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Catchment-scale hydrological modelling

 Scientific and engineering hydrology
e Understanding flow dynamics, improving model “realism”
e Flood forecasting, drought prediction, and everything in between

 Major component of broader environmental studies

e Eg, hydrological models provide inputs into larger-scale models
such as General Circulation Models (GCMs)
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Practical impact of hydrological models

e Used across many levels of environmental management
and decision-making (and increasingly so!)

e Eg, Australian Bureau of Meteorology streamflow forecasts used
for flood forecasting / mitigation, dam operation, water
allocations, agricultural uses, etc

 Economic scale of major operations:

e South East Queensland floods of 2010/11 caused S5 billion
damage and impacted 200,000 people (QLD Government, 2013)

» Australia’s irrigated crops: $13.5 billion annual value (ABS, 2013)

=> Credible predictions are expected

=> Must recognize and communicate uncertainties



Practical impact of hydrological models

e Used across many levels of environmental management
and decision-making (and increasingly so!)

e Eg, Australian Bureau of Meteorology streamflow forecasts used
for flood forecasting / mitigation, dam operation, water
allocations, agricultural uses, etc

 Economic scale of major operations:

e South East Queensland floods of 2010/11 caused S5 billion
damage and impacted 200,000 people (QLD Government, 2013)

o Australia’s irrigated crops: $13.5 billion annual value (ABS, 2013)

Operational Advances €<= Research Advances

Even moderate advances = huge value!




Outline

* Improving Hydrological Predictions

e Overview of advances in flexible modelling, in lumped
and spatial outcomes

* Improving model calibration / optimization
e Spatial rainfall modelling

e Improving streamflow probabilistic predictions

e I[mportance of persistence for reliable probabilistic
streamflow across time scales

* Practical guidance on residual error models to improve
reliability and precision of probabilistic predictions

* [mpacts on Forecasting



Flexible models in hydrology:
Method of multiple working hypotheses

Ry

 Scientists often develop
“parental affection” for
their theories

e Chamberlin’s method of
multiple working hypotheses

“...the effort is to bring up into view every
rational explanation of new phenomena...
the investigator then becomes parent of a
family of hypotheses: and, by his parental
relation to all, he is forbidden to fasten his
affections unduly upon any one”

Chamberlin (1890)

T.C. Chamberlain



Multiple working hypotheses in
hydrological modelling

 Multiple alternative rainfall-runoff model structures
* |n simplest case, change numbers of “buckets” in model

 More generally, include conceptual and physical
representations (eg, Fenicia et al 2016; Clark et al 2015)

e Test using multiple metrics/diagnostics, cross-validation

 Multiple representations of uncertainty
e Simplest case, eg, unweighted/weighted least squares

 More generally, different data transformations, etc
(eg, Mclnerney et al, 2017)

e Again, multiple metrics/diagnostics, cross-validation

=> More robust findings suitable for operationalization



Flexible Hydrological Models

Motivation
e “One-size-fits-al
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 “Flexible” model that can be tailored to
catchments / processes of interest

e Parsimonious => Fast to calibrate/simulate

e Robust => Under cross-validation using
multiple metrics (Nash, signatures, etc)

Fenicia F, Kavetski D, Savenije HHG (2010) Elements of a flexible framework for hydrological modelling, WRR
Clark et al (2015) A unified approach for process-based hydrologic modeling, Water Resources Research
and references therein / subsequent work




The challenge of spatial variability

Study area _ A
e Attert basin in Luxembourg
e 300 km?

e Densely gauged

* Extensive fieldwork insights JAbysusiorbach gy %%3m
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Nash-Sutcliffe of streamflow predictions (-)

Distributed application of SUPERFLEX

Use different model structures in each HRU type

b) Space-time validation

Space-time validation, streamflow series and signatures

Baseflow index / (-)
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Science: Identify dominant processes, reconcile model vs fieldwork

Operational: Capture diverse spatial streamflow patterns across 10
locations using “simple” model with 11 calibrated parameters

=> Pilot collaboration with German Forecasting Services

Fenicia et al (2016) From spatially variable streamflow to distributed hydrological

models: Analysis of key modeling decisions, WRR, 52, 954-989
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Spatial Rainfall Modelling

e Motivation

* Water management needs stochastic
rainfall models to provide reliable T e
estimates of floods / drought risks T

e Spatial rainfall variability has big impact on T
catchment response g

* Most stochastic spatial rainfall models not
simple enough to be used in practice

+ Aim ragged
* Develop stochastic model that . RS
continuously simulates daily rainfall fields ‘
e Parsimonious => Fast to calibrate and T Ry -
Slmulate x BuckPk B8/60718
* Flexible approach => Choose your own
spatial resolution

Rl oy

L2000 . bel 128km -1

Bennett, B., M. Thyer, M. Leonard, M. Lambert, and B. Bates (2016), A comprehensive and systematic evaluation framework for a parsimonious daily rainfall
field model, J Hydrol10.1016/j.jhydrol.2016.12.043



Realistic continuous rainfall fields

Daily simulations for Adelaide’s water supply catchment: Onkaparinga catchment
Tested using a comprehensive and systematic evaluation framework

Majority of spatio-temporal statistics of simulated rainfall were statistically
indistinguishable from statistics of observed rainfall
» Strengths: Rainfall occurrences/amounts, wet/dry spell distributions, Annual
volumes/extremes and spatial patterns

* Weaknesses: Total annual rainfall in dry years (lower 5%) was overestimated.
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Potential Applications

e Evaluate impact of spatial rainfall on flood risks

e Evaluate impact of spatial rainfall uncertainty

 Condition stochastic rainfall model on information
from numerical weather models

Flexible model structure can be adapted to be used for
conditional simulation

Potential for use as a Spatial Rainfall Post-Processor for
rainfall forecast systems (eg, ACCESS)

Main advantage is it fills in space, rainfall forecasts over
entire grid
Opportunity for spatial streamflow forecasts



Outline

* Improving Hydrological Predictions

e Overview of advances in flexible modelling, in lumped
and spatial outcomes

e Improving model calibration
e Spatial Rainfall Modelling

e Improving streamflow probabilistic predictions

e Practical guidance on which residual error model to
improve reliability and precision of probabilistic
predictions

e Impacts on Forecasting



Motivation

* Hydrological predictions are relied upon by wide range
of users

e Understanding uncertainty is important for decision
making and risk assessment

Alms
e Overall aim is to improve probabilistic predictions

e Representing uncertainty in hydrological
predictions challenging

 We perform comprehensive comparison between
approaches for representing uncertainty

* Provide recommendations for practitioners



Quantifying uncertainty improves decision-
making providing better risk estimates

e Example: action A versus action B: Which one would you
choose?

* No uncertainty:

Use “highest performance” outcome -
choose action B!

e With uncertainty:

If you want to reduce risk of failure—>
choose action Al

A Actior\ ‘A/Ctio" B A | Action A Action B
z 2 /
1]
Na] e —
(o]
// > e
System fallure Increasing system performance —» System failure Increasing system performance

e Water management is all about balancing risks
(risk of floods or droughts)

e If we ignore uncertainty, we under-estimates risks of system failure



Sources of Errors in Hydrological Modelling

“wa o7
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True Input(s) ‘ True processes - True response(s)

Reality

 — == ==
= [ =
Input errors Structural errors Output errors
e.g. Rainfall sampling errors e.g. Lumping processes e.g. Rating curve errors
Highly variable in time/space Ubiquitous but General accuracy ~10-20%
Low gauge density Poorly understood Larger errors in larger floods
Conceptualized
Observed Input(s) ‘ ‘ Observed response(s)
processes




Approaches to modelling uncertainty:
Find the right tool for the job

 Decompositional: Estimate individual sources of uncertainty
e Advantage of diagnosing dominant sources of error
e Eg, Bayesian Total Error Analysis (BATEA), Kavetski et al (2006+)
e Requires more advanced Bayesian and MCMC technology

* Requires more extensive data support, more expertise in applying, => notreally an
“off-the-shelf” method available to practitioners

» Aggregated: Estimate total uncertainty in predictions
e Lump all uncertainty into single term
e Residual error models: residual = obs — pred, estimate p(residual)
* Easy to articulate, especially in its simpler forms
e Very common in engineering practice and literature => “off-the-shelf”
e But: unable to estimate the dominant source of error

In operational settings the predictions are key, so this presentation will focus
on the developed of aggregated approaches that estimate the total
uncertainty in predictions.



Challenging features of residuals in hydrology

(Cotter River, ACT)

_© - —— Observations

§* - s Streamflow
Ew - . .
zo time series
~ Residual
£o errors time
s series

2350 2400 2450 2500 2550
Time (days)

e Errors are heteroscedastic (larger errors in large flows)
* Errors are persistence (not independent between time steps)

e Appropriate representation of both “features” is required to
achieve reliable probabilistic predictions



What is the “best” residual error model for making
daily streamflow probabilistic predictions?

Research Gap: No study had compared the
wide range of residual error models

8 different residual error models

e SLS, WLS, log, logsinh, Box-Cox transforms il
o
Comprehensive comparisons IRA A
e 23 catchments from Australia and USA e | I V‘A ‘V‘\_
e 2 hydrological models (GR4J, HBV) | TR
LHJQ UH2 I
Cross-validation over 10 yr period = e o ,
e 3500+ model calibrations (Perrin et al, ZW
e 4000+ CPU hours (150 days) on HPC
ORI = o E T
Multiple performance metrics = Q* =77 TB 0 I I
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What makes good probabilistic

We want predictions that are

e Reliable: Predictions statistically consistent
with observed data

* Precise: Small uncertainty in predictions

e With low volumetric bias: total volume from
predicted flow matches observations

Reliable but imprecise Precise but unreliable

O Observed
O, .
‘ = 50% probability
LR 90% probability

0 Observed
= 50% probability
90% probability

oredictions?

Reliable, precise, unbiased

0 Observed
= 50% probability
90% probability

© Observed
= 50% probability
90% probability




Error model has large impact on probabilistic
predictions: Perennial Catchments
e Perennial catchment (Spring River, USA), GR4J hydro model

s Metrics
&8
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T
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15

0
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* Weight least squares has poor reliability and worse precision
e Log transformation better reliability and precision

e Transformational approaches (Log and BC) better handle skew in
observed residuals



Error model has large impact on probabilistic
predictions: Ephemeral Catchments
e Ephemeral catchment (Rocky River, SA), HBV hydro model

S Metrics
Log £
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flows w

&
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Ca o
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flows s

Rel Prec Bias
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e Log produces poor precisions (unrealistically large uncertainty) and large bias in
ephemeral catchments

e Box Cox transformation (lambda=0.2) performs much better
e BC transformation better handles zero flows in ephemeral catchments



Improvements in probabilistic performance
largest in ephemeral catchments

Ephemeral
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Can’t always get everything that we want

(c) Representative case study (B1/GR4J) (d) Representative case study (A7/GR4J)
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* In most catchments, tradeoffs between reliability, precision and
bias seen even amongst the “best” error models

e Further investigation underway to reduce tradeoffs



Key Insights

e Error models based on Box-Cox transform produce
more reliable predictions

e Choosing the best error models depends on the type
of flow regime in the catchment.

 More complex error models do not necessarily
produce the best predictions

* No single error model performs best in all aspects of
predictive performance



Broad Recommendations

In perennial catchments, use

* Log error model if reliability is important

e Box Cox transformation with A=0.2 if precision is important
e Box Cox transformation with A=0.5 if low bias is important
In ephemeral catchments, use

e Box Cox transformation with A=0.2 if reliability is important

e Box Cox transformation with A=0.5 if precision/bias important

Does not include an in-depth analysis of performance trade-offs



Summary

e Comprehensive evaluation a range of approaches for modelling
total predictive uncertainty
* Eight Approaches: Simple=>Complex
e Empirical results: 23 catchments and 2 hydro models
 Theory: Understanding when and why approaches provide good or bad

predictive performance, e.g. ephemeral versus perennial catchments
* Broad recommendations

* Selection of error models to use in different catchment types
e Achieve reliable and precise probabilistic predictions

* Practical implications: Simplest is often best!

* Prudent use of simple approaches => best predictive performance
e Simple to implement for practitioners
e Further work ongoing to reduce performance tradeoffs



Outline

* Improving Hydrological Predictions

e Overview of advances in flexible modelling, in lumped
and spatial outcomes

e Improving model calibration
e Spatial Rainfall Modelling

e Improving streamflow probabilistic predictions

e Practical guidance on which residual error model to
improve reliability and precision of probabilistic
predictions

* [mpacts on Forecasting



Bureau of Meteorology

Seasonal Streamﬂow Forecasts

Hill River at near Andrews (A5070500)
Forecast period: Jan-Mar 2015
Terciles applied to
Percentage of forecast in each tercile forecast distribution

Hindcast RMSEP = 26
(Moderate skill)

o 1 2 3 4 5 6 7
Terciles from historical data

o 1 2 3 4 5 & 71
Streamflow (GL)

e Seasonal forecasts at ~300 locations

e Used upon by large number of water managers around Australia
* Hydrological forecasts have wide range of uncertainty

* BOM is using our techniques to characterize uncertainty and ultimately improve
probabilistic predictions



Impacts on Forecasting: Streamflow

post processing at monthly time step

e Strategic Objectives of Bureau’s Seasonal Streamflow
Forecasting (SSF) System

e Aims: Provide forecasts across a wide range of Australian sites

Dynamic Seasonal
Streamflow Forecasting
System

Rainfall forecasts
(daily)

v

Rainfall post-
processing

y

Rainfall = Runoff

Model + Calibration
Approach

v

Streamflow post-

processing

Enhanced streamflow post-processor at monthly time scale

Outcomes:
= Majority of sites with reliable forecasts

= Majority of sites with forecast “sharpness” better than climatology
= Operationalised within Bureau’s system

e




Enhance Streamflow Postprocessor at
Monthly and Seasonal Time scale

e Evaluated different residual models for post-process streamflow
forecasts at monthly time scale

* Raw: No Post-Processing
* Log, logsinh and BCO.2

e Evaluation on wide range of 300+ -
catchment across Australia

* Classified into dry and wet using Aridity Index <0 L O\

 Multiple metrics
e Reliability (PIT plot p-value)
» Sharpness (Inter quantile range for 99t percentile)
* Expressed as % of climatology IQR

* >100% sharpness is worse than climatology
* < 100% sharpness is better than climatology

* CRPSSS

Woldemsekel F., Lerat, J., Tuteja, N., Shin, D.H., Thyer, M., Mclnerney, D., Kavetski, D., Kuczera, G. (2017) Evaluating residual error approaches to post-processing
monthly and seasonal streamflow forecasts, Hydrology and Earth System Sciences (in preparation).



Outcomes for Monthly Forecasts:
Better reliability and sharpness

o
B Raw B |log O Log-Sigh O BCG2

All catchments

S S T & 5 1-—
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e Post-processing provides

& | VINE more sites with reliable
2 || |z forecasts: Increase from ~50%
= ® to >90% sites
) _ ' * Similar results for CRPS
8
7 e BCO.2 provides more sites
2¢ i with sharpness better than
o & = climatology: Increase from
S g ¢  60% of sites to ~90% sites

high flow months low flow months

Woldemsekel F., Lerat, J., Tuteja, N., Shin, D.H., Thyer, M., Mclnerney, D., Kavetski, D., Kuczera, G. (2017) Evaluating residual error approaches to post-processing
monthly and seasonal streamflow forecasts, Hydrology and Earth System Sciences (in preparation).



Outcomes for Monthly Forecasts: Better reliability and sharpness

® 0 months
6 months
12 months
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* No. of months at each site with forecasts that are reliable and
with “sharpness” better than climatology.



Major increase in sharpness in dry catchments

B Raw B Log
3 wet catchments
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* In dry catchments, high flow months
* log and logsinh models have >50% of sites worse then climatology

e BCO.2 only model that provides more (80%) sites with sharpness
better than climatology

 Little change in reliability or CRPS

Woldemsekel F., Lerat, J., Tuteja, N., Shin, D.H., Thyer, M., Mclnerney, D., Kavetski, D., Kuczera, G. (2017) Evaluating residual error approaches to post-processing
monthly and seasonal streamflow forecasts, Hydrology and Earth System Sciences (in preparation).



Improvements in sharpness are bigger for
seasonal forecast than monthly forecasts
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Monthly forecasts Seasonal forecasts

e Seasonal forecast,
e Log and logsinh: 50% or less sites better climatology
e BCO0.2: >80% sites better climatology

 No difference between models for CRPS and v
Reliability

Woldemsekel F., Lerat, J., Tuteja, N., Shin, D.H., Thyer, M., Mclnerney, D., Kavetski, D., Kuczera, G. (2017) Evaluating residual error approaches to post-processing
monthly and seasonal streamflow forecasts, Hydrology and Earth System Sciences (in preparation).




Impact on Forecasts: Towards Seamless Forecasts

e Strategic Objectives of Bureaus Seasonal Streamflow
Forecasting (SSF) System
e Current aims: Provide “seamless” forecasts (seamless = single
product able to be aggregated in time from daily to monthly scale)

* Progress towards this objective

Dynamic Seasonal
Streamflow Forecasting
System

. Enhanced daily streamflow post-processing (obs. rain)
o Outcomes: Incorporating persistence improves reliability when
v aggregating from daily to monthly time scale

Rainfall post-
processing

A

Rainfall > Runoff

Model + Calibration
Approach

v =

Streamflow post-
processing




Challenging features of residuals in hydrology

(Cotter River, ACT)

—— Observations
— Predictions

Streamflow
time series

Flow (mm/day)
01234567

Residual
errors time
series

10123

Flow (mm/day)

-3

2350 2400 2450 2500 2550
Time (days)

e Errors are heteroscedastic (larger errors in large flows)
* Errors are persistence (not independent between time steps)

e Appropriate representation of both “features” is required to achieve
reliable probabilistic predictions



Importance of modelling persistence
IN errors

e Persistence important when aggregating data
— E.g. daily predictions aggregated to monthly values

é - @ Obs. —Pred. ® 50% prob. 90% prob.

< 2

E o

=y o, B o ° L of <4—Neglecting persistence

oo — ¥ re .' X a odjo” c 5
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& = (predictions over-confident)
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£ 8- - -

£ <+— Including persistence
=]

5 S Improved reliability

g )

L

[Evin et al, 2014]

e |gnoring persistence produces under-estimation of predictive
uncertainty when aggregating data => under-estimates risks of
extreme events



Modelling persistence critical
when aggregating daily data

Monthly metrics

Reliability Precision Bias
worse better

worse

CRPS SS

worse

T I 3
=]

or_—_ ;

worse

" better ' ' '
BCO.2 BCO0.2-AR1 BCO.2 BCO0.2-AR1

" better

BCO.2 BCO.2-AR1  BCO.2 BCO.2-ARI
e Without Persistence (BC0.2), grossly over-confident: good
precision but very unreliable => low CRPS SS

e With Persistence (BC0.2+AR1), credible predictions: lower
precision but better reliability => high CRPS SS

better



Summary: Impacts on Forecasting

Dynamic Seasonal
Streamflow Forecasting
System

Rainfall forecasts
(daily)

v

Rainfall post-
processing

y

Rainfall = Runoff
Model + Calibration
Approach

v

Streamflow post-
processing

1. Enhanced streamflow post-processor at monthly time scale

* Outcomes:
e Majority of sites with reliable forecasts
e Majority of sites with forecast “sharpness” better than climatology
e Operationalised within Bureau’s system

* Contribution towards Bureaus objective of reliable forecasts at
wide range of sites across Australia

2. Enhanced daily streamflow post-processing (obs. rain)

e QOutcomes:

* Incorporating persistence improves reliability when aggregating from
daily to monthly time scale

e Currently being operationalised

* Contribution towards Bureaus olgljective of seamless forecasts
across a range of time scales (daily to monthly)



Questions?

Further Information

Email: mark.thyer@adelaide.edu.au or connect with me on Linkedin

Subscribe to Intelligent Water Decisions Research Group Blog

www.waterdecisions.org/blog/
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