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1 Computational details of molecular dynamics simula-

tions

We carry out hybrid-functional molecular dynamics simulations with the PBE0 functional,1,2

in which the fraction α of Fock exchange is set to 0.40 to achieve a good description of the

band gap.3,4 The van der Waals (vdW) interactions are described through the nonlocal

rVV10 scheme5,6 with the parameter b set to 5.3 to achieve the correct mass density of

liquid water.4

The empirical tuning of the fraction α of Fock exchange in the PBE0 functional has al-

ready been applied to the electronic properties of semiconductors.7,8 In particular, the accu-

racy of this computational scheme has been benchmarked by calculating ionization potentials

and electron affinities of a large set of materials.8 Excellent agreement with experiment was

achieved for these quantities when the fraction of α was tuned to reproduce the experimen-

tal band gap. Employing computational schemes that correctly reproduce the band gap and

the band edges of semiconductors and insulators ensures the accurate calculation of redox

levels (or charge transition levels of defects in crystalline materials). In fact, an incorrect

theoretical description of these quantities is found to dramatically affect the calculated en-

ergy levels.3,7 Furthermore, the self-interaction error in density functional theory is found

to deteriorate the description of many systems with unpaired electrons. In order to achieve

realistic MD trajectories for some systems, it can be critical to overcome the limitations

set by the self-interaction error implied in semilocal density functional descriptions.9 We

here use molecular dynamics simulations at the hybrid functional level to achieve a partial

cancellation of the self-interaction error.

All the calculations are performed with the CP2K suite of codes.10 Goedecker-Teter-Hutter

pseudopotentials11 are used to account for core-valence interactions. We use a triple-ζ po-

larized basis set12 for the wave functions and a cutoff of 800 Ry for the expansion of the

electron density in plane waves. We employ the auxiliary density matrix method with the
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cFIT3 auxiliary basis set.13

The starting configuration is taken from previous molecular dynamics (MD) simulations

of liquid water in the NVT ensemble at the experimental density and performed with the

same functional employed in this work.4 We use periodic supercells of cubic shape containing

64 water molecules, but also employ supercells with 128 water molecules to evaluate finite-

size effects. The target temperature is set to 350 K to ensure a frank diffusive motion.3,4

This choice is conforted by the weak experimental dependence on temperature of both the

vertical binding energy14 and the optical spectrum15 between 300 and 350 K. For instance, by

increasing the temperature from 300 to 350 K, a shift of 0.1 eV is observed in the position of

the peak of the measured absorption spectrum.15 This effect is smaller than the accuracy of

the employed methodology (∼0.2 eV). The sampling of the NVT ensemble is ensured by the

use of a Nosé-Hoover thermostat.16,17 For the calculation of the redox level, the convergence

of the calculated total-energy differences with respect to the basis set has been checked by

placing additional localized basis functions at the center of the hydrated-electron density.

The larger basis set leads to a systematic energy correction of 0.07 eV, which is accounted

for in the reported results.

We do not explicitly account for nuclear quantum motions. The parameters of the

adopted hybrid functional have been set to reproduce the band gap as in the experiment and

therefore effectively account for the renormalization due to nuclear quantum effects.4,18 The

redox level of the hydrated electron is expected to be affected by nuclear quantum motions

only through a broadening of its distribution, as can be inferred by examining their effect on

the localized 1b1 state of liquid water.18 This effect explains why the calculated widths for the

distribution of vertical binding energies [Fig. 3 (a) of the main text] and of the s− p absorp-

tion spectrum [Fig. 3 (b) of the main text] are smaller than in the experiment. In contrast,

we note that reactions involving deprotonation, such as the reduction of the aqueous proton

to gaseous hydrogen, are subject to nuclear quantum effects insofar the number of hydrogen

nuclei in the simulation cell varies. These effects are accounted for in the determination of
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the standard hydrogen electrode reference level (vide infra).

2 Grand canonical formulation of solutes in aqueous so-

lution

The free energy of the reduction reaction of liquid water [cf. Eq.(1) of the main text] can be

expressed using a grand-canonical formulation of solutes:3,19

∆G(ehyd) = G[ehyd]−G[H2O(ℓ)]− ǫv − µ, (1)

where G[H2O(ℓ)] is the free energy of liquid water, G[ehyd] the free energy of the hydrated

electron, ǫv the valence band edge of liquid water, and µ the electron chemical potential.

The free-energy difference G[ehyd] − G[H2O(ℓ)] can then be expressed as a thermodynamic

integral:

G[H2O(ℓ)]−G[ehyd] = ∆oxAhyd =

∫ 1

0

〈∆Eox〉ηdη. (2)

〈∆Eox〉η correspond to vertical energy differences averaged over trajectories achieved for

different values of the Kirkwood parameter η, which defines the fictitious Hamiltonian in-

troduced in Eq. (3) of the main text. We achieve good convergence with six values of η

(0, 0.5, 0.7, 0.8, 0.9, 1). In particular, at η = 0, 〈∆Eox〉0 represents the vertical injection

of an electron in liquid water. We calculate this quantity from an MD simulation of 10 ps,

after 5 ps of equilibration. At η = 1, 〈∆Eox〉1 is the vertical oxidation energy of ehyd. To

calculate this quantity, we start from a structural configuration of liquid water and we add

one electron. The electron is found to localize in a cavity within 1 ps. Hence, we perform

an equilibration of 5 ps and we calculate electronic properties from a production run of 10

ps. During this time, we do not observe any drifting behaviour of the calculated electronic

properties. Similar computational set-ups have been employed for η =0.8 and η = 0.9. For

η =0.5 and 0.7, shorter production runs have been performed (5-7 ps) as no localization of
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the partial charge is observed within this time. The redox level µhyd [cf. Eq. (3) of the main

text] is defined as the value of µ for which ∆G(ehyd) = 0.3 A similar definition applies for

the vertical level µver [cf. Eq. (4) of the main text].

To align the calculated energy levels to experimental ones, we make use of the standard

hydrogen electrode (SHE). We employ a computational SHE3,20 based on the reduction of

the aqueous hydronium ion:

H3O+(aq) + e− → H2O(ℓ) +
1

2
H2(g). (3)

The respective redox level is given by the following expression:3

µSHE = ∆dpAH3O+ −∆zpEH3O+ + ǫv + µH. (4)

In Eq. (4), ∆dpAH3O+ is the integral associated to the deprotonation reaction of the hydro-

nium cation, ∆zpEH3O+ a correction that accounts for the lack of nuclear quantum motions

in our MD simulations, and µH the chemical potential of hydrogen. The SHE level has

previously been aligned with respect to the band edges of liquid water for the functional

adopted in this work.4 The connection between the SHE and the vacuum level is established

through the experimental relationship, which places the SHE level at 4.45 eV below the

vacuum level.21

3 Electrostatic finite-size effects

The structural properties of charged solutes in aqueous solution are marginally affected by

finite-size effects, as they are found to be already converged for moderate dimensions of the

employed supercell (e.g. Fe3+ in Ref. 22). At variance, it is well-known that electrostatic

finite-size effects affect the calculated energy levels of defects in crystalline materials and

redox levels in aqueous solution.23,24 In the present work, electrostatic finite-size effects in
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Figure 1: µver (blue circles), ǫs(1) (blue triangles), ǫs(0), (blue squares) and ǫp(0) (red
squares) as a function of the inverse size 1/L of the supercell. The open symbols refer
to the linearly scaled values at L → ∞. The energy scale is referred to the vacuum level
via the the standard hydrogen electrode level (cf. main text). The position of V0 is reported
with a dotted black line.
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the calculation of µver have been taken into account by linear extrapolation of the values

calculated for supercells containing 64 and 128 water molecules to the limit of a supercell

of infinite size (cf. Fig. 1). This procedure is consistent with correction schemes available in

the literature and implies errors smaller than 0.1 eV for the employed supercells.23

The nature of the finite-size effects can be clarified by investigating the Kohn-Sham

eigenvalue associated to ehyd. In fact, µver, which in the main text has been expressed

in terms of total-energy differences, can equivalently be calculated using the Kohn-Sham

eigenvalues associated to the extra electron. According to Janak theorem, µver given with

respect to ǫv reads:25

µver = 〈∆Eox〉1 − ǫv = 〈E−1[ehyd]− E0[ehyd]〉 − ǫv

=

∫ 1

0

ǫs(n)dn− ǫv, (5)

where E−1[ehyd] is the total energy of the ehyd system, E0[ehyd] the total energy of the same

structural configuration upon vertical removal of the extra electron, ǫs(n) the eigenvalue

associated to the s-like ground state of ehyd as a function of the fractional occupation n.

ǫs(n) is integrated between 0 (empty state) and 1 (occupied state). The energy of ǫs(n) is

not constant with occupation n, because of the self-interaction effect.26 Nevertheless, µver

can be expressed via the average of the empty and occupied Kohn-Sham eigenvalues:

∫ 1

0

ǫs(n)dn ≃
ǫs(1) + ǫs(0)

2
= ǫs(1/2), (6)

leading to:

µver = 〈ǫs(1/2)〉 − ǫv. (7)

We verify that this approximation is closely satisfied in the present calculations. ǫs(1) is

essentially constant with supercell size. In fact, upon the formation of the cavity, the extra

electron is screened by the static dielectric constant of liquid water (78.3 at ambient con-
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ditions27). Therefore, the shift induced by electrostatic finite-size effects on the energy of

ǫs(1) is negligible. At variance, the empty state formed upon vertical ionization of ehyd is

strongly affected by electrostatic finite-size effects, due to the divergence in the polarization,

which is screened only by the electrons of the system (i.e. through the high-frequency di-

electric constant of liquid water, 1.6828). The self-interaction effect shifts the position of the

Kohn-Sham states upon occupation.26,29 These two effects need to be accounted for in the

evaluation of the optical transitions from the s-like ground state to the p-like excited states.

In fact, the average total energy difference associated to a generic s → p transition reads as

follows:

µopt = µp − µver, (8)

where µp is the vertical ionization energy of ehyd in an excited p-like state, given with respect

to ǫv:

µp = 〈E−1∗[ehyd]− E0[ehyd]〉 − ǫv. (9)

In Eq. (9), E−1∗[ehyd] is the total energy of the ehyd system in an excited p-like state for a

structural configuration obtained from a MD simulation of the ground state. In calculating

E−1∗[ehyd], the s-like ground state is assumed to be unoccupied. Applying Janak theorem25

to the terms of Eq. (9), we obtain the following expression:

µp ≃
〈ǫp(1) + ǫp(0)〉

2
〉 − ǫv ≃ 〈ǫp(1/2)〉 − ǫv, (10)

where ǫp(1) and ǫp(0) are the eigenvalues associated to the occupied and unoccupied Kohn-

Sham states of a p-like state. Therefore, the energy of a s → p transition reads as follows:

µopt = ǫp(1/2)− ǫs(1/2), (11)
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and can be estimated as:

µopt =
ǫs(1) + ǫs(0)

2
−

ǫp(1) + ǫp(0)

2
. (12)

The unoccupied p-like states of ehyd are found to be resonant with the conduction band

states, due to electrostatic finite-size and self-interaction effects. However, they can be

clearly distinguished from delocalized conduction band states through inspection of the wave-

function (i.e. the inverse partecipation ratio and the gyration radius). Therefore, the only

term in Eq. (12) which is not directly accessible from our DFT-MD simulations is ǫp(1). In

first approximation, assuming that the self-interaction effects on p-like and s-like states are

equal, we can reformulate µopt in terms of the energy difference between unoccupied states:

µopt = ǫs(1/2)− ǫp(1/2) ≃ ǫs(0)− ǫp(0). (13)

Hence, we use energy differences between unoccupied s- and p-like states to produce the

absorption spectrum shown in the main text. However, since p-like states are more diffuse

than the ground state (cf. gyration radius in main text), the effect of the self-interaction is

likely to be slightly smaller than the one observed for the s-like states. This allows us to

estimate a maximum error of 0.2 eV for µopt.

4 Comparison with previous theoretical results

In this section, we compare the results calculated in this work with those achieved in previous

theoretical studies supporting the cavity model. Both the structural properties of the cavity

and the energy levels of the hydrated electron are considered.

First, we discuss the structural properties of the cavity. We notice that the majority

coordination number calculated in this work (5 in 44 % of the structural configurations) is

different from previous single-electron (4 in Refs. 30 and 31), ab initio (6 in Ref. 32), and
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mixed quantum mechanical-molecular mechanics (QM-MM) calculations (4 in Ref. 33). The

inclusion of van der Waals interactions has already been found to provide higher coordination

numbers in molecular dynamics simulations of pure liquid water. In fact, the fifth water

molecule (the so-called interstitial water molecule) gets closer to the first coordination shell

as dispersion interactions tend to stabilize compact structural motifs.4 An analogous effect

accounts for the majority fivefold coordination number in the case of the hydrated electron.

It should be noted that fourfold coordination and sixfold coordination are also encountered

in 34.2% and 15% of the structural configurations, respectively, thus indicating noticeable

fluctuations of the coordination shell. Our average coordination number is smaller than the

one found in Ref. 32. However, the cavity proposed by Boero et al. is more elongated than

that found in this work. This is evident from the different positions of the peaks in the

WFC-O radial distribution functions.

As far as the gyration radius is concerned, we notice that results achieved with different

methods agree within 0.4 Å, therefore indicating a similar localization of the excess electron.

However, the inspection of the radial distribution functions allows us to observe noticeable

differences in the localization of the extra electron. The radial distribution functions in

Refs. 32, 30, and 31 indicate that the electron density is almost completely residing in the

cavity. In fact, the gyration radius of the wave-function is found to be systematically smaller

than the size of the first coordination shell, the latter being defined by the average distance

between the center of the electron density and the surrounding O atoms. At variance, in the

present work, the size of the first coordination shell corresponds to the gyration radius of

the wave function, similarly to Ref. 33. Therefore, our result supports a physical picture in

which the electron density extends up to the first oxygen coordination shell.

Hence, we compare the calculated energy levels. Our study provides an average value

of µver = −3.47 eV with respect to the vacuum level, well inside the experimental range,

in contrast with previous studies that overestimated30,34 or underestimated33 this quantity.

In regard to µopt, excellent agreement with experiment has been found in various studies.
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Table 1: Majority coordination number nc, gyration radius rg (Å), and posi-
tion of the peaks in the radial distribution functions, dH and dO for H and O
respectively (Å), from this work and from previous computational studies.

nc rg dH dO
This work 5 2.49 1.5 2.5
Uhlig et al.33 4 2.44 1.5 2.4
Boero et al.32 6 2.20 1.5 2.9
Jacobson and Herbert30 4 2.25 1.7 2.9
Turi et al.31,34 4 2.12 2.1 3.0

However, this could be fortuitous and due to error cancellations. For example, in Ref. 32 the

p-like states are found to be apparently resonant with the conduction band states, an effect

that is caused by electrostatic finite-size effects and the self-interaction error. Therefore, the

position of the calculated peak is influenced by the position of the conduction band edge, the

latter being not correctly reproduced by the employed functional. In Ref. 35, the authors

calculate the optical spectrum with a long-range separated density functional,36 where the

long-range parameter is tuned. The results appear to be largely affected by this choice as two

different tuning procedures were found to provide µopt differing by as much as ∼0.8 eV. A

third result found using the BLYP37,38 functional is yet different (1.3 eV). However, it remains

unclear to what extent the positions of the delocalized band states are affected by the use

of different functionals. Finally, we observe the value of µhyd calculated in this work is the

first ab initio determination of this level in an all-DFT-based model of the condensed phase,

as previous estimates have been obtained from cluster studies. Hence, we remark that the

comprehensive agreement achieved for the three energy levels of the hydrated electron should

be regarded as strong support for the validity of the employed computational approach.
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