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S1   Number of sequences with at least one run of 4G 

In the following we show how to derive Equation (1). 

To avoid 4G sequences any run of ‘G’ must be interrupted by a non-‘G’ base after at maximum 

3 G. Sequences containing no runs of 4G can be constructed in the following way: 

Each sequence of length L contains m guanine and k non-guanine bases. Therefore, L=k+m. For a 

given k there are no more than k+1 groups of ‘G’ bases, (0,1,…,k) corresponding to A, B, C, D 

etc. 

 

Figure S1. All bases of a sequence are either guanine or not guanine. Each guanine can then be 

categorized in how many non-guanine bases occurred before it, reading the sequence from left to 

right. This sequence can be represented by ABBCD. 

To determine the number of possible sequences without runs of 4G at the given k we first need to 

know how many of the letter sequences made of (A, B, C,..) of length L-k (here 5) we can construct, 

given the condition that each letter appears at most 3 times. This is equivalent to taking out L-k 

elements from three identical sets that each contains k+1 elements {A, B, C, D, …}. The number 

of possibilities to pick m=L-k elements out of 3 identical sets consisting of k+1 elements, is then 

given by quadrinomial coefficient 1-2:  
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To determine the number of possibilities for all sequences without at least one run of ‘4G’ we sum 

up P(L) over all k for a given length and multiply by 3k to cover all possible combinations of non-

‘G’ bases. 
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For a given length, Kmin is the minimum number of non-‘G’ bases necessary to avoid runs of 4G. 
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S2 Maximal independent set used in experiment 

Table S1. Independent set with L=7, d=5 

sequence list from 3’-5’ 

1 CTAATTGACTC 
 

2 CTACACCCTTC 
 

3 CTACTGTGGTC 

4 CTAGCGAAATC 

5 CTAGGATCCTC 

6 CTCATACCGTC 

7 CTCCATGTATC 

8 CTCGGCATTTC 

9 CTCTAGTACTC 

10 CTGAACTTGTC 

11 CTGCGTAGCTC 

12 CTGGCTGCTTC 

13 CTGGTGCTCTC 

14 CTGTGACATTC 

15 CTGTTCACATC 

16 CTTAAGAGTTC 

17 CTTCCAATGTC 
 

18 CTTCGCTAATC 

19 CTTGATCAGTC 

20 CTTGTAGGATC 

21 CTTTCCCGCTC 

22 CTTTGGGCGTC 
 

23 CTTTTTTTTTC 
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S3 Comparison of set sizes 

Here we present a summary of the set sizes achieved by our algorithm. Both tables S2 and S3 show 

all sizes for L = 4 until L = 7 with d = 2…L-1. In contrast to table S2, table S3 contains the set 

sizes for the case that the available sequences are restricted to a 50 % GC content. All sizes are 

compared to literature values3-4, if available. 

Table S2: Set sizes achieved by the algorithm in comparison to literature values. Set sizes for 

removing and not removing 4G and 4C sequences are the same except for L=5, d=2, L=6, d=2. 

The numbers after backslash correspond to set sizes after crossing 4G and 4C.  

Sequence 

length L 

Minimum Hamming 

distance d 

Maximal set size Set size from 

literature 

4 3 16 - 

4 2 64 - 

5 4 16 163 

5 3 64 - 

5 2 256/252 - 

6 5 9 93 

6 4 64 643 

6 3 114 - 

6 2 1024/1001 - 

7 6 6 83 

7 5 23 233 

7 4 83 783 

7 3 364 - 

7 2 4096 - 
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Table S3: Set sizes achieved by the algorithm in comparison to literature values, if the sequences 

are restricted to a 50 % GC content.  

Sequence 

length L 

Minimum Hamming 

distance d 

Number of GC 

bases 

Maximal 

set size 

Set size from 

literature 

4 3 2 12 - 

4 2 2 48 484/483 

5 4 2 10 - 

5 3 2 27 - 

5 2 2 156 1204/1423 

6 5 3 8 - 

6 4 3 36 - 

6 3 3 82 564/853 

6 2 3 640 - 

7 6 3 7 - 

7 5 3 21 - 

7 4 3 65 - 

7 3 3 238 2244/2303 

7 2 3 2240 - 
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Figure S2 depicts some of our set sizes as a function of sequence length for different minimum 

hamming distance.  

 

Figure S2. Some of the set sizes of largest independent set M(L,d) found by our algorithm as a 

function of length L for different d. 

To estimate the maximal possible size of these sets M(L,d), coding theory proposes the Singleton 

and the Gilbert-Varshamov5-6 as an upper and lower bound, respectively (Equation 3). Figure S3 

shows the set sizes that we determined for L=4-7 and d=4 fulfill these inequalities. 
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Figure S3. Maximal independent set size determined by our algorithm as a function of sequence 

length for d=4. For each L, M(L,d) is within the bounds defined by coding theory. 
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