Manzamine Alkaloids from an Acanthostrongylophora sp. Sponge

Chang-Kwon Kim,^{†,I} Riswanto Riswanto,^{†,I} Tae Hyung Won,[†] Heegyu Kim,[‡] Berna Elya,[§] Chung J. Sim,[⊥] Dong-Chan Oh,[†] Ki-Bong Oh,^{‡,*} and Jongheon Shin^{†,*}

[†]Natural Products Research Institute, College of Pharmacy, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-742, Korea [‡]Department of Agricultural Biotechnology, College of Agriculture and Life Science, Seoul National University, San 56-1, Sillim, Gwanak, Seoul 151-921, Korea [§]Faculty of Pharmacy, Universitas Indonesia, Kampus UI depok, West Java 16424, Indonesia

[⊥]Department of Biological Science, College of Life Science and Nano Technology, Hannam University, 461-6 Jeonmin, Yuseong, Daejeon 305-811, Korea

Contents

Figure S1. The ¹ H NMR (800 MHz, CD ₃ OD) spectrum of 1	S4
Figure S2. The 13 C NMR (200 MHz, CD ₃ OD) spectrum of 1	S 5
Figure S3. The COSY NMR (800 MHz, CD ₃ OD) spectrum of 1	S 6
Figure S4. The TOCSY NMR (800 MHz, CD ₃ OD) spectrum of 1	S 6
Figure S5. The eHSQC NMR (800 MHz, CD_3OD) spectrum of 1	S 7
Figure S6. The HMBC NMR (800 MHz, CD ₃ OD) spectrum of 1	S 7
Figure S7. The expanded HMBC NMR (800 MHz, CD ₃ OD) spectrum of 1	S 8
Figure S8. The ROESY NMR (800 MHz, CD ₃ OD) spectrum of 1	S 8
Figure S9. The ¹ H NMR (400 MHz, CDCl ₃) spectrum of 2	S 9
Figure S10. The 13 C NMR (100 MHz, CDCl ₃) spectrum of 2	S10
Figure S11. The COSY NMR (400 MHz, CDCl ₃) spectrum of 2	S11
Figure S12. The HSQC NMR (400 MHz, CDCl ₃) spectrum of 2	S11
Figure S13. The HMBC NMR (400 MHz, CDCl ₃) spectrum of 2	S12
Figure S14. The ROESY NMR (400 MHz, CDCl ₃) spectrum of 2	S12
Figure S15. The ¹ H NMR (500 MHz, CDCl ₃) spectrum of 3	S13
Figure S16. The 13 C NMR (125 MHz, CDCl ₃) spectrum of 3	S14
Figure S17. The COSY NMR (500 MHz, $CDCl_3$) spectrum of 3	S15
Figure S18. The eHSQC NMR (500 MHz, CDCl ₃) spectrum of 3	S15
Figure S19. The HMBC NMR (500 MHz, CDCl ₃) spectrum of 3	S16
Figure S20. The ROESY NMR (500 MHz, CDCl ₃) spectrum of 3	S16
Figure S21. The ¹ H NMR (600 MHz, CD ₃ OD) spectrum of 4	S17
Figure S22. The ¹³ C NMR (150 MHz, CD ₃ OD) spectrum of 4	S18
Figure S23. The COSY NMR (600 MHz, CD ₃ OD) spectrum of 4	S19
Figure S24. The eHSQC NMR (600 MHz CD ₃ OD) spectrum of 4	S19
Figure S25. The HMBC NMR (600 MHz, CD ₃ OD) spectrum of 4	S20
Figure S26. The ROESY NMR (600 MHz, CD ₃ OD) spectrum of 4	S20
Figure S27. The ¹ H NMR (400 MHz, CDCl ₃) spectrum of 5	S21
Figure S28. The ¹³ C NMR (100 MHz, CDCl ₃) spectrum of 5	S22
Figure S29. The COSY NMR (400 MHz, CDCl ₃) spectrum of 5	S23
Figure S30. The HSQC NMR (400 MHz, CDCl ₃) spectrum of 5	S23

Figure S31. The HMBC NMR (400 MHz, CDCl ₃) spectrum of 5	S24
Figure S32. The ROESY NMR (400 MHz, CDCl ₃) spectrum of 5	S24
Figure S33. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of (S)-MTPA ester of 5 (5S)	S25
Figure S34. The ¹ H NMR (600 MHz, CDCl ₃) spectrum of (R)-MTPA ester of 5 (5 R)	S25
Figure S35. The ¹ H NMR (500 MHz, CD ₃ OD) spectrum of 6	S26
Figure S36. The ¹³ C NMR (125 MHz, CD ₃ OD) spectrum of 6	S26
Figure S37. The COSY NMR (500 MHz, CD ₃ OD) spectrum of 6	S27
Figure S38. The eHSQC NMR (500 MHz CD ₃ OD) spectrum of 6	S27
Figure S39. The HMBC NMR (500 MHz, CD ₃ OD) spectrum of 6	S28
Figure S40. The ROESY NMR (500 MHz, CD ₃ OD) spectrum of 6	S28
Figure S41. The ¹ H NMR (400 MHz, CD ₃ OD) spectrum of 7	S29
Figure S42. The ¹³ C NMR (100 MHz, CD ₃ OD) spectrum of 7	S29
Figure S43. The COSY NMR (400 MHz, CD ₃ OD) spectrum of 7	S 30
Figure S44. The HSQC NMR (400 MHz CD ₃ OD) spectrum of 7	S 30
Figure S45. The HMBC NMR (400 MHz, CD ₃ OD) spectrum of 7	S 31
Figure S46. The ROESY NMR (400 MHz, CD ₃ OD) spectrum of 7	S 31
Figure S47. DFT calculation of compound 1	S 32
Figure S48. DFT calculation of compound 4	S33
Figure S49. DFT model study and ROESY NMR correlation of 6	S 34

Figure S1. The ¹H NMR (800 MHz, CD₃OD) spectrum of 1

Figure S2. The ¹³C NMR (200 MHz, CD₃OD) spectrum of 1

Figure S3. The COSY NMR (800 MHz, CD₃OD) spectrum of 1

Figure S4. The TOCSY NMR (800 MHz, CD_3OD) spectrum of 1

Figure S5. The eHSQC NMR (800 MHz, CD_3OD) spectrum of 1

Figure S6. The HMBC NMR (800 MHz, CD₃OD) spectrum of 1

Figure S7. The expanded HMBC NMR (800 MHz, CD_3OD) spectrum of 1

Figure S8. The ROESY NMR (800 MHz, CD_3OD) spectrum of 1

Figure S9. The ¹H NMR (400 MHz, CDCl₃) spectrum of **2**

Figure S10. The ¹³C NMR (100 MHz, CDCl₃) spectrum of 2

Figure S12. The HSQC NMR (400 MHz, $CDCl_3$) spectrum of 2

Figure S13. The HMBC NMR (400 MHz, CDCl₃) spectrum of 2

Figure S14. The ROESY NMR (400 MHz, CDCl₃) spectrum of 2

Figure S15. The ¹H NMR (500 MHz, CDCl₃) spectrum of 3

Figure S16. The ¹³C NMR (125 MHz, CDCl₃) spectrum of 3

60

Figure S17. The COSY NMR (500 MHz, CDCl₃) spectrum of 3

Figure S18. The eHSQC NMR (500 MHz, CDCl₃) spectrum of 3

Figure S19. The HMBC NMR (500 MHz, CDCl₃) spectrum of 3

Figure S20. The ROESY NMR (500 MHz, $CDCl_3$) spectrum of 3

Figure S21. The ¹H NMR (600 MHz, CD₃OD) spectrum of 4

Figure S22. The ¹³C NMR (150 MHz, CD₃OD) spectrum of 4

Figure S24. The eHSQC NMR (600 MHz, CD₃OD) spectrum of 4

Figure S25. The HMBC NMR (600 MHz, CD₃OD) spectrum of 4

Figure S26. The ROESY NMR (600 MHz, CD₃OD) spectrum of 4

Figure S27. The ¹H NMR (400 MHz, CDCl₃) spectrum of 5

Figure S28. The ¹³C NMR (100 MHz, CDCl₃) spectrum of 5

Figure S30. The HSQC NMR (400 MHz, CDCl₃) spectrum of 5

Figure S31. The HMBC NMR (400 MHz, CDCl₃) spectrum of 5

Figure S32. The ROESY NMR (400 MHz, CDCl₃) spectrum of 5

Figure S33. The ¹H NMR (600 MHz, CDCl₃) spectrum of (*S*)-MTPA ester of 5 (5*S*)

Figure S34. The ¹H NMR (600 MHz, CDCl₃) spectrum of (R)-MTPA ester of 5 (5R)

Figure S36. The ¹³C NMR (125 MHz, CD₃OD) spectrum of 6

Figure S38. The eHSQC NMR (500 MHz, CD_3OD) spectrum of 6

Figure S39. The HMBC NMR (500 MHz, CD_3OD) spectrum of 6

Figure S40. The ROESY NMR (500 MHz, CD₃OD) spectrum of 6

Figure S41. The ¹H NMR (400 MHz, CD₃OD) spectrum of 7

Figure S42. The ¹³C NMR (100 MHz, CD₃OD) spectrum of 7

Figure S44. The HSQC NMR (400 MHz, CD_3OD) spectrum of 7

Figure S45. The HMBC NMR (400 MHz, CD_3OD) spectrum of 7

Figure S46. The ROESY NMR (400 MHz, CD₃OD) spectrum of 7

Kepulauamine A (**1**) : total energy = -1689.38544358226 kinetic energy = 1672.31095625132, potential energy = -2447.56326056390

The lowest energy conformation was calculated for (1) with 12*S*, 24*R*, 25*R*, 26*R*, 27*S*, 31*R*, and 34*R* configurations using TURBOMOLE 6.5. In the calculation, DFT settings (Functional B3-LYP / Gridsize M3), Geometry optimization options (Energy 10⁻⁶ Hartree, Gradient norm $| dE / dxyz | = 10^{-3}$ Hartree/Bohr)

Figure S47. DFT calculation of compound 1

11-Hydroxymanzamine J (**4**) : total energy = -1459.23192310491 kinetic energy = 1445.21230135345, potential energy = -2123.34342310311

The lowest energy conformation was calculated for (**4**) with 10*R*, 11*S*, 12*R*, 24*S*, 25*R*, and 26*R* configurations using TURBOMOLE 6.5. In the calculation, DFT settings (Functional B3-LYP / Gridsize M3), Geometry optimization options (Energy 10⁻⁶ Hartree, Gradient norm $| dE / dxyz | = 10^{-3}$ Hartree/Bohr)

Figure S48. DFT calculation of compound 4

2) Chloride ion attached at N-21

The lowest energy conformation was calculated for (**6**) with 12*S*, 24*R*, 25*R*, and 26*R* configurations using TURBOMOLE 4.2.1. In the calculation, DFT settings (Functional B3-LYP / Gridsize M3), Geometry optimization options (Energy 10⁻⁶ Hartree, Gradient norm $|dE / dxyz| = 10^{-3}$ Hartree/Bohr). 1) total energy = -2226.9503635370, kinetic energy = 2209.150029427, and potential energy = -4436.100392964. 2) total energy = -2226.95622032800, kinetic energy = 2208.42416678934, and potential energy = -4435.38038711734

Figure S49. DFT model study and ROESY NMR correlation of 6

NO⁷