$4017.4(3)$	$32.56(8)$
O3	$-143.4(8)$	$4297.6(8)$	$2346.1(7)$	$16.78(15)$
O1	$3611.0(9)$	$6459.0(8)$	$4051.9(7)$	$17.98(15)$
O4	$6423.5(9)$	$7118.2(9)$	$2196.2(8)$	$21.20(16)$
O5	$5663.8(9)$	$6800.7(8)$	$536.3(7)$	$19.26(16)$
O2	$1851.2(9)$	$5629.7(9)$	$901.0(7)$	$20.02(16)$
O6	$1403.5(11)$	$12136.3(10)$	$1506.9(9)$	$25.90(18)$
O7	$371.3(11)$	$11535.4(10)$	$380.9(10)$	$28.1(2)$
N1	$4040.9(10)$	$5607.8(8)$	$2638.8(8)$	$12.87(15)$
N2	$1292.0(11)$	$11421.5(9)$	$993.7(9)$	$17.90(17)$
C1	$3310.2(11)$	$5572.8(10)$	$3774.7(9)$	$13.34(17)$
C7	$1571.7(11)$	$3639.6(10)$	$4099.8(9)$	$13.49(17)$
C16	$1313.1(11)$	$4721.9(10)$	$1897.1(9)$	$14.03(17)$
C9	$3889.5(11)$	$4465.4(10)$	$2325.6(9)$	$12.79(16)$
C10	$4965.2(11)$	$3412.5(10)$	$2781.0(9)$	$13.65(17)$
C2	$2134.2(11)$	$4443(1)$	$4564.6(9)$	$13.57(17)$

C8	$2236.4(11)$	$3870.8(10)$	$2789.7(9)$	$13.00(17)$
C23	$2133.7(12)$	$9495.2(11)$	$596.2(10)$	$16.57(18)$
C24	$3053.4(12)$	$8449.2(11)$	$761.7(10)$	$16.23(18)$
C21	$3391.9(12)$	$10231.8(11)$	$1785.5(10)$	$16.75(18)$
C19	$4119.8(11)$	$8306.1(10)$	$1441.5(9)$	$14.62(17)$
C20	$4310.1(12)$	$9186.4(11)$	$1948.5(10)$	$16.87(18)$
C3	$1558.3(12)$	$4239.5(11)$	$5781.3(9)$	$17.43(19)$
C22	$2319.1(12)$	$10351.4(10)$	$1121.8(9)$	$14.95(18)$
C15	$5606.8(12)$	$2800.7(11)$	$2028.4(10)$	$17.81(19)$
C5	$-185.2(13)$	$2456.7(11)$	$6066.8(10)$	$19.8(2)$
C6	$389.2(12)$	$2652.1(11)$	$4859.3(10)$	$16.64(18)$
C12	$6292.9(13)$	$2035.3(12)$	$4291.1(10)$	$20.7(2)$
C11	$5328.3(12)$	$3031.1(11)$	$3908.3(10)$	$17.69(19)$
C4	$405.6(13)$	$3232.8(12)$	$6533.6(10)$	$20.2(2)$
C14	$6571.2(14)$	$1802.8(12)$	$2403.2(11)$	$21.9(2)$
C13	$6892.1(13)$	$1423.2(12)$	$3538.6(11)$	$20.3(2)$
C18	$-1123.6(12)$	$4945.4(13)$	$1536(1)$	$20.9(2)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 16e. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \mathbf{U}_{11}+\mathbf{2 h k a}{ }^{*} b^{*} \mathbf{U}_{12}+\ldots\right]$.

Ato \mathbf{m}	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
S1	$12.53(11)$	$14.92(11)$	$14.53(11)$	$-5.06(9)$	$-2.68(8)$	$1.69(8)$
C11	$36.59(17)$	$29.86(16)$	$41.61(18)$	$-19.60(14)$	$-21.72(14)$	$22.43(13)$
O3	$12.8(3)$	$22.8(4)$	$15.2(3)$	$-7.8(3)$	$-5.4(3)$	$3.8(3)$
O1	$23.3(4)$	$18.3(4)$	$16.2(3)$	$-10.0(3)$	$-7.0(3)$	$2.3(3)$
O4	$14.5(3)$	$21.7(4)$	$28.0(4)$	$-9.7(3)$	$-8.4(3)$	$2.1(3)$
O5	$19.7(4)$	$19.5(4)$	$14.5(3)$	$-6.2(3)$	$1.2(3)$	$2.2(3)$
O2	$17.9(4)$	$23.7(4)$	$15.8(3)$	$-4.5(3)$	$-7.1(3)$	$0.9(3)$
O6	$28.1(4)$	$27.6(4)$	$32.5(5)$	$-21.7(4)$	$-9.9(4)$	$8.7(4)$
O7	$30.0(5)$	$26.4(4)$	$39.8(5)$	$-19.1(4)$	$-21.7(4)$	$12.9(4)$
N1	$14.1(4)$	$13.5(4)$	$11.0(3)$	$-5.8(3)$	$-2.2(3)$	$1.1(3)$
N2	$17.8(4)$	$16.8(4)$	$20.0(4)$	$-8.9(3)$	$-4.4(3)$	$2.6(3)$

C1	$14.9(4)$	$15.3(4)$	$10.9(4)$	$-5.9(3)$	$-4.8(3)$	$3.6(3)$
C7	$13.3(4)$	$14.8(4)$	$11.9(4)$	$-5.0(3)$	$-3.9(3)$	$3.6(3)$
C16	$14.3(4)$	$17.7(4)$	$14.3(4)$	$-9.8(3)$	$-5.8(3)$	$3.7(3)$
C9	$13.5(4)$	$15.1(4)$	$11.4(4)$	$-6.9(3)$	$-4.1(3)$	$3.0(3)$
C10	$12.3(4)$	$16.5(4)$	$14.1(4)$	$-7.8(3)$	$-4.3(3)$	$2.5(3)$
C2	$14.2(4)$	$14.9(4)$	$11.3(4)$	$-5.2(3)$	$-3.3(3)$	$3.6(3)$
C8	$12.8(4)$	$15.1(4)$	$12.7(4)$	$-6.9(3)$	$-4.4(3)$	$2.7(3)$
C23	$18.2(4)$	$17.7(5)$	$15.7(4)$	$-7.9(4)$	$-6.4(4)$	$3.0(4)$
C24	$18.1(4)$	$16.3(4)$	$15.6(4)$	$-7.7(4)$	$-5.0(4)$	$2.7(3)$
C21	$18.3(4)$	$15.7(4)$	$17.4(4)$	$-7.9(4)$	$-4.9(4)$	$0.4(3)$
C19	$14.6(4)$	$13.9(4)$	$13.6(4)$	$-4.5(3)$	$-3.1(3)$	$1.5(3)$
C20	$16.4(4)$	$17.5(4)$	$16.8(4)$	$-6.8(4)$	$-5.5(4)$	$0.4(3)$
C3	$19.6(5)$	$20.0(5)$	$12.3(4)$	$-6.9(4)$	$-3.5(3)$	$5.0(4)$
C22	$15.4(4)$	$13.4(4)$	$15.0(4)$	$-5.5(3)$	$-3.2(3)$	$1.7(3)$
C15	$18.7(5)$	$22.9(5)$	$17.3(4)$	$-12.5(4)$	$-7.2(4)$	$6.4(4)$
C5	$16.8(5)$	$18.9(5)$	$16.7(5)$	$-2.9(4)$	$-0.8(4)$	$2.2(4)$
C6	$15.5(4)$	$15.7(4)$	$16.6(4)$	$-4.7(4)$	$-4.6(3)$	$2.3(3)$
C12	$22.5(5)$	$23.8(5)$	$19.1(5)$	$-10.0(4)$	$-10.4(4)$	$9.6(4)$
C11	$19.0(5)$	$22.5(5)$	$15.6(4)$	$-10.5(4)$	$-7.2(4)$	$8.1(4)$
C4	$20.7(5)$	$22.6(5)$	$12.5(4)$	$-5.1(4)$	$-0.2(4)$	$4.5(4)$
C14	$23.2(5)$	$26.0(5)$	$26.3(5)$	$-18.4(5)$	$-10.3(4)$	$10.7(4)$
C13	$20.0(5)$	$19.3(5)$	$25.8(5)$	$-11.3(4)$	$-10.6(4)$	$9.2(4)$
C18	$15.3(4)$	$29.8(6)$	$19.0(5)$	$-9.6(4)$	$-9.1(4)$	$5.2(4)$

Table 4 Bond Lengths for 16e.

Atom Atom Length $/$ Å

S1	O4	$1.4288(8)$
S1	O5	$1.4386(8)$
S1	N1	$1.6834(9)$
S1	C19	$1.7743(11)$
C11	C13	$1.7415(11)$
O3	C16	$1.3299(13)$
O3	C18	$1.4529(13)$
O1	C1	$1.2200(12)$

Atom Atom		Length/Å
C9	C10	$1.5205(14)$
C9	C8	$1.5383(14)$
C10	C15	$1.3974(14)$
C10	C11	$1.3968(14)$
C2	C3	$1.4012(14)$
C23	C24	$1.3940(15)$
C23	C22	$1.3879(15)$
C24	C19	$1.3946(14)$

O 2	C 16	$1.2101(13)$
O 6	N 2	$1.2237(12)$
O 7	N 2	$1.2289(13)$
N 1	C 1	$1.4016(12)$
N 1	C 9	$1.4865(13)$
N 2	C 22	$1.4806(14)$
C 1	C 2	$1.4834(14)$
C 7	C 2	$1.4018(14)$
C 7	C 8	$1.5110(14)$
C 7	C 6	$1.3963(14)$
C 16	C 8	$1.5323(14)$

C 21	C 20	$1.3928(15)$
C 21	C 22	$1.3893(15)$
C 19	C 20	$1.3947(15)$
C 3	C 4	$1.3887(16)$
C 15	C 14	$1.3934(15)$
C 5	C 6	$1.3932(15)$
C 5	C 4	$1.3919(17)$
C 12	C 11	$1.3935(15)$
C 12	C 13	$1.3879(16)$
C 14	C 13	$1.3890(16)$

Table 5 Bond Angles for 16e.

$\begin{gathered} \text { Ato } \\ \mathbf{m} \end{gathered}$	$\begin{gathered} \text { Ato } \\ \mathbf{m} \end{gathered}$	$\begin{gathered} \text { Ato } \\ \mathbf{m} \end{gathered}$	Angle $/{ }^{\circ}$
O4	S1	O5	119.11(5)
O4	S1	N1	111.29(5)
O4	S1	C19	108.96(5)
O5	S1	N1	104.76(5)
O5	S1	C19	108.56(5)
N1	S1	C19	102.90(5)
C16	O3	C18	116.21(8)
C1	N1	S1	117.38(7)
C1	N1	C9	122.79(8)
C9	N1	S1	119.57(6)
O6	N2	O7	123.83(10)
O6	N2	C22	118.25(9)
O7	N2	C22	117.92(9)
O1	C1	N1	120.54(9)
O1	C1	C2	123.47(9)
N1	C1	C 2	115.94(9)
C2	C7	C8	119.61(9)
C6	C7	C2	118.90(9)
C6	C7	C8	121.48(9)

Ato \mathbf{m}	Ato \mathbf{m}	Ato \mathbf{m}	Angle/ ${ }^{\circ}$
C 7	C 2	C 1	$121.32(9)$
C 3	C 2	C 1	$117.64(9)$
C 3	C 2	C 7	$120.98(10)$
C 7	C 8	C 16	$113.41(8)$
C 7	C 8	C 9	$112.43(8)$
C 16	C 8	C 9	$110.36(8)$
C 22	C 23	C 24	$118.27(10)$
C 23	C 24	C 19	$119.00(10)$
C 22	C 21	C 20	$118.31(10)$
C 24	C 19	S 1	$118.23(8)$
C 24	C 19	C 20	$122.13(10)$
C 20	C 19	S 1	$119.65(8)$
C 21	C 20	C 19	$118.99(10)$
C 4	C 3	C 2	$119.41(10)$
C 23	C 22	N 2	$118.08(9)$
C 23	C 22	C 21	$123.29(10)$
C 21	C 22	N 2	$118.61(9)$
C 14	C 15	C 10	$120.75(10)$
C 4	C 5	C 6	$120.90(10)$

O3	C16	C8	110.94(8)	C5	C6	C7	119.93(10)
O2	C16	O3	124.86(9)	C13	C12	C11	119.24(10)
O2	C16	C8	124.16(9)	C12	C11	C10	120.60(10)
N1	C9	C10	113.11(8)	C3	C4	C5	119.83(10)
N1	C9	C8	109.28(8)	C13	C14	C15	119.06(10)
C10	C9	C8	112.47(8)	C12	C13	Cl1	119.60(9)
C15	C10	C9	117.75(9)	C12	C13	C14	121.24(10)
C11	C10	C9	123.16(9)	C14	C13	Cl1	119.16(9)
C11	C10	C15	119.10(10)				

Table 6 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for 16e.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U}(\mathbf{e q})$
H9	4147	4837	1410	15
H8	2226	2970	2782	16
H23	1399	9619	136	20
H24	2955	7843	416	19
H21	3497	10847	2120	20
H20	5055	9075	2398	20
H3	1953	4785	6089	21
H15	5383	3068	1252	21
H5	-991	1785	6579	24
H6	-23	2114	4553	20
H12	6538	1778	5058	25
H11	4914	3454	4419	21
H4	21	3074	7365	24
H14	7003	1388	1890	26
H18A	-1023	4591	923	31
H18B	-839	5915	1121	31
H18C	-2170	4768	2017	31

Experimental

Single crystals of $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SCl}$ 16e were grown from a supersaturated solution in methylene chloride. A suitable crystal was selected and mounted on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 90.15 K during data collection. Using Olex2 [1], the structure was solved with the XT [2] structure solution program using Direct Methods and refined with the XL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal structure determination of 16e

Crystal Data for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SCl}(M=500.89 \mathrm{~g} / \mathrm{mol})$: triclinic, space group P-1 (no. 2), $a=9.1593(7) \AA, b=11.0566(8) \AA, c=12.4050(9) \AA, \alpha=$ $64.9500(10)^{\circ}, \beta=76.9800(10)^{\circ}, \gamma=89.3270(10)^{\circ}, V=1103.85(14) \AA^{3}, Z=2$, $T=90.15 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.317 \mathrm{~mm}^{-1}$, Dcalc $=1.507 \mathrm{~g} / \mathrm{cm}^{3}, 19981$ reflections measured $\left(3.736^{\circ} \leq 2 \Theta \leq 66.388^{\circ}\right)$, 7848 unique ($R_{\text {int }}=0.0233, \mathrm{R}_{\text {sigma }}=$ 0.0275) which were used in all calculations. The final R_{1} was 0.0373 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1034 (all data).

Refinement model description

Number of restraints - 0 , number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All C(H) groups
At 1.5 times of:
All C(H,H,H) groups
2.a Ternary CH refined with riding coordinates: C9 (H9), C8(H8)
2.b Aromatic/amide H refined with riding coordinates: C23(H23), C24(H24), C21(H21), C20(H20), C3(H3), C15(H15), C5 (H5), C6(H6), C12(H12), C11(H11), C4(H4), C14(H14)
2.c Idealised Me refined as rotating group:

C18(H18A, H18B,H18C)

This report has been created with Olex2, compiled on 2016.02 .16 svn.r3265 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

$16 f$

Table 1 Crystal data and structure refinement for 16 .

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\varrho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
mo_MJD012a
$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$
491.46
99.99
monoclinic
I2/a
13.7214(14)
9.2266(9)
34.566(4)

90
91.593(2)

90
4374.4(8)

8
1.492
0.202
2032.0
$0.403 \times 0.398 \times 0.36$

Radiation
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection $/{ }^{\circ} 4.57$ to 61.11
Index ranges
$-19 \leq \mathrm{h} \leq 19,-13 \leq \mathrm{k} \leq 13,-49 \leq 1 \leq 49$
Reflections collected
56151
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
$6642\left[\mathrm{R}_{\mathrm{int}}=0.0186, \mathrm{R}_{\text {sigma }}=0.0118\right]$

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
6642/0/317
1.049

Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0357, \mathrm{wR}_{2}=0.0900$
Largest diff. peak/hole / e \AA^{-3} 0.45/-0.42

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic
Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for mo_MJD012a. $U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised $U_{I J}$ tensor.

Ato \mathbf{m}	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
S1	$5785.4(2)$	$2354.9(2)$	$6690.8(2)$	$11.63(6)$
O1	$7013.7(5)$	$3735.4(9)$	$6147.3(2)$	$16.26(15)$
O2	$6387.2(5)$	$1223.9(8)$	$6547.3(2)$	$16.74(15)$
O3	$4892.2(5)$	$2005.5(8)$	$6875.0(2)$	$16.23(15)$
O5	$4160.9(6)$	$7795.9(8)$	$6267.2(2)$	$18.00(15)$
O4	$4831.0(7)$	$6303.2(9)$	$6714.9(2)$	$22.43(17)$
O6	$9009.4(6)$	$6073.6(11)$	$7747.9(3)$	$28.6(2)$
O7	$7677.0(7)$	$6925.5(10)$	$7980.5(3)$	$28.14(19)$
N1	$5436.8(6)$	$3454.0(9)$	$6321.2(2)$	$11.01(15)$
N2	$8121.3(7)$	$6117.3(10)$	$7765.8(3)$	$18.38(18)$
C9	$4388.3(6)$	$3827.6(10)$	$6279.3(3)$	$10.64(16)$
C7	$4891.7(7)$	$5586.1(10)$	$5757.1(3)$	$11.36(16)$
C1	$6153.9(7)$	$4003.3(10)$	$6082.8(3)$	$11.68(16)$
C10	$3797.8(7)$	$2682.8(10)$	$6061.2(3)$	$11.48(16)$
C16	$4459.8(7)$	$6512(1)$	$6399.4(3)$	$12.40(17)$
C8	$4252.7(7)$	$5336.9(10)$	$6099.1(3)$	$10.80(16)$
C2	$5810.6(7)$	$4934.3(10)$	$5755.7(3)$	$11.94(17)$

C22	$6536.4(7)$	$5208.9(11)$	$7521.8(3)$	$15.66(18)$
C21	$7543.5(7)$	$5153.8(11)$	$7506.5(3)$	$14.43(18)$
C19	$7497.1(7)$	$3399.5(11)$	$7000.7(3)$	$14.31(18)$
C18	$6483.5(7)$	$3458.2(10)$	$7009.1(3)$	$12.12(17)$
C15	$4193.6(7)$	$1774.8(11)$	$5784.9(3)$	$14.82(18)$
C3	$6447.8(7)$	$5211.9(11)$	$5456.0(3)$	$15.26(18)$
C11	$2812.7(7)$	$2553.7(11)$	$6148.4(3)$	$15.88(19)$
C6	$4615.3(7)$	$6528.4(11)$	$5458.4(3)$	$14.88(18)$
C20	$8040.2(7)$	$4257.5(11)$	$7256.9(3)$	$15.55(18)$
C23	$5996.4(7)$	$4330.7(11)$	$7269.1(3)$	$14.84(18)$
C14	$3611.3(8)$	$748.0(12)$	$5593.4(3)$	$18.2(2)$
N0A	$1502.9(10)$	$-1249.1(15)$	$5338.5(4)$	$37.1(3)$
A				
C12	$2228.3(8)$	$1527.5(12)$	$5962.7(3)$	$19.4(2)$
C13	$2630.0(8)$	$629.3(12)$	$5684.2(3)$	$18.3(2)$
C5	$5253.2(8)$	$6814.6(12)$	$5162.5(3)$	$17.55(19)$
C4	$6165.8(8)$	$6154.7(12)$	$5160.1(3)$	$17.51(19)$
C17	$4342.7(9)$	$9024.3(11)$	$6520.1(3)$	$21.2(2)$
C24	$2012.8(9)$	$-433.1(14)$	$5491.6(3)$	$25.0(2)$

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 16f. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} \mathbf{U}_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Ato \mathbf{m}	$\mathbf{U}_{\mathbf{1 1}}$	$\mathbf{U}_{\mathbf{2 2}}$	$\mathbf{U}_{\mathbf{3 3}}$	$\mathbf{U}_{\mathbf{2 3}}$	$\mathbf{U}_{\mathbf{1 3}}$	$\mathbf{U}_{\mathbf{1 2}}$
S1	$10.63(10)$	$9.81(10)$	$14.45(11)$	$2.04(7)$	$0.06(8)$	$-0.92(7)$
O1	$9.4(3)$	$20.7(4)$	$18.6(3)$	$4.0(3)$	$0.0(3)$	$0.1(3)$
O2	$16.8(3)$	$10.7(3)$	$22.7(4)$	$-0.1(3)$	$0.0(3)$	$2.0(3)$
O3	$12.8(3)$	$16.6(3)$	$19.4(3)$	$5.3(3)$	$2.1(3)$	$-3.3(3)$
O5	$25.4(4)$	$9.9(3)$	$18.5(4)$	$-1.7(3)$	$-3.2(3)$	$0.3(3)$
O4	$33.8(4)$	$16.2(4)$	$16.9(4)$	$-1.8(3)$	$-6.2(3)$	$1.4(3)$
O6	$19.3(4)$	$39.5(5)$	$27.0(4)$	$-8.9(4)$	$-1.7(3)$	$-7.5(4)$
O7	$31.5(5)$	$29.0(5)$	$24.1(4)$	$-12.1(3)$	$3.1(3)$	$-1.9(4)$
N 1	$8.4(3)$	$11.6(3)$	$13.0(3)$	$2.1(3)$	$-0.1(3)$	$-0.3(3)$
N 2	$21.5(4)$	$19.7(4)$	$13.9(4)$	$-0.6(3)$	$-1.1(3)$	$-3.8(3)$

C9	$7.6(3)$	$10.7(4)$	$13.6(4)$	$0.0(3)$	$-0.1(3)$	$-0.5(3)$
C7	$11.1(4)$	$10.6(4)$	$12.3(4)$	$-1.0(3)$	$-0.4(3)$	$-1.4(3)$
C1	$10.3(4)$	$12.2(4)$	$12.6(4)$	$0.1(3)$	$0.7(3)$	$-1.3(3)$
C10	$10.8(4)$	$10.4(4)$	$13.2(4)$	$1.8(3)$	$-0.8(3)$	$-2.0(3)$
C16	$11.4(4)$	$11.0(4)$	$14.9(4)$	$-0.9(3)$	$2.8(3)$	$-1.3(3)$
C8	$9.7(4)$	$9.6(4)$	$13.1(4)$	$-0.6(3)$	$0.3(3)$	$-0.3(3)$
C2	$10.8(4)$	$12.7(4)$	$12.3(4)$	$0.6(3)$	$-0.4(3)$	$-0.9(3)$
C22	$17.0(4)$	$16.2(4)$	$13.8(4)$	$0.3(3)$	$1.9(3)$	$2.3(3)$
C21	$16.5(4)$	$14.8(4)$	$11.9(4)$	$0.5(3)$	$-1.3(3)$	$-1.6(3)$
C19	$11.9(4)$	$16.4(4)$	$14.6(4)$	$-0.3(3)$	$1.0(3)$	$1.0(3)$
C18	$11.3(4)$	$12.2(4)$	$12.8(4)$	$1.7(3)$	$-0.8(3)$	$-0.1(3)$
C15	$14.2(4)$	$15.1(4)$	$15.3(4)$	$-1.3(3)$	$1.2(3)$	$-3.2(3)$
C3	$12.4(4)$	$18.6(5)$	$14.8(4)$	$1.4(3)$	$1.4(3)$	$-0.8(3)$
C11	$11.3(4)$	$16.0(4)$	$20.3(5)$	$-0.5(4)$	$0.8(3)$	$-1.9(3)$
C6	$15.1(4)$	$14.6(4)$	$14.8(4)$	$1.2(3)$	$-1.1(3)$	$1.3(3)$
C20	$12.1(4)$	$19.1(5)$	$15.4(4)$	$0.1(4)$	$0.1(3)$	$-0.4(3)$
C23	$12.4(4)$	$17.1(4)$	$15.1(4)$	$1.6(3)$	$1.1(3)$	$1.7(3)$
C14	$21.7(5)$	$17.1(5)$	$15.7(4)$	$-2.8(4)$	$0.3(4)$	$-5.2(4)$
N0	$38.3(6)$	$41.3(7)$	$31.4(6)$	$-6.7(5)$	$-2.6(5)$	$-22.3(5)$
AA	C14)					
C12	$12.8(4)$	$21.1(5)$	$24.2(5)$	$0.9(4)$	$-0.7(4)$	$-5.4(4)$
C13	$20.3(5)$	$17.4(5)$	$17.0(5)$	$1.4(4)$	$-4.2(4)$	$-8.1(4)$
C5	$20.0(5)$	$18.1(5)$	$14.5(4)$	$3.5(4)$	$-0.7(4)$	$0.6(4)$
C4	$17.2(4)$	$21.7(5)$	$13.7(4)$	$3.1(4)$	$2.3(3)$	$-1.3(4)$
C17	$30.1(6)$	$10.9(4)$	$22.5(5)$	$-4.7(4)$	$1.6(4)$	$-3.1(4)$
C24	$26.0(5)$	$27.0(6)$	$22.0(5)$	$-0.4(4)$	$-1.8(4)$	$-12.3(5)$

Table 4 Bond Lengths for 16 .

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	O 2	1.4282(8)	C10	C15	1.3922(14)
S1	O3	1.4335(7)	C10	C11	1.3981(13)
S1	N1	1.6896(8)	C16	C8	1.5223(13)
S1	C18	1.7625(10)	C2	C3	1.3978(13)
O1	C1	1.2198(12)	C22	C21	1.3853(14)

O5	C 16	$1.3303(12)$	C 22	C 23	$1.3901(14)$
O 5	C 17	$1.4487(13)$	C 21	C 20	$1.3875(14)$
O 4	C 16	$1.2062(13)$	C 19	C 18	$1.3930(13)$
O 6	N 2	$1.2226(13)$	C 19	C 20	$1.3890(14)$
O 7	N 2	$1.2262(13)$	C 18	C 23	$1.3913(14)$
N 1	C 9	$1.4827(12)$	C 15	C 14	$1.3943(14)$
N 1	C 1	$1.3962(12)$	C 3	C 4	$1.3894(14)$
N 2	C 21	$1.4775(13)$	C 11	C 12	$1.3866(14)$
C 9	C 10	$1.5187(13)$	C 6	C 5	$1.3900(14)$
C 9	C 8	$1.5348(13)$	C 14	C 13	$1.3954(15)$
C 7	C 8	$1.5088(13)$	N 0 AAC 24	$1.1471(16)$	
C 7	C 2	$1.3971(13)$	C 12	C 13	$1.3953(16)$
C 7	C 6	$1.3942(13)$	C 13	C 24	$1.4456(15)$
C 1	C 2	$1.4859(13)$	C 5	C 4	$1.3927(15)$

Table 5 Bond Angles for 16f.

Ato \mathbf{m}			Ato \mathbf{m}
Ato \mathbf{m}	Angle $^{\circ}$		
O 2	S 1	O 3	$119.98(5)$
O 2	S 1	N 1	$109.28(4)$
O 2	S 1	C 18	$109.24(5)$
O 3	S 1	N 1	$104.08(4)$
O 3	S 1	C 18	$108.00(5)$
N 1	S 1	C 18	$105.24(4)$
C 16	O 5	C 17	$116.31(8)$
C 9	N 1	S 1	$117.84(6)$
C 1	N 1	S 1	$118.35(6)$
C 1	N 1	C 9	$123.76(8)$
O 6	N 2	O 7	$124.32(10)$
O 6	N 2	C 21	$117.92(9)$
O 7	N 2	C 21	$117.76(9)$
N 1	C 9	C 10	$112.94(8)$
N 1	C 9	C 8	$110.91(7)$
C 10	C 9	C 8	$111.87(7)$

Ato	Ato	Ato	Angle $/{ }^{\circ}$
\mathbf{m}	\mathbf{m}	\mathbf{m}	

112.94(8)
108.92(7)
110.57(8)
120.89(8)
120.45(9)
118.57(8)
118.00(9)
118.28(9)
123.60(9)
118.12(9)
118.87(9)
119.35(8)
118.36(7)
122.27(9)
120.35(9)
119.56(9)
$\left.\begin{array}{lllllllr}\text { C2 } & \text { C7 } & \text { C8 } & 118.76(8) & & \text { C12 } & \text { C11 } & \text { C10 }\end{array}\right) 120.56(10)$

Table 6 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right.$) and Isotropic Displacement
Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $16 f$.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U}(\mathbf{e q})$
H9	4128	3877	6546	13
H8	3557	5431	6008	13
H22	6224	5828	7700	19
H19	7812	2783	6823	17
H15	4864	1855	5726	18
H3	7069	4759	5455	18
H11	2541	3174	6336	19
H6	3991	6975	5457	18
H20	8733	4231	7261	19
H23	5304	4326	7274	18
H14	3880	135	5403	22
H12	1561	1437	6024	23
H5	5066	7464	4961	21
H4	6596	6349	4956	21
H17A	5003	9393	6481	32
H17B	4281	8721	6790	32
H17C	3867	9790	6460	32

Experimental

Single crystals of $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S} \mathbf{1 6 f}$ were grown from a supersaturated solution in methylene chloride. A suitable crystal was selected and mounted on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 99.99 K during data collection. Using Olex2 [1], the structure was solved with the XT [2] structure solution program using Direct Methods and refined with the XL [3] refinement package using Least Squares minimisation.

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. \& Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
3. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal structure determination of $\mathbf{1 6 f}$

Crystal Data for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ ($M=491.46 \mathrm{~g} / \mathrm{mol}$): monoclinic, space group I2/a (no. 15), $a=13.7214(14) \AA, b=9.2266(9) \AA, c=34.566(4) \AA, \beta=$ $91.593(2)^{\circ}, V=4374.4(8) \AA^{3}, Z=8, T=99.99 \mathrm{~K}, \mu(\mathrm{MoK} \alpha)=0.202 \mathrm{~mm}^{-1}$, Dcalc $=1.492 \mathrm{~g} / \mathrm{cm}^{3}, 56151$ reflections measured $\left(4.57^{\circ} \leq 2 \Theta \leq 61.11^{\circ}\right), 6642$ unique $\left(R_{\text {int }}=0.0186, \mathrm{R}_{\text {sigma }}=0.0118\right)$ which were used in all calculations. The final R_{1} was 0.0326 ($\mathrm{I}>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0900 (all data).

Refinement model description

Number of restraints - 0 , number of constraints - unknown.
Details:

1. Fixed Uiso

At 1.2 times of:
All C(H) groups
At 1.5 times of:
All C(H,H,H) groups
2.a Ternary CH refined with riding coordinates:

C9 (H9) , C8 (H8)
2.b Aromatic/amide H refined with riding coordinates:

C22(H22), C19(H19), C15(H15), C3(H3), C11(H11), C6(H6),
C20 (H2O), C23(H23),
C14(H14), C12 (H12), C5 (H5), C4 (H4)
2.c Idealised Me refined as rotating group:

C17 (H17A, H17B, H17C)
This report has been created with Olex2, compiled on 2016.02 .16 svn.r3265 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

(s)

(s)

161

orded on Prorusse/500 wime

M (d)5.09	
	D (d) 4.98
$\underset{\substack{\text { B (dd) } \\ 5.26}}{ }$	
C 5 5	(d)

N (d) 3.94	A (s) 3.54

$L(d)$
0.91
$(.0)$
1.02

16p

[^0]: 1 Spartan'10 (Wavefunction, Ind.: Irvine, CA, USA (2010).
 2 Halgren, T. A. J Comput Chem 1996, 17 (5-6), 490.
 3 Gaussian 09, Revision D. 01 (Gaussian, Inc.: Wallingford, CT, USA, 2004).
 4 Zhao, Y.; Truhlar, D. G. Theoretical Chemistry Accounts 2008, 120 (1-3), 215.
 5 Ditchfield, R.; Miller, D. P.; Pople, J. A. The Journal of Chemical Physics 1971, 54 (1), 4186.
 6 Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
 7 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
 8 Jain, R.; Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 74, 4017-4023.
 9 Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664-675.
 10 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396 (2009)
 11 CHESHIRE. CHEmical SHift REpository with Coupling Constants Added Too. Available at http://cheshirenmr.info.
 12 Smith, S. G.; Goodman, J. M. J. Am. Chem. Soc. 2010, 132, 12946-12959.

