Scaling OpenSimulator :
An Examination of Possible Architectures for an
Internet-Scale Virtual Environment Network

A dissertation submitted in partial fulfilment of the requirements
for the degree in Software Engineering

by

Justin Clark-Casey
Kellogg College
University of Oxford
2010

Abstract

This dissertation describes an analysis of possible architectures for an Internet-scale virtual
environment network. These are treated as evolutions of an existing virtual environment
architecture embodied in an open-source project called OpenSimulator. Distributed computing
concepts and Z schemas are used to examine both the existing OpenSimulator architecture and the
alternative configurations.

20f81

Table of Contents

INEEOAUCTION. ...ttt ettt ettt b et s e s bt et e e st e bt et esae e be e tesut e beesabeeeaseeesmneeeaseenas 4
OPENSIMUIALOT OVEIVIEW.......eiieiiiieiieeeieeeiieeesieeesteeesteessteeesaeeessseeessseesssseesssseessssesssssesssseesssssssesesenns 6
SYSTEIM ATCRIECTUTE. ... veeeieeiierieeieeete et et e et et e s bt e ate s bt esatesabessstessbeeseesssessssessseenseesssessseesnnsees 7
Clients, STIMUIAtOrS ANA SOIVICES. ssssnnneees 7
TTANSPATEIICY ..ceeeuurteeeeeirteeeeeitteeeeautreeeeearteeseestteeeenrteeeesnsraeesansbeeeesnssaeessnssaessanssssnssssnaneeeeeeeens 11
AsSet IMMULADIIITY .c...veeeiieeieeceeceeeeeee et e e srr e s e e e s aee e sbeee e s esaneeaas 13
Service, SIMUlator and Grid MOEIS.........ooouvviiiiiiiieiiiiiieeeiieeeseeseeeeeeeseeeees 15
COMIMON DAta TYPES..cccuuevieeieiiieeeeiiteee ettt e e e sstte e s esrteeesssabaeeessssaeesssssaaeessssseeeesssssssnsnnees 16

USEE SEIVICL....eiiiiiiiiitiiiiteecte ettt ettt st s st e s et e s sbe e e s e snnaeeeseenes 17
AASSEE SEIVICE...nuiiieeieiiitee ettt eett et ettt e e ettt e e s etbae e s s st aeeessasateeessbaeesssasaeeesnssaeesssssaaaaeaeeens 24
INVENLOTY SEIVICE.....eeeiiiiiiieeeeetee ettt ettt ettt e e et e e s et e e s st e e e e ssreeeeeaeeeeessssnnnnnnns 27

(@ 3 Ta BT 74 T T PRSPPI 33
SIMIULALOT. ¢ttt ettt ettt s bbb e s st b et esae e b e st e saeesaneeenneee 37

[3 [« OO PUPPRRR 44

The Client-Simulator PrOtOCOL.........coviriiiiiiiieniiteeteeeeeteeet ettt 45
Scaling OPeNSIMUIALOT.cccvutiiiiieeiiteeieeete et eete e st e es e e esbeeesaaeeessbeesssseeessaeessseessssesssseessssnees 48
Requirements for an Internet-scale VE NetWOrK........ccccoviiriiiniiniiiinienieceeeieeceeeeee e 49
Scaling the ClassiC ATCHITECIUTE.cccuieirieeeiiieeiieeecte et ettt eesreeesreeesreeesreeeeesssnnsaneeassenns 53
Problem 1 — No Independent HOSHING.........cccceirierieinienieiieeieeee sttt 53
Problem 2 — Centralized VE Services : Storage and Capacity........ccccecceeerveeervieeenueessveessneenns 53
Problem 3 — Centralized VE Services : Single Point of Control..........cccoecuevvieeriencieeniennieennen. 54
Alternative 1 — Multiple ClassiC ATChIiteCIUTES.........ccccueieriieeriiieeriteeriee et e ereeeesreessaeeesereeeeenaens 56
Alternative 2 — The OPen GIid........ccceeeieriiirniienieiiienieert et see et e st sseeseeeste e e ssreaeseneaessnnnne 57
Alternative 3 - SeSSiON ID SECUIILY....ccccciiiiiiieeiiieeiieeerteeesreesteesieeesteeesaeeesaeeeessssssaeeeessssnnssnes 60
Alternative 4 - The HYPergrid.........coceirieriiiiieeieeteeeeete ettt ettt sae e st et esaeesanesaes 65
Alternative 5 - DireCt ClIENT SEIVICES.....ccccuviiriuieiriiieiriieerieeesieeesreeesteeesreessseessaaeesssseessseeessssnnes 69
Alternative 6 - Live Entity State Stream (LESS)......ccccoriiiriiiiniiiiiiieeieeeeeieeeeie e 72
L0703 el 1113 o) 1 1= OO PP PPPR 75
RETIECHION. ..ttt ettt s e a et e e bt st sat e e st e e neeeeaseeeaseeeanee 76
APPENAIX A = GLOSSATY .. .uvieiiiieeiiieeiieeecieeerte sttt estte e st eesteeesteeessteeessseessseesssseessssseeeeessssssseeesennnns 77
|20 10 ed 1] 1| 2RO 78

30f81

Introduction

I'd like to start by explaining what I mean by the term 'Virtual Environment' (VE). At the heart of a
VE lies a model of a place. This model contains objects, whether simple primitives such as spheres
or cubes or more complicated things such as tables and chairs. It may also contain other ideas of
place such as terrain or weather. Entities in the model may be subject to rules such as gravity or
classical mechanics.

Users interact with this model via a graphical or textual representation through which they can
examine, create or modify elements of the environment. Often, the users themselves will be
represented inside the VE by an object, otherwise known as an avatar.

Although in principle a VE could be accessed by just a single user, the most interesting ones allow
many people to be present in the same environment at once. People can interact via their avatars,
chatting to each other in voice or text or changing the objects around them.

Many successful VEs exist today. One is Blizzard's World of Warcraft', an extremely popular role
playing game. Linden Lab's Second Life * is another — a 'virtual world' in which individuals can
own virtual land, create objects for sale and socialize.

On the technical level, what these and other successful VEs have in common is a considerable
degree of architectural centralization. Though the environment is often distributed over a large
number of separate machines, all these machines are situated in the same location and controlled by
a single organization. These machines will share the same set of back end data services for the
management of services such as user identity and item inventory. Access to the VE is often allowed
only through dedicated and proprietary client software - software provided by the same organization
that runs the environment.

For my project I wanted to explore how such a centralized VE architecture might be evolved into
one that is 'Internet-scale' such as the World Wide Web (WWW). The WWW is much larger than
any existing VE system — the WWW has 1.6 billion estimated users® while even the most popular
online role playing game has only 11.5 million monthly subscribers®.

But achieving Internet-scale requires properties other than sheer size. For instance, the WWW, in
contrast to existing VE systems, has an extremely distributed architecture where any organization
can host its own webserver. Equally, unlike existing VEs, the WWW has no centralized data
services — information can be hosted anywhere on the Internet by anybody.

The vehicle for my analysis is an open-source project called OpenSimulator. The aim of
OpenSimulator is to provide a general platform for running virtual environments. The catalyst for
its creation was the open-sourcing of the 3D client provided by Linden Lab for accessing its Second
Life virtual world. This history means that OpenSimulator's current VE architecture is heavily
influenced by that of Second Life, to the point where Linden Lab has led interoperability
experiments between servers running on its own codebase and instances of OpenSimulator.’

However, because OpenSimulator is open-source, people and companies have been able to freely

http://www.worldofwarcraft.com

http://secondlife.com

http://www.internetworldstats.com/stats.htm

http://eu.blizzard.com/en/press/081223.html
https://blogs.secondlife.com/community/features/blog/2008/07/08/ibm-and-linden-lab-interoperability-
announcement

U b WwWwN -

4 of 81

speculate about alternative system designs and create experimental implementations. My analysis
draws considerable inspiration from this work.

The dissertation is divided up into two major sections. In the first, entitled “OpenSimulator
Overview”, I will describe OpenSimulator's current system design. In doing so, I will draw from
various distributed computing concepts such as levels of transparency. I will also set out Z models
for the different architectural components.

In the second section, “Scaling OpenSimulator”, I will start by putting forth the necessary
architectural features that I think that an Internet-scale network of VEs must possess. Then, I'll
examine how well the current OpenSimulator design fits these criteria and the extent to which they
could be met by evolutionary architectures.

Please note that in my project I am largely unconcerned with the scalability issues associated with
the 3D simulation itself. This includes issues such as how to distribute object movement updates to
observers, graphical rendering issues and the timeliness of object movement updates. The only
place where I will explore issues like these is where they have an impact on the broader Internet-
scale architecture. This is akin to the difference between analysing the scalability of an individual
website and the WWW as a whole.

I also will not investigate the role of standards. Of course, in the long run, establishing common
communication protocols is crucial for growing any large scale architecture. But as of yet, there is
no broad agreement in the VE technical community as to what that architecture would look like. 1
believe that the task right now is to experiment with different arrangements using existing de-facto
protocols before distilling these lessons learnt into formal standards.

5o0f 81

OpenSimulator Overview

In this section I'll lay out my description of OpenSimulator's current architecture. I concentrate on
aspects of the system that are important for a later examination of both its own Internet-scale
potential and that of alternative systems. The current architecture I will refer to as the “classic
architecture” in order to distinguish it later on from the alternatives.

To set the scene, I'll start with a broad description of OpenSimulator. A more detailed analysis will
then examine the system through the lens of distributing computing ideas such as transparency and
distributed garbage collection. This will lead to a Z schema model of the classic architecture — a
formal description of the system will hopefully act to improve the general clarity of the analysis and
provide a basis for formal reasoning when we come to consider how the classic architecture could
be extended or changed.

The section will end with a discussion of the communication protocol between OpenSimulator
servers and the clients used to access them. Although I'm unconcerned with the fine details, the
broad features of the approach employed by OpenSimulator will be important when I come to
formulate the necessary properties of an Internet-scale VE network.

6 of 81

System Architecture

Clients, Simulators and Services

At the broadest architectural level, the OpenSimulator system consists of 3 different component
types; clients, simulators and services.

A client is an executable running on the user's local system. It graphically renders the simulation's
objects and avatars. It also handles input from the user.
File Edit View World Tools Help Advanced

— A R

B //Color/Pos Test Seript

o default | . {
= touch_start{integer num_detecied)
: 1150y(0, "I'm ot " + (string)110etPos());

_ default{ il -
= state_entry Ui Color /DI
118etPos(<69, 35, 23)); 'J'!Fﬂuccfjlfirff"

11SetColor(<8,1,8),ALL_SIDES);
115ay(0, "reset");

)

touch_start(integer total_number){
115etPos(¢69, 35, 24));
118etColor(<1,8,0), ALL_SIDES);
11ResetScript();

Tough

(@) Communica’ [& Fly Snapshot Search Build Mini=Map Map Inventory
Diagram 1: An example Second Life client interface. Here, most of the screen is taken up with a
view of the 3D simulation, with the user's avatar in the middle.

Except during login, the client connects and interacts exclusively with a simulator. A simulator in
OpenSimulator is a server responsible for maintaining simulation state information and

7 of 81

communicating changes in that state with the connected clients. Singhal and Zyda describe this
particular approach to state communication and management as the centralized repository model
[Singhal and Zyda p110]. Changes in state can come from many sources such as a direct response to
user actions (for example, is the user makes their avatar push an object), from scripts acting on the
object or from environmental effects (one such being simulated gravity).

Simulator

Diagram 2: Interaction
between a client and a
simulator

In the OpenSimulator system, simulated space is divided up into fixed areas called 'regions'. These
are situated at fixed locations on a 2D 'grid'. A single simulator can simulate one or many regions,
limited only by processing and network resources.

8 of 81

Edit View World Tools Help Advanced & 3¥ Plain Plai 2 (PG) - Plain Plains 10:55 AM POT &%

s | TEmain

m land For Sale Auction

Online Friends - ==
Landmarks v
Plain Plains Search

Search Results:

1-World

4 . . Youare he
Plain Plains (118,

I GrAfFEs

Teleport Show Destination
Clear Show!My'location

Copy SLURL to clipboard

b _4
e Ud sl Click here to chat. b e | @@ @k @
= Communicate’ |'a Fly Snapshot Search (Map Mini=Map (Inventory

Diagram 3: 4 neighbouring regions in an OpenSimulator grid, here shown on a client's map view.

Regions can be placed next to one another on the grid even if those regions are hosted by simulators
running on different machines. A client situated in one region is notified of simulation events
occurring in neighbouring regions. This allows the client to render a contiguous 3D environment
that is not bounded by the resources of a single simulator.

Avatars travel between regions either by directly moving into neighbouring regions or by
teleporting. In the former case there is no interruption in the 3D experience — the avatar can be
moved smoothly from one region to another even if the destination region is being simulated on
another machine. In the teleport case, there is a discontinuity (an intervening black 'loading' screen)
whilst moving from the original location to the teleport destination.

Simulators interact with services via well-known Uniform Resource Locators (URLs) . Services
provide resources in common to all the simulators. In this project, I look closely at 4 of these.

e Asset service. This service stores all media data persistently. Discrete items of media data
are called assets in OpenSimulator terminology. Types of asset include textures, scripts,
sounds and serialized object representations.

e User service. This persistently stores user data, such as names and biographies. It also

9 of 81

handles initial user login to the virtual environment.

e Inventory service. In Opensimulator each user has an inventory. Items in this inventory
hold references to assets, which as we've seen include textures, sounds or serialized copies of
objects taken from the simulated environment. The inventory service persistently stores this
information.

e Grid service. The grid service co-ordinates the positioning of regions in the grid. Other
region simulators request this information in order to find out about their neighbours.

There are other services available in the OpenSimulator codebase such as instant messaging. These
are not relevant to this project so I will not discuss them any further.

Of the three components in the OpenSimulator system — clients, simulator and services - the most
complex are the clients and simulators. The client is complex largely because of the work involved
in graphical rendering of the environment. The simulator is complex because of its responsibility
for maintaining the simulation itself — tasks which include sending and receiving data from remote
clients, updating and maintaining simulation state, running physics processes and executing scripts.

Services, on the other hand, are much simpler. Often, they consist of little more than an interface
that wraps around some means of persisting data (in a database, for example). They do not carry
any state information between requests. In the classic architecture access to these services always
takes place via the simulator — the client does not retrieve assets or inventory data directly. This is
illustrated in diagram 4.

Lser
Service

Asset
Service

Inventory
Service

Simulator Simulator Simulator

Diagram 4: Interaction of clients, region simulators and services in the classic grid architecture.
Only the simulators have access to the VE services — clients always send and receive data through a
simulator instance.

10 of 81

Transparency

Since OpenSimulator's classic architecture is to some extent a distributed system, we can examine it
in terms of the dimensions of transparency defined by the ISO International Standard on Open
Distributed Processing, as described by Emmerich [Emmerich p19].

Scalability Performance Failure
Transparency Transparency Transparency
Migration Replication Concurrency
Transparency Transparency Transparency
Access Location
Transparency Transparency

Diagram 5: Dimensions of Transparency [Emmerich p19]

With OpenSimulator, we can analyse transparency from two different points of view. The first is
transparency as seen in the user's interactions with a simulator via their client. The second is
transparency with the system itself, that is, between simulators and between a simulator and the
services.

e Access transparency. Access transparency requires that communication with a software
component occurs over the same application interface no matter whether that component is
local or remote.

This applies at the client level in the classic architecture - a user can see and move into
regions in the same way no matter whether those regions are hosted on the same simulator or
on different computers.

The same is true at the system level. In OpenSimulator, simulators and services can be
hosted on different machines, on the same machine or even within the same process. But no
matter what the configuration, the interactions between the components are abstracted
behind the same interfaces.

e Location transparency. Location transparency requires that components can be referenced
in service requests without the need to know the physical address of the component.

OpenSimulator is a location transparent in the same way as the Web. The system can be set
up so that clients refer to simulators by their fully qualified domain names, allowing the IP
address of a simulator to be changed without any corresponding change on the client. The

11 of 81

same is true for communication between simulators and services.

Migration transparency. Migration transparency requires that components can be
migrated from one host to another without requiring any special action from users of those
components.

Component migration doesn't occur in the OpenSimulator system. It is true that on the
client level, user and object representations migrate as they move between regions hosted on
different simulators. However, this migration is represented by changes in the VE's spatial
model and hence is not transparent to other users and objects that are watching them — users
and objects are literally moving across virtual 3D space.

Moreover, on the system level there is no ability to transfer the model of a space to another
machine without disruption of that space and the clients that are connected to it. This will
have ramifications when we come to look at scalability and performance transparencies.

Replication transparency. Replication transparency requires that a caller be unaware if
they are interacting with a single component or one of a number of replicas.

Since no state information is kept between simulator calls to the services, different service
instances can easily be substituted for each other in dealing with different requests. Hence,
replication transparency is possible on the service level using the same techniques as
employed to load balance websites and Web services [Elson and Howell].

However, replication transparency between client and simulator is problematic. Simulators,
by their very nature as environment models, carry around a vast amount of state that is
frequently changing and constantly communicated to clients. Replicating a region would not
achieve much since there would need to be a constant flow of information between the
original and replica in order to keep the two in sync. Replication transparency is not
possible in the classic architecture at the simulator level.

Concurrency transparency. Concurrency transparency requires that any concurrency
occurring within a shared component is invisible to callers of that component.

This is easily achieved for services due to their stateless and isolated nature. For instance,
all assets in the asset service are immutable so there is no chance that one update will
interfere with another. Equally, inventory requests are always concerned with the user's own
inventory rather than any shared data structure.

But it's a very different story with the simulators. An intrinsic feature of the virtual
environment is that it allows users to interact with each other rather than exist in isolation —
visibility of concurrency is one of the core features of the simulator. Transparency here is
not an option.

Scalability transparency. Scalability transparency requires that it be possible to scale a
system by adding more copies of a component without requiring any adjustment by existing
component users.

This is possible at some levels in the OpenSimulator system. In the case of services, as

12 of 81

previously mentioned, load-balancing stateless replicas can easily be added to serve requests
made to the service URLs. The simulated area of the entire OpenSimulator installation can
be expanded by adding simulators and placing their regions into new slots in the 2D grid,
hooking up their service requests to common service points.

Scaling individual regions is much more of a challenge. Each region is fixed in area and can
only be simulated by a single machine. As the number of objects or users in a region grows,
more load is placed on this single system. Because there's no replication transparency
between simulators, the only way to scale is to increase the power of the machine hosting the
simulator. But there's a limit to this, particularly since, in a VE system, simulation
processing demands grow exponentially rather than linearly with an increasing number of
interacting avatars and objects.

We shall talk more about these issues later on.

Performance transparency. Performance transparency requires that the means by which
component performance is maintained is opaque to the callers.

Services can improve performance by adding more replicas, though the limiting factor may
become the component from which those replicas are drawing information (such as a
database).

At the simulator level, it's also possible to improve performance but the techniques here are
extremely visible to the user. One technique is to hold VE events involving many avatars at
the intersection of 4 different regions, where those regions are running on separate
machines. Each machine still needs to communicate state to all clients (since clients can see
into neighbouring regions), but other workloads such as physics simulation are more
distributed.

Failure transparency. Failure transparency requires that the failure of a component is
concealed from the caller, such that the caller does not need to handle that failure.

Failure transparency is possible for services. As we've seen, services have been replication
and concurrency transparency - a request can be routed to a waiting replica if the original
service instance fails.

Failure transparency for simulators is impossible due to the lack of replication transparency.
If a simulator fails then the clients are simply disconnected. In principle, it might be
possible to teleport them to a different location if an impending failure is detected but this
does not make simulators failure transparent.

Asset Immutability

Before we go on to formally model the OpenSimulator system, I want to look at the topic of asset
immutability. Asset immutability in terms of OpenSimulator is the fact that once an asset has been
created and stored, whether that asset is a texture, a script or a notecard, subsequent edits always
create entirely new assets rather than any modification to the existing asset.

This allows OpenSimulator to use a 'copy on write' approach to asset creation. For instance,

13 of 81

suppose that Ann creates a teapot which she takes into her inventory. The act of taking stores the
teapot as a serialized asset in the asset service with an item in the inventory service that holds a
reference to that serialization. Ann then gives a copy of the teapot item to Bob. An item appears in
Bob's inventory that represents his copy of the teapot but which points to the same serialized asset
referenced by Ann's item. When Bob wants to create the teapot in another simulator, the serialized
teapot is fetched from the asset service and deserialized to the 3D environment.

In the meantime, Ann decides that she wants a longer spout on her teapot. So she changes the
teapot in the simulation and re-saves it to her inventory. But this doesn't affect the original teapot —
by the act of saving Ann creates an entirely new asset and her inventory item is updated to reference

the new asset rather than the original. Bob can continue to use the original teapot as long as he
likes.

This copy on write system has the following advantages.

- Efficiency. In certain cases, this system is much more storage efficient. In a large VE,
popular objects or assets may copied thousands of times or more, virtually always without
further editing. By only creating a new asset when data is changed, the asset service stores
much less data.

- Caching. Since assets are guaranteed never to change, they can be cached with impunity.
This is helpful on the server side since distributed simulators can maintain local copies of
assets, reducing the load on the asset service and enhancing performance.

On the client side, caching is even more important since the communication bandwidth
between the client and a region simulator is lower and generally less reliable. Assets cached
on a client's local system only need to be downloaded once.

- Thread safety. Since assets are immutable, no special action is required to make sure that
one thread doesn't read an asset at the same time that another thread is updating it. This
makes it much easier to maintain transparencies such as concurrency and replication in the
asset service. There is also some benefit to simulators as no thread synchronization is
needed when it comes to manipulating assets.

But there are also some considerable disadvantages to the asset copy on write system.

- Inefficiency. In some situations, a succession of assets are created rapidly that are never
copied or referenced again. For instance, if a user is in a rapid test and update cycle while
developing a script, all the intermediate copies of the script are saved even though they
quickly become completely unreferenced. The storage requirements for scripts are
magnitudes smaller than they are for textures but the increase in objects could cause
problems for some systems.

+ Deletion issues. Regarding assets, the OpenSimulator system faces the same problems of
garbage collection as seen in systems involving multiple layers of middleware [Emmerich,
p241]. Asset references are spread over a potentially very large number of regions on
potentially a large number of different machines, and not all of these regions may be actively
simulated at any one time. Determining whether an asset is unreferenced becomes an
extremely difficult task. Hence, no attempt has yet been made in the OpenSimulator system
to delete unused assets.

14 of 81

Service, Simulator and Grid Models

This section presents models of the OpenSimulator service and simulator components using Z
schemas in order to provide a more accurate and rigorous description of the components that we've
described and to form a basis for later formal extension and analysis. These schemas will be
abstract distillations of actual implementations so that irrelevant details present no distraction.

We'll start by detailing the basic types that are used in common between all OpenSimulator
components. Then we'll look at service schemas before moving on to those of the simulator.
Finally, we'll finish with a few schemas that enforce conditions on the grid as a whole.

150f 81

Common Data Types

Pretty much every entity in the OpenSimulator system has a unique id. These are Universally
Unique Identifiers (UUIDs) [RFC 4122]. However, the details of the construction of this identifier
don't really concern us — all we need to know is that any randomly generated UUID is effectively
unique within the domain of UUIDs since the probability of collision is negligible, the domain of
possible values being extremely large. Therefore, we won't worry about enforcing the uniqueness of
IDs in our model of OpenSimulator's classic architecture.

We'll simply label a UUID as an ID

[ID]

As UUIDs are not easy for people to read or remember many entities in the system will also have
human readable names, though there is no requirement that these be unique.

[Name]

16 of 81

User Service

The user service needs one datatype of its own, namely the password by which users can
authenticate themselves on login.

[Password]

Conceptually, the user service can be broken up into two components, user profiles and user
sessions. We'll start with user profiles. These contain both the descriptive data about a person —
here simply their name — and information necessary to authenticate them — their password. User
profiles are identified by a unique id.

— UserProfile

id : ID
name : Name
password : Password

— UserProfilelnit

UserProfile'

id? : ID

name? : Name
password? : Password

id' = id?
name' = name?
password' = password?

A user session is established when a particular user logs on to the system. Each session has a
unique id.

UserSession

sessionld : ID

r UserSessionlnit

17 of 81

UserSession'
sessionld? : ID

sessionld' = sessionlId?

The user service holds both a list of users, whether logged in or not, and a list of current sessions. A
user can only have one session at a time. A session also has a one to one relationship with a user —
two users can't share the same session. We will specify these conditions in the schema by making
the sessions and profiles declarations of UserService partial injective functions.

— UserService

profiles : ID »» UserProfile

sessions : ID >» UserSession

V id : dom profiles ® id = (profiles id).id
dom sessions € dom profiles

On initialization, the user service starts off without any sessions since nobody is yet logged in.
Profiles supplied at initialization originate externally, usually from persistent storage.

— UserServicelnit

UserService'
profiles? : ID »» UserProfile

profiles' = profiles?
%)

. '
sSesslions

The first pair of operations that we need are those which add and remove profiles from the service.

r AddUserProfile0

18 of 81

AUserService
userProfile? : UserProfile

profiles' = profiles @ { userProfile?.id > userProfile? }
sessions' = sessions

If we remove a user profile that has an active session then we'll also have to remove that session in
order to maintain the integrity of the information held in the service.

— RemoveUserProfile0O

AUserService
userld? : ID

userld? € dom profiles
profiles' = { userld? } <4 profiles
sessions' = { userld? } < sessions

Now let's describe operations that control user login and logout. To login, a user must supply a
password that matches that held in their profile. If this and other login conditions are met then a
user session is associated with that user. The session information is sent back to the client.

—~ LoginUser0

AUserService

userld? : ID
password? : Password
session? : UserSession

userld? € dom profiles

userld? ¢ dom sessions

(profiles userld?).password = password?
profiles' = profiles

sessions' = sessions @ { userld? > session? }

19 of 81

Failure to meet different login conditions results in different failures.

— UserDoesNotExist

HUserService
userld? : ID

userld? dom profiles

— PasswordIncorrect

HUserService
userld? : ID
password? : Password

(profiles userld?).password # password?

— UserAlreadyLoggedIn

HUserService
userld? : ID

userld? € dom sessions

These make up the total operation

LoginUser = LoginUser(O V UserDoesNotExist V PasswordIncorrect V
UserAlreadyLoggedIn

When a user logs out they have to supply their session id so that the request cannot be spoofed by a

20 of 81

third party. We're going to split the LogoutUser(Q operation into a raw user logout operation and a
session ID check that we'll be able to reuse later.

- LogoutUserRaw

AUserService
userld? : ID

profiles' = profiles
sessions' = { userld? } 4 sessions

— CheckSessionld

HUserService
userId? : ID
sessionld? : ID

userld? € dom sessions
(sessions userld?).sessionld = sessionlId?

LogoutUser0 £ LogoutUserRaw A CheckSessionld

As with login, failure to meet the logout conditions results in different types of failure.

— UserNotLoggedIn

HUserService
userld? : ID

userld? ¢ dom sessions

— SessionldIncorrect

21 of 81

HUserService
userld? : ID
sessionld? : ID

userld? € dom sessions
sessions userld?.sessionld # sessionId?

Together with LogoutUser0 these make up the total operation LogoutUser.

LogoutUser = LogoutUserQO V UserDoesNotExist V UserNotLoggedIn V
SessionldIncorrect

Later on, other services will need to retrieve user profile and session information so we need to
define suitable query operations.

— GetUserProfileO

HUserService
userId? : ID
profile! : UserProfile

userld? € dom profiles
profile! = profiles userld?

GetUserProfile = GetUserProfile0 V UserDoesNotExist

— GetUserSessionO

HUserService
userld? : ID
session! : UserSession

userld? € dom profiles
userld? € dom sessions
session! = sessions userld?

22 of 81

GetUserSession = GetUserSession0 V UserDoesNotExist V UserNotLoggedIn

23 of 81

Asset Service

Assets are immutable and opaque blobs of data associated with an ID. Hence, we need a blob data
type

[BLOB]

and a simple asset schema

— Asset
id : ID
data : BLOB
— Assetlnit
Asset'
id? : ID
data? : BLOB
id" = id?
data' = data?

The asset service itself is also very simple, consisting of one function through which assets can be
referenced.

— AssetService

assets : ID »» Asset

V id : dom assets ® id = (assets id).id

Assets are injected from some external persistence mechanism when the service is initialized.

r AssetServicelnit

24 of 81

AssetService'
assets? : ID »» Asset

]
assets = assets?

Since assets are immutable, the only operations necessary are those to add them.

— AddAssetO

A AssetService
asset? : Asset

asset?.id Z dom assets
assets' = assets @ { asset?.id — asset? }

— AssetAlreadyRegistered

HAssetService
asset? : Asset

asset?.id € dom assets

AddAsset = AddAssetO V AssetAlreadyRegistered
And those to retrieve them.

— GetAssetO

HAssetService
assetld? : ID
asset! : Asset

25 of 81

assetld? € dom assets
asset! = assets assetld?

— AssetNotRegistered

HAssetService
asset? : Asset

asset?.id dom assets

GetAsset £ GetAsset0 V AssetNotRegistered

26 of 81

Inventory Service

The inventory service handles the management of user inventories.

Each inventory item has a name and an association with an asset. Items can be copied between
users and the copies can change their metadata (such as their name) without the need to duplicate
the underlying asset. We'll reflect this by storing an asset ID in the Item schema. The item also has
an ID of its own.

— [tem

id : ID
name : Name
assetld : ID

— [temlInit

[tem'

id? : ID
name? : Name
assetld? : ID

id" = id?
name' = name?
assetld' = assetld?

An inventory consists of a collection of items which are associated with a particular user. The user
is identified by their ID.

~ Inventory

userld : ID
items : ID »» Item

V id : dom items ® id = (items id).id

27 of 81

As with the other services that we've seen, inventory initialization presupposes an external source of
inventory data.

- Inventorylnit

Inventory'
userld? : ID
items? : ID > I[tem

userld' = userld?
items' = items?

The inventory service itself can be defined as a function that references all the available inventories.

—- InventoryService

inventories : ID >> Inventory

V id : dom inventories ® id = (inventories id).userld

- InventoryServicelnit

InventoryService'
inventories? : ID > Inventory

. .] . . r?
inventories = inventories™

Administrators can add or remove entire inventories. In the classic architecture, the inventory
service is available only to a single trusted organization so we don't need to worry about preventing
untrusted entities from invoking these operations.

r AddInventory

28 of 81

AlnventoryService
inventory? : Inventory

. . '
inventories' = inventories @ { inventory?.userld — inventory? }

— RemovelnventoryO

AlnventoryService
userld? : ID

userld? € dom inventories
inventories' = { userld? } 4 inventories

—~ InventoryDoesNotExist

ZInventoryService
userld? : ID

userld? ¢ dom inventories

Removelnventory = RemovelnventoryO V InventoryDoesNotExist

Users will want to create, read and delete inventory items. These requests are relayed from clients
via simulators which allow users to execute operations only on their own inventories. To define
these operations we need a promotion schema.

- Promotelnventory

AlnventoryService
Alnventory
userld? : ID

29 of 81

userld? € dom inventories
BInventory = inventories userld?
inventories' = inventories @ { userld? > Olnventory' }

The local operations themselves are straightforward.

— CreateltemLocal

Alnventory
item? : [tem

items' = items @ { item?.id — item? }

For the Createltem total operation we'll take into account the possibility that the inventory the caller
is trying to manipulate does not exist.

Createltem = (JAInventory ® Promotelnventory A CreateltemLocal) V
InventoryDoesNotExist

The total operation for retrieving an item via the service is fairly straightforward.

— GetltemLocalO

ZInventory
itemlId? : ID
item! : Item

itemId? € dom items
item! = items itemId?

ItemDoesNotExist

Zlnventory

30 of 81

itemId? : ID

itemId? ¢ dom items

A

Getltem = (JAInventory ® Promotelnventory A (GetltemLocalO V
ItemDoesNotExist)) V InventoryDoesNotExist

Deleting an item is also fairly simple.

— DeleteltemLocalO

Alnventory
itemId? : ID

itemId? € dom items
items' = { itemId? } 4 items

A

Deleteltem = (AInventory ® Promotelnventory A (DeleteltemLocal0 V
ItemDoesNotExist)) V InventoryDoesNotExist

Finally, we need inventory service operations that can update an item's metadata. In our model,
both the name and the asset ID can be changed.

To perform operations on individual inventory items we need another promotion schema.

— Promoteltem

Alnventory
Altem
itemId? : ID

itemId? € dom items
Oltem = items itemId?
items' = items ® { itemId? — Oltem' }

31 of 81

Now we can create separate name and asset ID updating operations.

— UpdateltemNameLocalO

Altem
name? : Name

name' = name?
assetld' = assetld

The local item name update operation needs to bubble up through two levels of promotion — one for
the item in the inventory and another for the inventory in the inventory service.

UpdateltemNameLocal = (JAItem ® Promoteltem A UpdateltemNameLocalO) V
[temDoesNotExist

A

UpdateltemName = (JAInventory ® Promotelnventory A UpdateltemNameLocal) V
InventoryDoesNotExist

As you can imagine, the operation for updating an item's asset ID looks very similar.

— Updateltem AssetLocalO

Altem
assetld? : ID

id' = id
name' = name
assetld' = assetld?

UpdateltemAssetLocal = (JAItem ® Promoteltem A UpdateltemAssetLocal0) V
ItemDoesNotExist

UpdateltemAsset = ((JAInventory ® Promotelnventory A UpdateltemAssetLocal)
V InventoryDoesNotExist

32 of 81

Grid Service

As we discussed previously, the classic OpenSimulator architecture places all regions in a single two
dimensional grid. The grid service co-ordinates region positioning and allows neighbouring regions
to find out about each other.

In the grid service we will model region records rather than regions themselves. This reflects the
fact that simulators and the grid service are often distributed across different machines.

As with many of the other objects in the OpenSimulator system, regions have a unique id. They
also have a name and an 2-dimensional co-ordinate.

— RegionRecord

id : ID
name : Name
x : N
y: N

— RegionRecordlnit

RegionRecord'
id? : ID
name? : Name
x?: N
y?: N

id" = id?
name' = name?
x = x?

y =y?

The grid service holds the name of the grid in addition to information about the regions attached to
it. All regions must have unique ids and a unique co-ordinate on the grid map.

GridService

name : Name
regionRecords : ID »» RegionRecord

33 of 81

V' s, t; ran regionRecords | s.id # t.id
e 1(s.x =tx Asy=ty)

V id ; dom regionRecords ® id = (regionRecords id).id

Here is the grid service initialization schema. As with the other services, when a grid service is
initialized existing region records come from some external source.

— GridServicelnit

GridService'
name? : Name
regionRecords? : ID »» RegionRecord

1)
name = name?
regionRecords' = regionRecords?

The service needs to provide operations to register and deregister regions.

— RegisterRegion0

AGridService
regionRecord? : RegionRecord

regionRecords' = regionRecords @ § regionRecord?.id —> regionRecord? 3

RegionAlreadyRegisteredToService

HGridService

34 of 81

regionld? : ID

regionld? € dom regionRecords

A

RegisterRegion = RegisterRegion0 V RegionAlreadyRegisteredToService

— DeregisterRegion0

AGridService
regionld? : ID

regionld? € dom regionRecords
regionRecords' = { regionld? } 4 regionRecords

- RegionNotRegisteredToService

HGridService
regionld? : ID

regionld? ¢ dom regionRecords

DeregisterRegion = DeregisterRegion0O V RegionNotRegisteredToService

In addition, we need an operation that allows simulators to find out about their hosted region's
neighbours. To do this, we first define a function that will give us the absolute value of its input.

| abs : Z > N

Vn:ZlIn<0eabs(n) =-n
Vn:Zln>0eabs(n) =n

Then we can use this to find all the relevant region records.

35 of 81

GetNeighbours

HGridService
x: N
y: N

regionRecords! : P RegionRecord

regionRecords!
={r:ran regionRecords
|7 (x=rxAy=ry)Aabs(x -r.x) <1 Aabs(y -ry) <13}

36 of 81

Simulator

There are two distinct entities that we'll model for the simulation component of the virtual
environment. These are avatars (the representations of the user controlled directly by a client
program) and simulated objects. In our model, objects will have texture assets associated with
them. These are sent by the simulator to the client when the avatar has them in view. We won't
model any of the other usual object properties such as dimensions or size since these are not
relevant to later analysis.

—~ Object

id : ID
name : Name
textures : P Asset

Object initialization can be triggered in a number of ways. Among these are creation from a
serialized state stored in a user's inventory and direct creation from scratch, in which case default
textures are supplied.

- Objectlnit

Object’

id? : ID

name? : Name
textures? : P Asset

id' = id?
name' = name?
textures' = textures?

Like objects, avatars are also associated with texture assets that hold their appearance. In addition,
the avatar is always associated with a user session.

— Avatar

id : ID
user : UserSession
textures : P Asset

37 of 81

Avatars are initialized when a user logs in. The initialization data originates from the user service.

— Avatarlnit

Avatar'
id? : ID
user? : UserSession
textures? : P Asset

id" = id?
user' = user?
textures' = textures?

We can think of a region as being a container that holds both objects and avatars. Regions are
associated with a set of neighbours, all of which must have unique IDs.

In this model we're not going to worry about such details as where objects or avatars are actually
located in a scene since this was not germane to later analysis.

—- Region

record : RegionRecord
avatars : ID >»> Avatar

objects : ID > Object
neighbours : P RegionRecord

V n,o ; neighbours | n # o ® n.id # o.id A n.id # record.id

We're going to presume that regions can be initialized with pre-existing objects. However, regions
always start empty of avatars.

RegionlInit
Region'

record? : RegionRecord
objects? : ID >» Object

38 of 81

neighbours? : P RegionRecord

record' = record?

avatars' = &

objects' = objects?
neighbours' = neighbours?

Regions are contained within a simulator. As stated previously, a simulator can host one to many
regions. Simulators also hold references to all the VE services.

- Simulator

regions : ID »» Region

userService : UserService
assetService : AssetService
inventoryService : InventoryService
gridService : GridService

V r, s; ran regions | r # s ® r.record.id # s.record.id

— SimulatorInit

Simulator'

regions? : ID »» Region

userService? : UserService
assetService? : AssetService
inventoryService? : InventoryService
gridService? : GridService

regions' = regions?

userService' = userService?
assetService' = assetService?
inventoryService' = inventoryService?
gridService' = gridService?

39 of 81

The operations that we want to consider for the simulator involve avatars and objects. For both
these operations, we will need a promotion schema that can access the region and an error schema
to handle the situation in which the requested region is not available.

- PromoteRegion

ASimulator
ARegion
regionld? : ID

regionld? € dom regions
ORegion = regions regionld?
regions' = regions @ { regionld? — GRegion' 3

- RegionDoesNotExist

HSimulator
regionld? : ID

regionld? ¢ dom regions

The first pair of operations add and remove avatars from regions, which is necessary when a user
crosses or teleports in or out. We need an error schema to cover the case where an avatar is already
in the region in question.

— AddAvatarO

ARegion
avatar? : Avatar

avatar?.id € dom avatars
avatars' = avatars @ { avatar?.id > avatar? }

40 of 81

— AvatarAlreadyInRegion

2 Region
avatar? : Avatar

avatar?.id € dom avatars

AddAvatar
= (AARegion ® PromoteRegion A (AddAvatarO V AvatarAlreadyInRegion))
V RegionDoesNotExist

— RemoveAvatarO

ARegion
avatarld? : ID
avatar! : Avatar

avatarld? € dom avatars
avatar! = avatars avatarld?
avatars' = { avatarld? } 4 avatars

— AvatarNotInRegion

2 Region
avatar? : Avatar

avatar?.id € dom avatars

RemoveAvatar
= (JARegion ® PromoteRegion A (RemoveAvatar0 V AvatarNotInRegion))
V RegionDoesNotExist

41 of 81

The second pair of operations add and remove objects from regions. In a VE these can be invoked
for various reasons but the ones that I was concerned about in this project were creation from a
user's inventory and removal from the region to a user's inventory.

- AddObject0

ARegion
object? : Object

object?.id dom objects
objects' = objects @ { object?.id > object? }

— ObjectAlreadyInRegion

2 Region
object? : Object

object?.id € dom objects

AddObject
= (JARegion ® PromoteRegion A (AddObjectO V ObjectAlreadyInRegion))
V RegionDoesNotExist

~ RemoveObjectO

ARegion
objectld? : ID
object! : Object

objectld? € dom objects
object! = objects objectld?
objects' = { objectld? 3 < objects

42 of 81

— ObjectNotInRegion

2 Region
object? : Object

object?.id dom objects

RemoveObject
= (JARegion ® PromoteRegion A (RemoveObjectO V ObjectNotInRegion))
V RegionDoesNotExist

Teleporting an avatar from one region to another can now be expressed as an operation where an
avatar is extracted from one region and added to another. To distinctly specify the destination
region, we need to replace all instances of regionld? with destinationRegionld? for the AddAvatar
operation.

TeleportAvatar
= RemoveAvatar >> (AddAvatar [destinationRegionId? / regionld?])

43 of 81

Grid

Finally, let us formalize a description for the classic architecture as a whole.

In the classic architecture, a grid is composed of a set of regions. Both avatars and objects can only
appear in a single region at a time — for the avatar this restriction restates our earlier login operation

constraints where a user can only have one session at a time.

Services are considered part of the grid, though client programs running on user's machines are not.

- Grid

regions : P Region

userService : UserService
assetService : AssetService
inventoryService : InventoryService
gridService : GridService

Vs, t;regions|s #t
® s.avatars N t.avatars = J A s.objects N t.objects = J

— Gridlnit

Grid'

regions? : P Region

userService? : UserService
assetService? : AssetService
inventoryService? : InventoryService
gridSerVice‘? : GridService

regions' = regions”

userService' = userService?
assetService' = assetService?
inventoryService' = inventoryService?
gridService' = gridService?

44 of 81

The Client-Simulator Protocol

As we've seen, a major aspect of the OpenSimulator architecture is a client-server configuration
where the graphical virtual environment client is the client and the simulator maintaining the
authoritative VE state is the server.

There are many issues associated with maintaining consistent state between the simulator and its
clients. However, we will not cover most of them here since we're concerned with the problem of
creating an Internet-scale network of virtual environments rather than scaling a particular instance.

But even leaving these concerns aside, there are areas where OpenSimulator's client-server
architecture does impact upon broader issues of scalability and transparency. These centre around
the nature of the communication protocol between the client and the simulator.

In the OpenSimulator architecture, the communication link between the client and the simulator
must carry a variety of different message types with different delivery requirements. One class of
such messages is those which detail with user inventory. These are fairly time insensitive — a delay
of 500ms between taking an object from the environment and having it appear in inventory has a
negligible impact on the user's experience. But the messages must be delivered reliably - taking an
object and failing to see it appear in inventory at all is a significant problem. Messages must be
resent in the event of a delivery failure.

At the other end of the scale. messages that update object positions must be delivered rapidly.
Failure to do so will result in jerky object movements, leading to degradation of the user's VE
experience. But reliable delivery here is not critical. If one message is lost then the next - with a
slightly updated position - would replace it anyway.

Because of the rapid update requirement of some messages, information exchange in the client-
simulator protocol takes place over the User Datagram Protocol (UDP). UDP is commonly used in
time-critical applications such as games and video streaming. Unlike the Transmission Control
Protocol (TCP), it offers no message delivery guarantees. But this also means that UDP, unlike
TCP, never pauses in the transmission of data for reliability purposes — lost packets are simply
dropped rather than retransmitted. Hence, “UDP improves network delay by a factor of ten over
TCP/TP” [Singhal and Zyda p438].

The client-server protocol used by OpenSimulator overlays UDP with a simple message
acknowledgement system.. Dropped UDP packets deemed particularly important, such as those
containing the inventory manipulation messages described above, can be detected and resent.

Another aspect of the OpenSimulator protocol, and of VE client-server protocols in general, is that
there is a constant information flow between the client and the server. In all but the most static of
simulations, the server is pushing constant updates to the client about the movement of other objects
and avatars, and the client is generating its own state change requests for consumption by the server.

This is going to be significant when we come to look at the range of possible Internet-scale VE
architectures. The communication style of constant state updates is in marked contrast to that of the
Web, as described by Roy Fielding in his 2000 dissertation “Architectural Styles and the Design of
Network-based Software Architectures” [Fielding]. Web page requests are discrete, large-grained
and occur in response to explicit client requests. Virtual environment updates, on the other hand,
are constant and small grained, often pushed to clients that must be ready to process them.

Let's illustrate this by taking a look at the process of avatar movement in terms of the exchange of

45 of 81

messages between a client and a simulator..

When a user moves their avatar via the viewer's user interface, the client translates that into an
AgentUpdate message that is sent to the simulator hosting the region that the avatar is in. Here are
some of the fields of this message.

Second Lite

|'_'|1_'Lf
F

ile Edit View World Tools Help Advanced

Gestures w* JI (W 28 @@ (8 Talk ~

(C ®) (Communicate |« Snapshot Search (Mini-Map Inventory:

Diagram 6: Moving the avatar in the viewer

AgentUpdate

{
AgentID : ID
SessionID : ID
BodyRotation : Quaternion
HeadRotation : Quaternion

Flags : Unsigned 8 bit Integer
}

AgentID is the user's unique identifier while SessionID is the ID for the session established between

46 of 81

the simulator and the client. BodyRotation and HeadRotation are quaternions that signal,
respectively, the viewer's desired body and head rotation for the avatar. Finally, the desired direction
of movement is encoded, slightly obscurely, in the Flags field. This can be none, forward,
backward, left, right, up or down.

Changing the avatar's place in the simulation isn't as simple as just sending the agent update from
the client to the simulator. After updating its central state repository the simulator needs to tell all
observing entities and the user themselves about the avatar's new position.

Why doesn't the viewer simply authoritatively tell the simulator the avatar's new co-ordinates, hence
eliminating the need for at least the return message? One problem is that any number of things may
happen to the avatar in the simulation that the viewer cannot anticipate. For instance, a fast moving
object (e.g. a vehicle), may have moved into the avatar's path since the last update, invalidating the
movement request. Giving the viewer authority to decide its avatars position also enables it to lie
and make movements that ought to be impossible. This is a particular problem if the virtual
environment is being used for gaming.

So instead, when an avatar moves, both the client originating the movement and all the other avatars
in that region receive a message called an ImprovedTerseObjectUpdate.

ImprovedTerseObjectUpdate

{
Data : byte[]

}

In this case, all the important information is packed into a variable size Data variable. This includes
the ID of the object (in this case, the user ID that we saw earlier), its position and velocity. Since
ImprovedTerseObjectUpdate messages make up the vast majority of the messages transferred from
the simulator to the client, the data is tightly packed in order to make the best use of the bandwidth
available on the link.

As alluded to earlier, this constant exchange of fine-grained state-containing messages contrasts
heavily with the Representational State Transfer (REST) architecture used for the Web. In REST,
any session state is held on the client rather than the server [Fielding p78]. This gives REST the
architectural properties of visibility, reliability and scalability. Visibility because each request is
understandable on its own without extra content. Reliability because lack of state makes it easy to
recover from partial failures. Scalability because extra servers can be brought online to handle extra
load without any need to communicate state information between them.

The OpenSimulator client-simulator protocol has none of these properties. Each request is not
understandable on its own — AgentUpdate takes place in the context of the current position of the
avatar known to the simulator. Each message depends upon state held at the simulator, so a failure
in the network or on the server side can often mean client disconnection. And scalability is very
difficult at the simulation level - bringing extra servers online to support a heavily loaded region
would mean constantly replicating state between them. Moreover, the load scales exponentially
rather than linearly since every extra avatar needs to communicate with all the other avatars already
present in the simulation.

47 of 81

Scaling OpenSimulator

Now that we've described the current OpenSimulator architecture it's time to look at how it could
help form the basis of an Internet-scale VE network. I'll start off by stating what I think are the
necessary characteristics of such a system. Then I'll look at the extent to which these can be met by
the existing architecture and ways in which this architecture could be evolved to form alternative
ways of satisfying the requirements. I'll finish with the conclusions from my analysis and a
reflection on how helpful Z modelling and concepts from distributing computing have been in
producing this project.

48 of 81

Requirements for an Internet-scale VE Network

So far, I've talked quite a bit about the idea of an “Internet-scale” VE network in this dissertation.
But what does this term really mean? It's rather difficult to pin down - there's no cut and dried
definition out there for the phrase “Internet-scale”. But one thing that we can be sure is that it's
“considerably more than just geographical dispersion”, as Fielding states in his dissertation
“Architectural Styles and the Design of Network-based Software Architectures” [Fielding, p69].

In fact, Fielding goes on to state two requirements for an “Internet-scale architecture” — those of
“anarchic scalability” and “independent deployment”. Anarchic scalability is a general principle
that a network design be resilient in the face of the unexpected, whether this comes in the form of
extremely high load, malicious input, component failure or some other chaotic event. Independent
deployment requires that it be possible to place new components besides old in a running system,
allowing the new to take advantage of their advanced functionality without hindering existing
operations.

I don't disagree with either of these requirements for an Internet-scale architecture. However,
independent deployment is not something that I've focussed on in this project. As stated back in the
introduction, I'm concerned here with investigating basic system architectures for a VE network, not
with the inter-component communication standards that are crucial for enabling piece-wise network
evolution.

Anarchic scalability, on the other hand, is much more relevant to my analysis. Some elements of
this — such as dealing with malicious input, I will still ignore since these come down, again, to
communication protocol design and message handling philosophy.

But other elements of anarchic scalability, such as robustness in the face of component failure or
high load, are much more important to me and arguably form the basis of all the requirements of an
Internet-scale VE network architecture that I'm now going to posit. In no particular order of
importance, these requirements are:

+ Unbounded number of concurrent users. We saw in the first section of this dissertation
that the classic OpenSimulator architecture lacks scalability transparency at the simulation
level. It's not possible to add extra simulators to meet the demands of extra users in a
particular area of virtual space — the fixed size regions can only be simulated by one system
process at a time.

However, it's not individual simulation scalability that concerns me here but rather the
capacity of the entire network of simulators. At this level, an Internet-scale network can
have no hard upper bound on the number of concurrent sessions. Even if one particular
simulator is overloaded this should not stop users from interacting with all the remaining
operational simulators, much like an overloaded webserver does not stop users interacting
with any other website.

- Independent hosting. Just as independent organizations and individuals can host
webservers with only minimal co-ordination requirements, so it should be possible for
independent entities to host their own VEs without any significant need for explicit co-
ordination or trust between the different parties.

If such trust is needed then I think that it becomes effectively impossible to build out an

49 of 81

Internet-scale network. If every existing VE in the system has to vet any new joiner, then the
costs involved in adding another VE rise linearly, continually raising the entry barrier for
joining as the system expands. The need for explicit co-ordination also smothers the
potential for anarchic experimentation and evolution of the system itself.

« No single point of failure or control. It will always be possible for particular simulators to
become unavailable, whether through high load, as we've already discussed, through
network problems or by simple program failure. These problems should not affect other
VEs. Again, this is something that we see on the Web — individual websites can fail but this
does not make the Web as a whole unavailable.

More broadly, an Internet-scale VE network must not rely on any single component that
could act as a point of failure. In the cases where such reliance is unavoidable, the system
being used should itself be distributed, fault tolerant and as simple as possible. One example
of such a system that exists today is the Domain Name System (DNS) used to associate IP
addresses with domain names [Mockapetris and Dunlap].

If we don't avoid single points of failure in our system then we continually risk considerable
disruption in the face of the inevitable accidents and hardware failures. Single points of
failure can also be single points of control, giving a single organizational entity leverage over
the entire system. Such a situation exposes the system to many non-technical problems in
additional to the technical ones, organizational bankruptcy and a lack of competition to spur
innovation, being two examples.

- Portable identity. Just as a user can seamlessly navigate via hyperlink between websites
hosted by independent operators, so too should it be possible to seamlessly navigate a client
between independently hosted VEs in the network.

In the context of VEs, I believe that such navigation requires that the user's identity be
preserved over different systems. This requirement comes from the multi-user and social
aspects of virtual environments. If I'm called “Justin Clark-Casey” on one system but then
get assigned the name “Purple Guest” when I navigate to another system there's no persistent
identity that other places can detect and interact with — I need to be “Justin Clark-Casey” on
both systems. More sophisticated scenarios could see the preservation of my user profile
information and my avatar's appearance in addition to my name.

There is some parallel here with the the current situation on the Web. As the Web has
matured, the need for websites, in particular shopping and social networking sites, to gather
information about a user has grown enormously. Historically, each site has requested, stored
and secured this data independently. It's extremely tedious for the user to fill out the same
details separately for each website.

Initiatives such as OpenID® have come about in response to allow users to log on to multiple
services with the same digital identity. Our distributed network of VEs has a similar
requirement, though in this case I consider it to be essential rather than optional as it is on
the Web.

6 http://openid.net/

50 of 81

- Portable inventory. In the classic OpenSimulator architecture each user has an inventory in
which they can store objects for later use. Unlike identity, the notion of making this
inventory portable between environments doesn't have much of an equivalent on the Web —
one doesn't take programmable objects from one website and instantiate them on another.

Yet for an Internet-scale VE network, I'm going to argue that portable inventory is essential.
Creation of useful objects or systems of objects that make up VE applications involves a
considerable amount of work. Being able to move this content between different
environments significantly enhances the overall utility of the system and encourages the
creation of more such objects and applications by independent developers.

This wouldn't matter so much if items were copied between systems in the same way that
Web application code is today. After all, there are a million different ways in which a Web
application can be created, everything from good old-fashioned hand-coded C-based
Common Gateway Interface (CGI) programs up to full Web application stacks such as Ruby
on Rails. This variety hasn't certainly hasn't held back the Web.

But in the case of virtual environments, a large proportion of objects are personal to the user
rather than part of the VE that they are visiting. Clothing and other appearance items are
one example in the social realm. Process and building models are examples in the business
realm.

Therefore, it should be possible to create inventory on one system and use it on a completely
independent system subject to the appropriate authorization and permissions.

This requirement has considerable ramifications. It implies that different VEs understand a
common format for object description and content. It also implies a standardized execution
environment so that the scripts that drive object behaviour can be written once to run
anywhere. This environment must be controlled so that object instantiation and execution is
subject to proper authorization.

One requirement that I haven't put on the list is that the VE network be a single contiguous
environment, such that all simulators in the entire world-wide system occupy the same 2D grid and
simulators next to each other can be seamlessly navigated by simply moving one's avatar between
them. This is a property possessed by both Linden Lab's Second Life and the classic
OpenSimulator architecture and comes from the idea that the virtual environment is a 'world' that
closely models the real one.

However, such an arrangement requires additional architectural complexity, particularly when the
environments are spread over the entire Internet rather than concentrated in centralized locations.
Therefore, I'm not going to consider this requirement, particularly as I don't believe that the
hypothetical benefits of a possibly more immersive virtual experience are essential for a useful
Internet-scale VE system.

I'm also not going to consider how infrastructure and VE applications could be funded under
different network architectures. Financial transfers are important in many different contexts,
whether it's the need for developers to be able to charge for the VE objects that they create, the need

51 of 81

for entities to pay for simulation hosting or the need to fund the storage of data on VE services.
And without viable business models no practical Internet-scale VE architecture is likely to be
successful. But the issues here are extremely complex and speculative, and I believe that at this
stage a useful analysis can be performed without explicitly considering them. So for this project I
am treating them as out of scope.

52 of 81

Scaling the Classic Architecture

It's already known that the classic architecture can handle a certain number of concurrent users.
Linden Lab's own Second Life installation accommodates over 70,000 simultaneous users at peak
periods’. The OpenSimulator grids themselves, though much smaller, are still known to
accommodate hundreds of people simultaneously.

In the context of this architecture, scaling up means adding more simulators to a single grid. Thus,
all simulators on the Internet would need to have a location (i.e. an address) on the same 2D map.

Is it possible to grow the classic architecture to the point where it could potentially accommodate
the 1.5 billion people using the Internet as of the end of 2009*? We can raise a number of
difficulties.

Problem 1 — No Independent Hosting

In the classic architecture, all simulators are operated by a single entity, an entity that also provides
the central VE services for those simulators. This is in direct contradiction to our requirement that
people can independently operate their own simulations within the network. One answer here is
simply to allow this independent hosting within the classic architecture. We'll explore the
consequences of this later on in the alternative architecture known as the “open grid”.

Problem 2 — Centralized VE Services : Storage and Capacity

The classic architecture routes all asset and inventory requests to the same centralized asset and
inventory services. As the number of simulators and users increases, the load on these back end
services increases proportionally.

How much of an issue is this? Since the central services are replication transparent, it should be
possible to indefinitely expand their capacity. The stateless nature of the services means that it's
easy to create extra service instances and load balance service requests between replicas.

However, this expansion would push capacity problems further back to the underlying data storage
mechanisms, such as databases, on which the service instances depend. Scaling these through
replication may also be possible, though that discussion is outside the scope of this project.

A large and growing number of service requests is not the only issue. As we discussed in our
analysis of the classic architecture, OpenSimulator's tenet of asset immutability makes it extremely
hard to perform garbage collection on assets without risking the referential integrity of objects and
inventory.

To perform garbage collection one would have to identify unreferenced assets by performing a
complete inspection of all the possible places where assets could be referenced. This includes direct
referencing of underlying assets from user inventory items, referencing by serialized object assets
and referencing by objects instantiated on regions.

Inventory and serialized object reference analysis is possible since all the necessary data exists in
the centralized VE services. Inspection of asset referencing by regions, on the other hand, is more
complicated. Although region data can be kept in a centralized database, it is more common to

7 http://nwn.blogs.com/nwn/2008/09/second-life-con.html
8 http://www.internetworldstats.com/stats.htm

53 of 81

http://www.internetworldstats.com/stats.htm

store it on the distributed systems running the simulators themselves. In this case, inspection has to
be carried out remotely and machines and their CPU time made available. The situation becomes
even more complicated, possibly intractably so, if simulators (or even VE services) are operated by
third parties, a point that we'll discuss further when we talk about the “open grid” architecture.
Even in the classic architecture, co-coordinating the availability of databases for inspection is a big
problem.

Furthermore, even if one entity does own all the services and simulators, the amount of time
required to perform an inspection of the system will continue to increase as new assets, inventories
and simulators are added.

If we discard the possibility of actually removing data then any system that consists of more than a
few simulators will likely face an asset storage issue over time. In terms of physical storage this
might not actually be a big problem — magnetic disk storage density continues to improve
exponentially over time, outpacing even Moore's law’. Organizing, manipulating and retrieving
such a large store of data may be a bigger issue.

Problem 3 — Centralized VE Services : Single Point of Control

Even if it is technically possible to scale the VE services, issues of control and evolution come into
play if one tries to expand the classic architecture up to an Internet level.

Under the classic OpenSimulator system, all the VE services are controlled by a single entity. In
some domains this is considered acceptable — the Internet Corporation for Assigned Names and
Numbers (ICANN), for instance, is the only organization that manages the assignment of domain
names and IP addresses for the Internet. However, not only is [CANN a non-profit organization but
it also performs a purely administrative function in a system that is well established. Central
Opensimulator-style VE services, on the other hand, are extremely new, untested even over the
short-term and they manage data services that deal with commercially and culturally sensitive
intellectual property and user information.

A single set of central services would give the operator a monopoly over all these functions,
severely restricting their incentive to innovate. Even if they were to innovate, they would only be
able to concentrate on a limited number of development approaches, whereby a more distributed
model would allow a much greater degree of competition and innovation.

Moreover, a single service point forms a weak point in any Internet-scale system. Even when we
discount technical reasons for outages, there are many non-technical causes of failure, ranging from
organizational failure to disputes between the central organization and client entities. Indeed,
Linden Lab's implementation of a centralized architecture has not been bulletproof. There have
been many instances in their environment of outages where asset and inventory services have failed.

Having a single central set of services for an Internet-scale architecture would be in marked
difference to the philosophy prevailing for the Web and the Internet as a whole. Both the Web and
the Internet are highly distributed architectures. Individual websites can fail and cause content to be
unavailable but there is no single centralized system failure that would make the Web as a whole
unavailable. Equally, in a virtual environment network we cannot have a situation where the failure
of a single services makes all environments unavailable or severely degraded.

For all these reasons I don't believe that expanding the current classic architecture is a viable

9 http://www.scientificamerican.com/article.cfm?id=kryders-law

54 of 81

solution for producing an Internet-scale network. So we'll now explore some alternative approaches
which can meet some or all of our requirements for such a system.

55 of 81

Alternative 1 — Multiple Classic Architectures

One response to the problem of scaling the classic architecture is not to change anything as all.
Rather, we could simply retain the same system but establish many entirely separate grids, each with
their own private VE services. This is illustrated in diagram 7.

GRID A GRID B

U ser Grld
Service Servlce

Simulator

Diagram 7: A user moving between two separate classic architectures

The arrangement does solve some of the problems with simply scaling a single classic grid instance.
Different organizations and individuals can own separate grids, removing both the independent
hosting problem and the possibility of single points of control. Since each grid has its own set of
back-end services, storage and capacity problems for asset data is spread out among OpenSimulator
installations rather than causing scalability problems in one place.

Unfortunately, this isn't a solution that meets our requirements for portable identity and inventory.
As you can see from the diagram, grid A and grid B are entirely separate from each other. If the
user is located in a region simulator in grid A (connection 1) and wants to move to a region
simulator in grid B (connection 2), they have to log out of grid A and separately log in to grid B.
Grid B has no knowledge of the identity that the user has established on grid A — the user must
manually recreate their identity and keep it in sync across all the VE installations that they visit.

Much the same applies to the user's inventory. When in grid B, the user has no access to the
inventory available to them on grid A and vice versa.

Nonetheless, I think that the idea of establishing entirely separate systems to avoid scalability
problems is a good approach. Many of the architectures that we consider later on revisit this idea
with solutions that attempt to satisfy the requirements of portable identity and inventory.

56 of 81

Alternative 2 - The Open Grid

A different approach to scaling a VE network is to maintain a single set of central services but allow
third parties to hook up their own simulators. This is illustrated in diagram 8.

Inventory
Service
agrid.com

Service
agrid.com

Service
ag rid.com

Service
agrid.com

Simulator Simulator
fairyland3D.org business3D.com

e e e

Diagram 8: Third party region simulators using a common set of central services

B

In the diagram there are two simulators. One is owned and operated by fairyland3D.org while the
other is owned and operated by business3D.com. However, both are hooked up to the a single set of
services owned and operated by another organization, agrid.com.

This allows independent hosting of simulators while retaining the benefits of portable identity and
inventory provided by the classic architecture. When users travel between simulators they are
always access identity and inventory information from the same set of data services.

However, this approach does continue to incur all the problems that we've associated with
centralized VE services — the services need to be able to handle the entire Internet-scale system and
they form a single point of control. In addition, there are some other issues that are thrown up by
this architecture.

1. The grid operator trusts all simulators connected to the services. In the classic
architecture, simulators and services can trust each other completely since they are operated
by the same entity. Any simulator can manipulate any user's inventory as long as they know
that user's name or ID. Any simulator can retrieve any asset data as long as they know its
ID. And there are no limits to how many requests a simulator can make on a grid service or
how much data they can store in the asset service. If the services are opened up to third
party simulator operators then there is a very real danger that they will abuse these facilities.

57 of 81

One could try to counter this problem in various ways. For instance, the services operator
can put limits on how much asset data can be uploaded from a particular simulator and
monitor the service requests to prevent abuse or denial of service attacks.

Perhaps the most awkward issue is the unfettered access that simulators have to user
inventories. This access is necessary since all interaction by the client program with the
classic OpenSimulator architecture passes through the simulator system. Thus, simulators
can always to add, retrieve and delete items for any user. We'll look at an attempt to address
this security problem in a later alternative architecture that I've labelled “Session ID
Security”.

A final move that the services operator could make is to heavily vet potential simulator
operators before they are allowed to hook their systems up to the services. However, this
violates my earlier requirement that independent hosting be possible without any significant
need for trust between the parties. Requiring such trust would hand a lot of control over to
the services operator and massively increase the cost of building out the network.

Heterogeneous simulator quality. Another consequence of opening up the classic
architecture to third party simulators is that the grid operator is no longer able to guarantee
service quality across the entire VE.

In the classic architecture, the single operating entity hosts simulators on machines of known
specification and such machines can be hosted in the same data centre to guarantee high
quality network links between them.

But on an open grid, simulators can be hosted on machines of varying performance — scripts
that execute quickly in one simulation may execute very slowly on another. The network
links to simulators may also vary considerably — on one region clients may received object
textures from the simulator quickly but on another these downloads might be extremely slow.
Simulator's whose network links that fail completely may disappear from the grid map or,
even worse, remain but be the source of frustrating teleportation and movement failures for
users.

Yet in many ways this kind of variable performance is no different from the Web, where
individual Web servers can be overloaded or have network connectivity problems. The
percentage of webservers that suffer this is sufficiently tiny for users to ascribe difficulties to
individual websites rather than to the Web as the whole.

The grid operator can take some steps to improve the situation in an open grid — notably by
not locating simulators operated by different organizations next to each other in virtual
space. This eliminates any network and simulator related issues that occur when a user tries
to fly directly between regions hosted at different places on the Internet.

But what the operator of a genuinely Internet-scale open grid could not do is refuse to
provide service access on the basis of simulator hardware or network connection. Though it
might be tempting to allow only fast machines with high bandwidth on to the network in
order to improve the perception of the entire VE, to do this would be to exercise a monopoly

58 of 81

power that may well end up holding back growth and evolution.

59 of 81

Alternative 3 - Session ID Security

In our Z model of the classic architecture, the user logout operation only proceeds if the correct
session ID is given. We can extend this session ID check to all the inventory operations in order to
try and secure them against arbitrary use by 3" party simulator operators. If this can be done then it
would eliminate some of the significant security problems associated with the open grid
architecture.

We can express this extra check in Z by reusing the existing CheckSessionld schema. Thus, the user
inventory operations become.

CreateltemSID = (CheckSessionld A Createltem) V SessionldIncorrect

GetltemSID = (CheckSessionld A Getltem) V SessionldIncorrect

DeleteltemSID = (CheckSessionld A Deleteltem) V SessionldIncorrect
UpdateltemNameSID = (CheckSessionld A UpdateltemName) V SessionldIncorrect
UpdateltemAssetSID = (CheckSessionld A UpdateltemAsset) V SessionldIncorrect
For clarity, let's graphically step through the GetltemSID operation, beginning with diagram 9. In
step 1, the user requests a login via the user service, giving their user ID and password. If the login

is successful, the user service creates and tracks a random session ID for that user (step 2). This
session ID is passed back to the client (step 3).

60 of 81

61 of 81

62 of 81

63 of 81

2. LoginUser

(userld? = AF311....

password? = myPass,

userSession = { sessionld? = 551AA... })

Llser
Service

1. RequestLogin :
(userld? = AF311..., Simulator
password? = myPass)

3: NotifySuccess
(userSession ={ sessionld? = 551AA... })

UserA
Diagram 9: User login
Now the inventory service will check the session ID every time an inventory operation is attempted.

The session ID supplied by the viewer must match the one previously assigned and stored by the
user service.

This is portrayed in diagram 10. First, the user makes a request to fetch the details of an inventory
item. The client passes this request to the simulator via the Getltem() message, attaching the user
ID, item ID and session ID (step 1). The simulator relays this request to the inventory service (step
2). The inventory service uses the CheckSessionld() method to check with the user service whether
the session ID is valid (step 3). In this case it is, since it matches the session ID that the user service
previously stored.

64 of 81

UserSessi 3: CheckSessionld(
serSession

, userld? = AF311....
{ sessionld =551AA... } sessionld = 551AA..)

3
ser Ihwvento
Senice
2: Getltem
(userld? = AF311...,

temld =91CCO...,
sessionld = 551AA..)

Simulator

1: Getltem

(userld? = AF311....
itemld = 91CCO....
sessionld = 551AA...)

UserA

Diagram 10: Checking the session ID for an item request

Diagram 11 shows the return path. Since authentication was successful (step 1), the inventory
service passes the details of the requested item back to the simulator (step 2). The simulator in turn
passes this back to the client (step 3).

If the session IDs didn't match, then either an error would be sent to the viewer or more likely the
request would be silently dropped, since non-matching session IDs probably indicate an attempt at
unauthorized access and it would be better not to provide feedback to an anyone attacking the
system.

65 of 81

UserSession 1: CheckSessionld
{ sessionld = 551AA... } (sessionld? = sessionld)

Lser
Service

2: Getltem
(item! =
{itemld =91CCO...,
name = mycube

)

v

Simulator

3. Getltem
(item! =
{itemld = 91 CCO....
name = mycube

1)

UserA

Diagram 11: Return of item data on successful session ID validation

This extension of session ID checks to inventory operations makes it impossible for simulator
operators to carry out inventory operations for users that aren't logged in. Even if a user is logged
in, the checks ensure that inventory operations cannot be carried out from regions that they have not
visited during that session.

These checks are not cost free. Under the session ID architecture, the actions required to carry out
an inventory operation are no longer confined purely to the inventory service. Instead, the inventory
service has to contact the user service in order to check the session ID for every inventory request.
Extra network operations increase the time of response and increase the fragility of the system,
though much of this could be avoided by caching the user session IDs on the inventory service after
any initial inventory operation for a particular user.

A more important problem with this scheme is that it doesn't offer any protection if a user
accidentally goes to a simulator operated by a malicious entity. The simulator will receive the user's
current session key just like all the others visited by that user. Even when the user leaves, the
malicious simulator can still perform actions on the user's inventory until that user logs out.

66 of 81

Is this any different to the problem of visiting malicious websites with a Web browser — sites that
attempt to comprise the security of the visiting computer by exploiting security weaknesses in the
client? Users are advised to avoid such sites and regularly update their software to close security
exploits. Malicious sites are an issue but they are not considered a terminal threat to the general
architecture of the Web.

I would argue that in an Internet-scale VE network the problem of malicious simulators is worse
than on the Web, for the following reasons:

1. Maliciously obtaining a person's inventory merely requires them to visit the region - it
does not rely on the presence of a security hole on the user's local system. Therefore, the
user can only protect themselves by avoidance, rather than by keeping their client software
up to date.

2. A user cannot directly detect when their inventory has been compromised. Whereas a
the compromise of a PC through a browser exploit can often be detected by the scans of
good up-to-date security software, it would be much more difficult for a user to detect
whether their inventory has been compromised in the session ID architecture, as long as the
compromiser does not insert new inventory items or remove existing ones.

3. Accidentally visiting a malicious simulator is much easier than accidentally visiting a
malicious website. On the Web, malicious websites are relatively unlinked compared to
non-malicious ones. In this OpenSimulator architecture, the regions of malicious simulators
are just as visible as any other region. Therefore, a user is less likely to avoid them just
through their relative obscurity.

The only apparent way to counter the problems within the terms of this architecture is to increase
the level of trust that one has in a simulator operator before they are allowed to join the VE network.
But this again brings back the very problem of required trust that this architecture aimed to relieve
in the first place.

In any case, even if the session ID architecture did completely solve the problem of the need to trust
all simulator operators, the fact that it takes place within the context of a centralized VE architecture
means that the other problems associated with that system — the scalability questions and single
point of control issues — remain. So we'll now look at an architectural scheme that revisits the idea
of multiple grids with independent data services but looks to allow users to move between them
while retaining their identity and inventory.

67 of 81

Alternative 4 - The Hypergrid

The Hypergrid is the name of an alternative OpenSimulator architecture put forward by Christa
Lopes of the University of California at Irvine'. It aims to allow the direct teleport of a user from
one OpenSimulator installation to another while allowing them to retain a single identity and
inventory. This is illustrated in diagram 12.

In this architecture, each simulator in a particular OpenSimulator installation retains a connection to
that installation's asset, inventory and grid services. But the user service connection is now
associated with the user rather than the simulator. The user also retains separate connections to the
asset and inventory services. These services we'll call the user's home services — they'll continue to
store any objects he takes into his inventory as well as his identity.

SimulatuN/ Simulator
= -y e i T

Gnd A
Lsar

Diagram 12: A user ri with a link to a region in grid B

So let's suppose that a user has created an account on grid A and has logged in to a region hosted by
a simulator on that grid. This is shown on the left half of diagram 12 — the simulator has
connections to that grid's grid, asset and inventory service while the user has connections to the
user, asset and inventory services.

The diagram also shows that a hyperlink has been established with grid B, an OpenSim installation
that hosts simulators with connections to grid B's services. When the user on grid A accesses a grid
map, they can see grid B's regions as well as grid A's. The user can teleport to a region in grid B

10 http://opensimulator.org/wiki/Hypergrid

68 of 81

either by using this map or by entering a URL for the region.

69 of 81

Diagram 13: A ucesl elport of the user to grid B

Diagram 13 shows the result of such a teleport. When the user arrives at the grid B region they
retain their connections to their home user, asset and inventory services — from grid B's point of
view they are a foreign user. If a foreign user rezzes an object in a simulator hosted by grid B, the
simulator contacts the user's home inventory and asset services rather than its own. The asset data
necessary to support the object - such as sounds, scripts and textures - is copied from the home
asset service into grid B's local asset service. This allows the data to be sent to other users when the
original object instantiator is no longer online.

Maintaining the connection to the home user service allows a user to make changes to their profile
data no matter what region they are in. The simulator can also obtain the most up to date profile
information to show to other users.

Like the strategy of establishing completely separate grids, the Hypergrid enables the use of
multiple VE services - each grid uses its own set of services for its associated simulators and users.
If a particular service fails then only simulators and users who are using that services as their home
service will suffer problems — other grids will be unaffected.

However, unlike the separate grids strategy, by maintaining home service connections the Hypergrid
architecture enables user identity and inventory portability.

We can formulate the Hypergrid as a Z schema that would replace the Grid schema from the classic
architecture.

r Hypergrid

70 of 81

regions : P Region

userServices : P UserService
assetServices : P AssetService
inventoryServices : P InventoryService
gridServices : P GridService

Vs, t;regions|s #t
® s.avatars N t.avatars = J A s.objects N t.objects = J
V u, v ; userServices | u # v
e u.profiles N v.profiles = J
V i, j; inventoryServices | i # j
® i.inventories N j.inventories = &
V g, h; gridServices | g # h
e g.regionRecords N h.regionRecords = J

Here, we capture the fact that in the Hypergrid a user has a single set of home services in which

their identity and inventory is maintained — this information is not duplicated to other locations.

However, there is no such restriction on asset services — data must be replicated between them in
order for the system to function.

The Hypergrid schema also enforces the restriction that a particular region record cannot occur
twice, otherwise navigation between regions would become a problem. Avatars and objects can
only be at one location on the Hypergrid at a time since all simulators are joined into a single
network.

The biggest issue with the Hypergrid, as with the open grid, is the potential exposure of sensitive
service operations. Service connections exposed to foreign simulators can be abused to perform
arbitrary operations in just the same way as they independent simulator operators can abuse them on
an open grid. When the user travelled from grid A to a simulator on grid B, the simulator on grid B
gained access to the user's entire inventory, asset collection and profile.

One could respond to this with the same user session ID checks and trust restrictions that we've
previously discussed. But once again, these are either of very imperfect effectiveness or severely
restrict the Internet-scale independent hosting goal that we are trying to achieve in the first place.

So where do we go from here? Many of the problems we've seen arise from the fact that all service
operations are carried out via the simulator in which the user's avatar happens to be situated. This
makes it very hard, if not impossible, to secure these operations against malicious operators. The
next architecture that we'll consider will look to address this by moving service operations away
from the simulator altogether.

71 of 81

Alternative 5 - Direct Client Services

We've seen that, while interesting, both the Session ID and the Hypergrid approaches are flawed
solutions to the problems associated with scaling OpenSimulator to the Internet level.

Both try and fix deficiencies in the classic architecture purely at the server end. But both fall down
because they can't eliminate the need for services to trust simulators with private user and inventory
data.

So another tack is to shift the responsibility for sensitive service interaction from the server directly
to the client. This is shown in diagram 14.

Grid A
Grid
Service

Grid B
Grid
Service

Simulator Simulator Simulator
Grid A Grid A Grid B

Inventory
Service Service Service Service
LISErsrus. ong g o0gass.com mssets.com ustoreit.com

Diagram 14: Direct use of asset, inventory and user services by clients

As you can see, instead of going through the simulators for asset, inventory and user requests,
clients make these requests directly to the services themselves, as shown at the bottom of the
diagram. Simulators no longer have any need to connect to asset, user or inventory services.

72 of 81

So under this scheme, user, asset and inventory services can now be operated completely
independently of the simulators. Moreover, any number of instances of each service can exist — the
diagram shows two asset services from which assets can be drawn depending on where the original
asset creator chose to store the data. The location of inventory and user data also depends on where
the user chose to establish their persistent identity and inventory.

To make direct service interaction possible, the unique UUIDs used to refer to assets, users and
inventory in the current architecture need to mutate into something more expressive. They need to
remain unique but also encode a service location so that a client that receives one knows from where
to fetch asset, inventory or user data. One approach to achieve this would be to incorporate a UUID
into a URL. For example,

http://googass.com/1alfd6d0-7d30-11de-8a39-0800200c9a66
could denote a VE object texture stored by the asset service operating on googass.com.

When a user visits a simulator and the object comes into view, it receives this URL rather than just a
UUID. Instead of requesting the data from the simulator, it requests the data directly from the URL.

Just as with the Hypergrid, clients are free move between arbitrary simulators, possibly by typing
URLSs into an address bar in a manner similar to a Web browser. But unlike the Hypergrid, assets
for avatar appearance or item rezzing are not copied between asset services. Rather, when the client
receives the ID for an asset, it always fetches the data directly from the relevant asset service. It
should still be possible for the client itself to cache this data, provided that the immutability
property for assets is maintained.

Let's compare this architecture against our original requirements for an Internet-scale VE network.

« Unbounded number of concurrent users. There's no single service in this architecture
that holds all the virtual environment data. Client and simulator data can be spread out
amongst multiple services so there is no restriction at the network level on the number of
concurrent users.

« Independent hosting. As with the open grid and hypergrid architectures, independent
entities can host their own simulators. But in this architecture, simulators do not proxy
sensitive user and inventory requests, hence cutting out the security issue suffered by the
previous two approaches.

The direct client services architecture, like the hypergrid, also supports multiple
independently owned services.

- No single point of failure or control. As there is no bottleneck service in this architecture
there is no single point of failure or control.

- Portable identity. In this architecture, user IDs would be URLs. Any client can obtain
these from a simulation and fetch profile data by dereferencing the URL. Only the user that
owns the data will have the credentials required to change it.

- Portable inventory. The client always has direct access to its inventory service at all times
(which in principle could simply be part of the client). When a client rezzes an inventory
item to a region, only the basic object data and the URL's for it's data components (such as
textures and sounds) are sent.

73 of 81

What are the downsides to the direct client services approach? One issue concerns the introduction
of undesirable asset URLs into regions, such as pornographic textures or malicious scripts. In the
classic centralized architecture this can be countered by deleting the asset in question from the
centralized asset service. The same is true of the Hypergrid — even though there are multiple asset
services, the asset actually used by a simulator is always a copy that has been transferred to its home
service. This service remains under the control of a grid administrator who can simply delete
malicious assets.

However, in the direct client services architecture, the asset comes from a service chosen by the user
rather than the grid. Therefore, offensive images cannot be removed at source — references to them
have to be removed manually.

In addition, the use of URLs rather than plain UUIDs opens up a new attack vector. For instance, an
attacker controlling their own asset service could infiltrate innocuous images into various regions
around the VE network. Once this is complete, he could change the image from something innocent
to something malicious. Subsequent clients would receive the malicious data when they fetched
assets from those URLs.

I don't think that these problems are fatal for this architecture. In particular, the issue in the last
paragraph could be countered by taking copies of the assets that are rezzed to a region, pointing
subsequent client requests to the home asset service rather than the one that was originally encoded
at rez-time.

So, to me, the direct client services approach appears to be very promising. However, there's one
final alternative architecture that I'd like to consider that takes a very different view of VE
networking.

74 of 81

Alternative 6 - Live Entity State Stream (LESS)

Up until now we've effectively assumed that all systems in an Internet-scale VE network are
OpenSimulator instances. We made this simplifying assumption in order to avoid questions over
such things as differeringscripting environments, different graphical rendering approaches and
different simulated object serialization formats between VE systems.

But a healthy Internet-scale network will not consist solely of OpenSimulator installations. On the
Web, though the Apache project has the largest installed base of webservers today, other packages
such as Microsoft Internet Information Server (IIS) also have a significant market share''.

While there are different webserver implementations, they all conform to the Hypertext Transfer
Protocol (HTTP) standard for retrieving hypermedia. The hypermedia itself is also written in terms
of standards such as Hypertext Markup Language (HTML) and Javascript so that it can be correctly
interpreted by different Web browsers.

Will an Internet-scale VE network have the same standards-based universality, allowing a wide-
range of different clients, server and service implementations to interoperate? Naturally, there are
great advantages if this is the case — visiting different simulators, for instance, is far easier using a
single client than if different clients need to be used for different systems. Common standards allow
content to be easily exchanged between many buyers and sellers, promoting the development of
increasingly valuable applications.

However, not everybody would agree that this level of interoperability is a certain. There's a
countervailing argument that various vendor's virtual environment systems differ so much from each
other that common connection and content standards are impossible. For instance, there already
exist significantly different approaches for modelling the geometry of VE objects. As of early 2010,
Second Life has an exclusively primitive-based approach to this while Blue Mars, another virtual
world, uses mesh-based objects. There are also competing approaches to other fundamental VE
features such as maintenance of state between servers and clients (or whether there are even any
servers at all).

I'm not going to take an explicit position on the likelihood of an interoperable future in this project.
But if one supposes, for whatever reason, that standardization is not possible, then there is still an
approach to VE networking that circumvents the need for wide-ranging agreement on VE standards
and protocols.

This approach is called the Live Entity State Stream, formulated by Jon Watte, the CTO of Forterra
Systems'?. Unlike the other architectural approaches that we've seen, it does not assume agreed
standards of communication and content between different VE implementations. For rather than
seeking to enable movement of a user between systems, it concentrates on replicating and
continuously synchronizing a bounded space between VEs over a point to point link. This is the
virtual environment equivalent to setting up a teleconference with somebody in another country
rather than flying out to meet them in person.

To illustrate, let's suppose that an appropriately bounded space has been set up on VE A and VE B
linked with the LESS protocol, as portrayed in diagram 15. In this situation, a cube (cubel) that
exists in VE A at point (2, 2, 2) in the bounded space will have a replica in the bounded space of VE
B at (2, 2, 2). State changes between the spaces are replicated. If cubel is moved to (4, 4, 4) in VE

11 http://news.netcraft.com/archives/2009/06/17/june_2009_web_server_survey.html
12 http://www.interopworld.com/mmox-less-protocol

75 of 81

B, then the cube in VE A will also move to (4, 4, 4).

Gmulatur \\ Gmulatur \

Shared Space Shared Space

cubel cube 1

Diagram 15: LESS link between grid A and grid B

As well as position information, all the necessary data to replicate an object's appearance, such as
texture assets, is transmitted over the link.

When a user avatar enters the bounded space a suitable avatar 'double’ would be generated on the
remote system. As soon as they move out of the bounded space the double will disappear from the
remote end of the link.

One issue is whether there can really be a synchronization relationship between two replicas of the
same object. What happens if both ends attempt to move the same replicated object at the same
time? If an object has scripted behaviour on which system does its program execute? Is any form
of physics simulation possible on replicated objects? These and other questions may make it
simplest to institute a master-slave relationship between object replicas, though that will lose some
of the benefits of interactivity.

Nonetheless, the LESS approach is interesting because it might allow existing VE systems built on

76 of 81

different principles to interoperate without having to harmonize on extensive common standards.
Such existing alternative systems include Sun's Project Wonderland, Croquet and Forterra System's
own On-Line Interactive Virtual Environment (OLIVE) platform. All these already have their own
software ecosystem and customers which makes radical change on their part to meet a common
standard difficult.

The major disadvantage with the LESS approach is that, just like a real-life teleconference, the
interaction is limited and confined to a very narrow location. Step outside the bounds of that
location and communication ceases. Communication would not be very rich if there are difficulties
sharing intricate objects. And the LESS approach requires time and effort every time a link needs
to be set up.

Moreover, while it meets the requirements of an unbounded number of concurrent users,
independent hosting and the removal of single points of failure, the LESS approach completely
gives up on the ideals of portable identity and inventory.

77 of 81

Conclusions

There are good reasons to suppose that the classic OpenSimulator architecture is not suitable for
expansion to an Internet-scale virtual environment network, according to the criteria that we have
put forward. It doesn't allow independent hosting of simulators, necessary for competition and
innovation. It also has storage and control bottlenecks in the form of a centralized control over VE
services.

Of the various alternative architectures, multiple classic grids are not suitable because they fail to
provide any portable identity or inventory. Nor is the open grid suitable architecture, since every
independent simulator operator would need to be strongly trusted by the service provider (and
transitively by all other simulator operators). The Session ID approach to securing inventory doesn't
work because it only addresses a very narrow range of security issues associated with server side
inventory, while leaving other problems untouched. And hypergrid is not a complete solution
because, like the open grid, it has security problems associated with exposing services to arbitrary
VE installations.

LESS, though also an interesting approach, ultimately does not address the core issues of an
Internet-scale virtual environment network as we've defined them, chiefly the possibility of
maintaining a user's identity and inventory access between multiple different virtual environments.

The direct client services architecture appears the most promising for an Internet-scale VE system
since it allows many independently operated simulators and services to exist in the same network. It
also resolves the security problems inherent in proxying user and inventory service access through
the simulator.

78 of 81

Reflection

In this dissertation I applied ideas from both distributed computing and Z-schema based
specification and design.

On the distributed computing side, part of my analysis of the classic Opensimulator architecture was
conducted within the framework of the dimensions of transparency. This was extremely useful in
illuminating the design of the current system and the areas in which it falls short of transparency
ideals. For instance, it became clear during the analysis that while the VE services met many
transparency conditions, the simulators themselves can only achieve the very lowest levels of
transparency.

In my analysis of the classic architecture I also made considerable use of the design ideas of the
Web as laid out by Fielding in his “Architectural Styles and the Design of Network-based Software
Architectures” dissertation. This was particularly important when thinking about the broad features
of OpenSimulator's client-server protocol as its features contrast considerably with those of the
protocol operating on the Web.

The dimensions of transparency and Fielding's dissertation were also tremendously useful when it
came to thinking about scaling virtual environments. The ideas informed the Internet-scale VE
network features that I posited and came into play when analysing the extent to which these were
met by the current architecture and alternative approaches.

My experience with my use of Z modelling was more mixed. Explicitly formulating schemas was
very helpful in paring down the classic architecture to its most crucial features. The process was
iterative — I would formulate a schema, carry out some (non-formal) analysis and then go back to
eliminate aspects of the model that were not important for the purposes of the project. This would
also work the other way around - alternative architectural analysis would reveal some feature that I
previously hadn't thought as important and I would go back and adapt the Z schemas to include it.

This meant that the schemas ended up as a precise description of the most salient points of the
classic architecture. I think that this is very helpful in conveying to the reader information about the
system, providing that they understand Z schemas! In this, I think that the schemas played a very
similar role to UML diagrams.

However, I didn't end up using Z for more than description - the vast bulk of my analysis in this
project has ended up being prose-based and informal. My original hope was that I could use the Z
model to explore extending the current architecture and creating alternative architectures in a

formal way. Although I did end up formulating some extensions in Z for the session ID and
Hypergrid architectures these do not employ formal reasoning to justify conclusions or arrive at new
ideas.

This was something of a disappointment. But on reflection I believe that it was inevitable. The
thrust of this project was very broad, taking an overview of the problem of generating an Internet-
scale VE network and trying to pick out future directions rather than tightly analysing or specifying
future systems. Generating enough concrete detail to employ formal reasoning would require a vast
amount of speculative work that I feel would not be useful given the current embryonic state of the
field.

79 of 81

Appendix A - Glossary

Term Definition

Asset Media data. This includes textures, sounds, scripts and notecards.

Avatar A representation of a user in the simulation.

Classic The existing OpenSimulator VE architecture where a set of distributed

Architecture simulators all connect to a centralized set of services.

Client The program run on the user's computer that is responsible for allowing them to
examine and interact with the simulation.

Grid See Classic Architecture.

Object An object, such as a cube, represented in the simulation.

Rez (verb) The act of instantiating an object in the simulation, whether directly from pre-
existing primitives or from an existing object stored within a user's inventory.

Service A system that provides data to one or many simulators. Examples include asset
services (that provide data objects such as textures and scripts) and inventory
services (that provide inventory organization for a user).

Simulation A simulation of a place. Can be in 2D or 3D. Contains objects, avatars and
other rules and elements such as physics and weather. Operated by a simulator.

Simulator A server that operates the simulation and interacts with a client. Part of the VE.

Teleport A movement of an avatar between simulations that involves a discontinuity
rather than smooth movement through a 3D environment. This discontinuity
often takes the form of a black 'loading' screen.

Virtual The set of servers necessary to provide simulated environments to users. This

Environment consists of one or many simulators and one or many services. Users connect

(VE) with client programs.

80 of 81

Bibliography

[Elson and Howell] Jeremy Elson and Jon Howell. Handling Flash Crowds from your Garage,
Microsoft Research, 2008,
http://www.usenix.org/event/usenix(08/tech/full_papers/elson/elson_html/index

.html
[Emmerich] Wolfgang Emmerich. Engineering Distributed Objects, Wiley, 2000.
[Fielding] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures, University of California, Irvine, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[Mockapetris and Paul V. Mockapetris and Kevin J. Dunlap. Development of the Domain Name

Dunlap] System, Proceedings of SIGCOMM '88,
Computer Communication Review VoL 18, No. 4, August 1988, pp. 123-133,
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.116.9920&rep=rep 1 &type=pdf

[RFC 4122] P. Leach, M. Mealling and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace, RFC 4122, Internet Engineering Task Force, 2005,
http://www.ietf.org/rfc/rfc4122.txt

[Singhal and Zyda] Sandeep Singhal and Michael Zyda. Networked Virtual Environments Design
and Implementation, ACM Press, 2000

81 of 81

	Introduction
	OpenSimulator Overview
	System Architecture
	Clients, Simulators and Services
	Transparency
	Asset Immutability

	Service, Simulator and Grid Models
	Common Data Types
	User Service
	Asset Service
	Inventory Service
	Grid Service
	Simulator
	Grid

	The Client-Simulator Protocol

	Scaling OpenSimulator
	Requirements for an Internet-scale VE Network
	Scaling the Classic Architecture
	Problem 1 – No Independent Hosting
	Problem 2 – Centralized VE Services : Storage and Capacity
	Problem 3 – Centralized VE Services : Single Point of Control

	Alternative 1 – Multiple Classic Architectures
	Alternative 2 – The Open Grid
	Alternative 3 - Session ID Security
	Alternative 4 - The Hypergrid
	Alternative 5 - Direct Client Services
	Alternative 6 - Live Entity State Stream (LESS)

	Conclusions
	Reflection
	Appendix A - Glossary
	Bibliography

