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ABSTRACT
Supplementary material for the article “Flexible Tweedie regression models for con-
tinuous data” by NAME 1 and NAME 2 submitted to Journal of Statistical Compu-
tation and Simulation. In this supplementary material we present an extra simulation
study to explore the flexibility of Tweedie regression models to deal with heavy-tailed
data as generated by the t-Student and slash distributions. Furthermore, we present
two data analyses illustrating the application of Tweedie regression models for highly
right-skewed and symmetric positive data. Finally, two extra figures to illustrate the
results from the simulation study presented in the paper are presented.

1. Simulation study: robustness of Tweedie regression models

In this Section we present a simulation study that was conducted to evaluate the
robustness of the Tweedie regression models in the case of model misspecification
by heavy tailed distributions. We generated 1000 data sets considering four sample
sizes 100, 250, 500 and 1000 following two heavy tailed distributions, namely, t-Student
and slash. The parametrization adopted was the one implemented in the R package
heavy [4]. For both distributions, we designed three simulation scenarios according
to the amount of variation introduced in the data. We defined, small, medium and
large amount of variation data sets generated using dispersion parameter equals to
100, 500 and 1000, respectively. In order to simulate challenge data sets, we used 2
degrees of freedom. The mean structure was specified as in the Section 4 (see, main
article). In the case of heavy tailed distributions, we expect negative values for the
power parameter. Thus, we fitted the Tweedie regression models by using the quasi-
and pseudo-likelihood approaches.

In order to compute the empirical efficiency of the quasi- and pseudo-likelihood es-
timators, we fitted t-Student regression models along with the logarithm link function,
as implemented in the package gamlss(family TF) [5]. Although, of the extensive liter-
ature on robust estimation methods, in this paper we adopted the t-Student regression
models, since it is a frequent choice for the analysis of heavy tailed data [2] and can be
fitted using the orthodox maximum likelihood method. Furthermore, since there is no
software available for fitting slash regression models using logarithm link function, the
t-Student regression models were used as the base of comparison for both t-Student
and slash data sets. Fig. S1 shows the bias plus and minus the standard error for the
regression parameters by estimation methods, sample size and simulation scenarios.
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Figure S1.: Bias and confidence interval by estimation methods (quasi-likelihood
(QMLE), pseudo-likelihood (PMLE) and maximum likelihood (MLE)), sample size
and simulation scenarios.
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Figure S2.: Coverage rate for regression parameters by estimation methods (quasi-
likelihood (QMLE), pseudo-likelihood (PMLE) and maximum likelihood (MLE)), sam-
ple size and simulation scenarios.

The results presented in Fig. S1 show that the three estimation methods provide un-
biased and consistent estimates of the regression parameters in all simulation scenarios.
As expected, the standard errors associated with the regression parameters increase
while the amount of variation introduced in the data increases. Fig. S2 presents the
coverage rate by estimation methods, sample size and simulation scenarios.

The empirical coverage rate presented values close to the nominal specified level of
95% for all estimation methods and simulation scenarios. The MLE method presented
coverage rate closer to the nominal level than the QMLE and PMLE methods, however,
the difference is no larger than 3%. The coverage rate of the QMLE and PMLE were
virtually the same for all regression parameters, sample size and simulation scenarios.
Finally, Fig. S3 presents the empirical efficiency of the QMLE and PMLE estimators
for the regression parameters. The empirical efficiency was computed as the ratio
between the variance of the MLE obtained by fitting the t-Student regression models
and the variance of the QMLE and PMLE estimators obtained by fitting the Tweedie
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Figure S3.: Empirical efficiency for regression parameters by estimation meth-
ods (quasi-likelihood (QMLE), pseudo-likelihood (PMLE) and maximum likelihood
(MLE)), sample size and simulation scenarios.

regression models.
The empirical efficiency presented values close to 1 for the small variation simulation

scenarios, however, when the amount of variation increases both QMLE and PMLE
loss efficiency. The loss were around 10% and 20% for the medium and large variation
scenarios, respectively. The results are worse for large samples. The PMLE presents
efficiency slightly closer to the nominal level than the QMLE.

2. Data analyses

In this section we shall present two extra illustrative examples of Tweedie regression
models. The data that are analysed and the programs that were used to analyse them
can be obtained from: omitted for double-blind reviewing
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2.1. Income dynamics in Australia

We consider some aspects of a cross-section study on earnings of 595 individuals for the
year 1982 in Australia. The data set is available in the package AER [3] for the statistical
software R. The response variable wage is known to be highly-right skewed. The data set
has 12 covariates: experience years of full-time work experience; weeks weeks worked;
occupation factor two levels (white-collar, blue-collar); industry factor two levels
(no;yes) indicating if the individual work in a manufacturing industry; south factor two
levels (no;yes) indicating if the individuals resides in the south; smsa factor two levels
(no;yes) indicating if the individual resides in a standard metropolitan area; gender
factor indicating gender (male, female); union factor two levels (no, yes) indicating if
the individual’s wage set by a union contract; ethnicity factor indicating ethnicity,
African-American (afam) or not (other). The main goal of the investigation was to
assess the effect of the covariates on the wage. We fitted the Tweedie regression model
with linear predictor composed by all covariates by using the three estimation methods.
Table S1 shows the estimates and standard errors for the regression, dispersion and
power parameters.

Supplementary Table S1.: Regression, dispersion and power parameter estimates and
standard errors (SE) by estimation methods for the income dynamics data.

Parameter
Estimation methods

MLE QMLE PMLE
Estimate SE Estimate SE Estimate SE

Intercept 5.8580 0.1723 5.8480 0.1813 5.9137 0.1859
experience 0.0056 0.0013 0.0056 0.0014 0.0068 0.0013
weeks 0.0034 0.0026 0.0035 0.0028 0.0041 0.0030
occupation -0.1870 0.0365 -0.1893 0.0362 -0.1977 0.0352
industry 0.0716 0.0293 0.0731 0.0302 0.0229 0.0322
south -0.0375 0.0305 -0.0363 0.0320 -0.0104 0.0341
smsa 0.1644 0.0293 0.1658 0.0297 0.1456 0.0312
married 0.1172 0.0478 0.1218 0.0523 0.0902 0.0538
gender -0.3389 0.0570 -0.3346 0.0567 -0.4039 0.0562
union 0.1265 0.0314 0.1331 0.0298 0.0839 0.0293
education 0.0577 0.0065 0.0578 0.0069 0.0543 0.0074
ethnicity -0.1793 0.0506 -0.1772 0.0510 -0.1466 0.0484
δ -5.9848 1.1117 -6.8587 2.0409 -7.1317 1.8857
p 2.5354 0.1605 2.6656 0.2979 2.7012 0.2735

The results in Table S1 show that the MLE and QMLE approaches strongly agree
in terms of estimates and standard errors for the regression coefficients. The PMLE
approach presents estimates slightly different from the MLE and QMLE approaches.
Regarding the dispersion parameters, although the slightly difference in terms of es-
timates and standard errors, the confidence intervals from the QMLE and PMLE
approaches contain the MLE estimates.

Concerning the effect of the covariates the MLE and QMLE approaches agree that
the covariates weeks and south are non-significant. On the other hand, the PMLE
approach also indicated that the covariates industry and married are non-significant.
Regarding the other covariates the three approaches agree that they are significant.

In order to compare the fit of Tweedie regression model with more standard ap-
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proaches, we also fitted the Gaussian, gamma and inverse Gaussian regression models
for the income dynamics data set. The maximized values of the log-likelihood function
were −4437.51, −4318.08 and −4316.52 for the Gaussian, gamma and inverse Gaussian
models, respectively. Furthermore, the maximized value of the log-likelihood function
for the Tweedie regression model was −4312.39, which in turn shows the better fit of
the Tweedie regression model, as expected. In terms of computational time for this
data set, the QMLE approach was 45 and 0.15 times faster than the MLE and PMLE
approaches, respectively.

2.2. Gain in weight of rats

The third example concerns to a standard Gaussian regression model. The goal of this
example is to show that the quasi- and pseudo-likelihood approaches can estimate val-
ues of the power parameter between 0 and 1, where the maximum likelihood estimator
does not exist. We used the weightgain data set available in the HSAUR package [1].
This data set corresponds to an experiment to study the gain in weight of rats fed
on four different diets, distinguished by the amount of protein (low and high) and by
source of protein (beef and cereal). The data set has 40 observations.

We fitted the Gaussian, gamma, inverse Gaussian and Tweedie regression models
for the weightgain data set. The linear predictor was composed of the two main
covariates source and type along with the interaction term, for all models. The values
of the maximized log-likelihood were −162.84, −164.21, −165.36 and −163.50 for the
Gaussian, gamma, inverse Gaussian and Tweedie models, respectively. These results
showed that the Gaussian distribution provides the best fit for this data set, judging
by the maximized log-likelihood value. In that case, the MLE method is not able to
indicate the best fit. It is due to the non-trivial restriction on the power parameter
space. Thus, we fitted the model using the approaches QMLE and PMLE. Table S2
presents the estimates and standard errors for the regression, dispersion and power
parameters, obtained by MLE, QMLE and PMLE approaches.

Supplementary Table S2.: Regression, dispersion and power parameter estimates and
standard errors (SE) by estimation methods for the gain in weight of rats data.

Parameter
Estimation methods

MLE QMLE PMLE
Estimate SE Estimate SE Estimate SE

Intercept 4.5891 0.0504 4.6051 0.0454 4.6050 0.0453
source −0.1263 0.0734 −0.1519 0.0693 −0.1517 0.06867
type −0.2235 0.0750 −0.2331 0.0694 −0.2337 0.06922
source:type 0.1827 0.1069 0.2096 0.1036 0.2108 0.1026
δ 0.6323 8.1352 3.3614 8.7203 3.3355 9.0088
p 1.0590 1.8400 0.4350 1.9484 0.4408 2.0129

The results in Table S2 show that the three approaches strongly agree in terms of
estimates and standard errors for the regression coefficients. The value of the power
parameter was estimated smaller than 1 by the QMLE and PMLE approaches, as
expected, since the Gaussian distribution provides the best fit for this data. On the
other hand, the maximum likelihood method estimated the power parameter close to 1
the border of the parameter space, in that case a non-optimum model. All approaches
presented large standard errors for the power and dispersion parameters. In terms of
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computation time, for this application the PMLE approach was 94 and 0.15 times
faster than the MLE and QMLE approaches, respectively.

3. Extra figures
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Figure S4.: Coverage rate for each parameter (β0, β1, β2, φ, p) by estimation meth-
ods (maximum likelihood (MLE), pseudo-likelihood (PMLE) and quasi-likelihood
(QMLE)), sample size and different values of the power and dispersion parameters
(p;φ).

8



Sample size

E
m

pi
ric

al
 e

ffi
ci

en
cy

0.2

0.4

0.6

0.8

1.0

100 250 500 1000

● ● ● ●

beta[0]

1.
5;

0.
2

● ● ● ●

beta[1]

1.
5;

0.
2

100 250 500 1000

● ● ● ●

beta[2]

1.
5;

0.
2

●

●
● ●

phi

1.
5;

0.
2

100 250 500 1000

●

●
● ●

p

1.
5;

0.
2

●
● ● ●

beta[0]

1.
5;

2

● ● ● ●

beta[1]

1.
5;

2

●
● ● ●

beta[2]

1.
5;

2 ●

●
●

●

phi

1.
5;

2

0.2

0.4

0.6

0.8

1.0

●

●
●

●

p

1.
5;

2

0.2

0.4

0.6

0.8

1.0 ●
● ● ●

beta[0]

1.
5;

5.
3

●
● ● ●

beta[1]

1.
5;

5.
3

●
● ● ●

beta[2]

1.
5;

5.
3

●
● ● ●

phi

1.
5;

5.
3

●
● ● ●

p

1.
5;

5.
3

● ● ● ●

beta[0]

2;
0.

02
3

● ● ● ●

beta[1]

2;
0.

02
3

● ● ● ●

beta[2]

2;
0.

02
3

●

● ● ●

phi

2;
0.

02
3

0.2

0.4

0.6

0.8

1.0
●

● ● ●

p
2;

0.
02

3
0.2

0.4

0.6

0.8

1.0 ●
●

● ●

beta[0]

2;
0.

25

● ● ● ●

beta[1]

2;
0.

25

●
●

● ●

beta[2]

2;
0.

25

●

●
● ●

phi

2;
0.

25

●

●
●

●

p

2;
0.

25

●

●
● ●

beta[0]

2;
0.

65

●
● ● ●

beta[1]

2;
0.

65

●

●
● ●

beta[2]

2;
0.

65

●

●
●

●

phi

2;
0.

65

0.2

0.4

0.6

0.8

1.0

●

●
●

●

p

2;
0.

65

0.2

0.4

0.6

0.8

1.0 ●
●

● ●

beta[0]

3;
0.

00
34

●
●

● ●

beta[1]

3;
0.

00
34

●
●

● ●

beta[2]

3;
0.

00
34

●

●

●
●

phi

3;
0.

00
34

●

●

●
●

p

3;
0.

00
34

●

●
●

●

beta[0]

3;
0.

00
83

●

●
●

●

beta[1]
3;

0.
00

83
●

●

●
●

beta[2]

3;
0.

00
83 ●

●

●
●

phi

3;
0.

00
83

0.2

0.4

0.6

0.8

1.0

●

●

●
●

p

3;
0.

00
83

0.2

0.4

0.6

0.8

1.0 ● ● ● ●

beta[0]

3;
0.

00
00

3
100 250 500 1000

● ● ● ●

beta[1]

3;
0.

00
00

3

● ● ● ●

beta[2]

3;
0.

00
00

3

100 250 500 1000

●

●
● ●

phi

3;
0.

00
00

3

●

●
● ●

p

3;
0.

00
00

3

Methods
PMLE QMLE●

Figure S5.: Empirical efficiency for each parameter (β0, β1, β2, φ, p) by estimation
methods (maximum likelihood (MLE), pseudo-likelihood (PMLE) and quasi-likelihood
(QMLE)), sample size and different values of the power and dispersion parameters
(p;φ).
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