Supporting Information for

Cyclometalated Platinum(II) Cyanometallates: Luminescent Blocks for Coordination Self-Assembly

Leon Schneider,^{†,‡} Vasily Sivchik,[‡] Kun-you Chung,[≠] Yi-Ting Chen,[≠] Antti J. Karttunen,^{§,*} Pi-Tai Chou,^{≠,*} Igor O. Koshevoy^{‡,*}

[†] Institut für Anorganische Chemie, Julius-Maximilians-Universität, Würzburg, Germany

[‡] University of Eastern Finland, Department of Chemistry, 80101, Joensuu, Finland

[#] National Taiwan University, Department of Chemistry, Taipei 106, Taiwan

[§] Aalto University, Department of Chemistry, FI-00076 Aalto, Finland

E-mail: antti.karttunen@aalto.fi; chop@ntu.edu.tw; igor.koshevoy@uef.fi

Table S1. Crystal data and structure refinement for 1-8.

Table S2. Selected bond lengths (Å) and angles (deg.) for complexes 1-8.

Figure S1. Molecular views of complexes 2, 4, 5, 7 and 8.

Figure S2. Solid state packing of complex 1.

Figure S3. Solid state packing of two polymorphs of complex **3**.

Figure S4. Solid state packing of complex 6 featuring shortest $CH_{Ph}-\pi_{C^{\wedge}N}$ contacts.

Figure S5. Normalized absorption (left) and emission (right) spectra of complexes 1–5, 7, 8 (CH₂Cl₂, 298 K).

Figure S6. Electron density difference plots for the lowest energy singlet excitation $(S_0 \rightarrow S_1)$ and the lowest energy triplet emission $(T_1 \rightarrow S_0)$ of the complexes 1, 3–5, and 7.

Figure S7. Frontier molecular orbitals of the complex 6.

Identification code	1^b	2^b	3	3'	4
Empirical formula	$C_{98}H_{76}Cu_2N_6P_4Pt_2$	$C_{98}H_{76}Ag_2N_6P_4Pt_2$	$C_{63}H_{48}Ag_2Cl_2N_6P_2Pt_2$	$C_{64}H_{50}Ag_2Cl_4N_6P_2Pt_2$	$C_{100}H_{80}Cu_2N_6P_4Pt_2$
Formula weight	1978.78	2067.44	1627.83	1712.76	2006.84
Temperature (K)			150(2)		
Wavelength (Å)			0.71073		
Crystal system	Triclinic	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	$P\overline{1}$	$P 2_1/c$	$P\overline{1}$	$P\overline{1}$
Unit cell dimensions					
a (Å)	11.4119(3)	11.2565(2)	9.2122(5)	9.6064(9)	12.1032(9)
b (Å)	12.5448(3)	12.6777(2)	19.3491(10)	12.0144(11)	12.6537(10)
c (Å)	16.9820(4)	17.0873(3)	17.0238(9)	13.8676(13)	16.1583(12)
a (°)	98.9770(10)	98.1960(10)	90	83.922(2)	69.171(2)
β (°)	99.1600(10)	97.9310(10)	93.100(2)	77.016(2)	75.388(2)
γ (°)	114.7450	114.1070(10)	90	71.732(2)	65.969(1)
Volume (Å ³)	2111.46(9)	2150.48(7)	3030.0(3)	1479.9(2)	2095.6(3)
Z	1	1	2	1	1
ρ_{calc} (Mg/m ³)	1.556	1.596	1.784	1.922	1.590
μ (mm ⁻¹)	3.926	3.816	5.424	5.645	3.957
F(000)	980	1016	1564	824	996
Crystal size (mm ³)	$0.370\times0.324\times0.144$	$0.198\times0.107\times0.102$	$0.703 \times 0.280 \times 0.216$	$0.333\times0.318\times0.247$	$0.13 \times 0.28 \times 0.32$
θ range for data collection (°)	1.254 to 34.996	1.233 to 30.021	2.396 to 27.000	2.978 to 31.184	2.581 to 28.344
Index ranges	-18<=h<=18, -20<=k<=20, -27<=l<=27	-15<=h<=15, -17<=k<=17, -24<=1<=24	-11<=h<=11, -24<=k<=22, -21<=1<=21	-13<=h<=13, -17<=k<=17, -19<=l<=20	-16<=h<=16, -16<=k<=16z -19<=l<=21

Table S1. Crystal data and structure refinement for 1–8.

Reflections collected	109141	78967	33414	30000	32081
Independent reflections	18586 [R(int) = 0.0324]	12555 [R(int) = 0.0418]	6598 [R(int) = 0.0224]	9167 [R(int) = 0.0190]	9975 [R(int) = 0.0217]
Completeness to $\theta = 25.24^{\circ}$	100.0 %	100.0 %	99.6 %	99.7 %	99.8 %
Absorption correction	Numerical	Numerical	Numerical	Numerical	Numerical
Max. and min. transmission	0.568 and 0.255	0.678 and 0.465	0.310 and 0.176	0.248 and 0.176	0.629 and 0.364
Data/ restrains/ parameters	18586 / 36 / 579	12555 / 6 / 476	6598 / 12 / 389	9167 / 0 / 361	9975/0/515
GOOF on F ²	1.031	1.013	1.076	1.029	1.020
$\begin{array}{ll} \mbox{Final} & R & \mbox{indices} \\ [I{>}2\sigma(I)]^a \end{array}$	R1 = 0.0247, wR2 = 0.0496	R1 = 0.0247, wR2 = 0.0454	R1 = 0.0250, wR2 = 0.0707	R1 = 0.0181, wR2 = 0.0417	R1 = 0.0209, wR2 = 0.0425
R indices (all data)	R1 = 0.0338, wR2 = 0.0521	R1 = 0.0344, wR2 = 0.0481	R1 = 0.0280, wR2 = 0.0725	R1 = 0.0206, wR2 = 0.0426	R1 = 0.0256, wR2 = 0.0437
Largest diff. peak and hole $(e.Å^{-3})$	1.686 and -1.097	1.508 and -0.818	1.692 and -0.377	1.068 and -0.827	1.14/-0.53
^a $R_1 = \Sigma F_0 - F_c / \Sigma F_0 ; v$	$wR2 = [\Sigma [w(F_o^2 - Fc^2)^2]/\Sigma$	$\Sigma[w(F_o^2)^2]]^{1/2}$			

Table S1. Continued.

Identification code	5	6	7^b	8 ^b
Empirical formula	$C_{100}H_{80}Ag_2N_6P_4Pt_2$	$C_{64}H_{50}Ag_2N_6P_2Pt_2$	$C_{98}H_{72}Cu_2F_4 N_6P_4Pt_2$	$C_{98}H_{72}Ag_2F_4N_6P_4Pt_2$
Formula weight	2095.50	1570.96	2050.75	2139.41
Temperature (K)			150(2)	
Wavelength (Å)		C	0.71073	
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	$P 2_1/c$	$P\overline{1}$	$P\overline{1}$

Unit cell dimensions					
a (Å)	11.7210(8)	9.8020(2)	11.409(2)	11.2906(4)	
b (Å)	12.9305(10)	14.8584(4)	12.648(3)	12.7098(5)	
c (Å)	16.4457(12)	19.2882(5)	17.201(4)	17.2980(6)	
a (°)	70.328(3)	90	99.160(6)	98.394(2)	
β (°)	76.378(3)	104.0340(10)	99.009(6)	97.515(2)	
γ (°)	66.472(3)	90	115.008(6)	114.462(2)	
Volume (Å ³)	2137.1(3)	2725.32(12)	2150.1(8)	2184.27(14)	
Ζ	1	2	1	1	
$\rho_{calc}(Mg\!/m^3)$	1.628	1.914	1.584	1.626	
μ (mm ⁻¹)	3.841	5.931	3.865	3.766	
F(000)	1032	1512.0	1012	1048	
Crystal size (mm ³)	$0.083 \times 0.045 \times 0.04$	$0.259 \times 0.215 \times 0.11$	$0.149 \times 0.069 \times 0.034$	$0.117\times0.107\times0.056$	
θ range for data collection (°)	1.324 to 25.997	2.117 to 30.000	1.238 to 31.999	1.218 to 35.002	
Index ranges	$-14 \le h \le 14,$ $-15 \le k \le 15,$ $-20 \le l \le 20$	$-13 \le h \le 13,$ $-20 \le k \le 20,$ $-27 \le l \le 27$	-17<=h<=17, -18<=k<=18, -25<=l<=25	-18<=h<=18, -20<=k<=20, -27<=l<=27	
Reflections collected	67034	57735	115537	226439	
		7020 [D(int) - 0.0275]	14925 [R(int) =	19160 [R(int) =	
Independent reflections	8296 [R(int) = 0.0618]	7939 [R(mt) - 0.0373]	0.0494]	0.0439]	
Completeness to $\theta = 25.24^{\circ}$	98.9 %	99.9 %	100.0 %	99.9 %	
Absorption correction	Numerical	Muti-scan	Numerical	Numerical	
Max. and min. transmission	0.862 and 0.741	0.562 and 0.309	0.877 and 0.557	0.810 and 0.650	
Data/ restrains/ parameters	8296 / 0 / 515	7939/0/344	14925 / 40 / 555	19160 / 7 / 555	

GOOF on F ²	1.022	1.037	1.028	1.046				
$\begin{array}{l} \mbox{Final} \ R & \mbox{indices} \\ \left[I \!\!>\! 2 \sigma \! \left(I\right)\right]^a \end{array}$	$R_1 = 0.0261, wR_2 = 0.0393$	R1 = 0.0218, wR2 = 0.0432	R1 = 0.0260, wR2 = 0.0525	R1 = 0.0244, wR2 = 0.0566				
R indices (all data)	$R_1 = 0.0362, wR_2 = 0.0406$	R1 = 0.0309, wR2 = 0.0456	R1 = 0.0365, wR2 = 0.0552	R1 = 0.0322, wR2 = 0.0591				
Largest diff. peak and hole $(e.Å^{-3})$	1.04/-0.71	1.10/-0.59	0.941 and -0.749	1.956 and -0.952				
^a $R_1 = \Sigma F_0 - F_c / \Sigma F_0 ; v$	$wR2 = [\Sigma [w(F_o^2 - Fc^2)^2] / \Sigma$	$[w(F_o^2)^2]^{1/2}$. ^b The contrib	ution of the missing solver	nt was taken into account				
by using a SQUEEZE routine of PLATON.								

Table S2. Selected bond lengths (Å) and angles (deg.) for complexes 1–8.

	1	2	$3 P 2_1/c$	3' P 1	4	5	6	7	8
				Вс	ond lengths, Å				
C(1)-Pt(1)	1.9963(16)	2.011(2)	2.014(4)	1.999(2)	2.019(2)	2.0243)	2.026(3)	1.995(2)	2.001(2)
C(2)-Pt(1)	1.9590(16)	1.944(2)	1.941(4)	1.952(2)	1.933(2)	1.931(3)	1.934(3)	1.962(2)	1.947(2)
C(3)-Pt(1)	2.0320(14)	2.021(2)	2.021(4)	2.0320(19)	2.022(2)	2.013(3)	2.038(3)	2.015(2)	2.0194(17)
N(3)-Pt(1)	2.0473(14)	2.0517(19)	2.059(3)	2.0501(17)	2.0581(19)	2.05(2)	2.061(2)	2.054(2)	2.0554(16)
N(1)-Cu(1)	2.0161(14)			. ,	2.0180(18)			2.0192(18)	
N(2)-Cu(1)	2.0030(14)				1.9935(19)			2.015(2)	
N(1)-Ag(1)		2.299(2)	2.197(4)	2.2695(19)		2.308(2)			2.2983(18)
N(2)-Ag(1)		2.265(2)	2.209(3)	2.1606(18)		2.266(2)	2.185(2)		2.2814(18)
P(1)-Cu(1)	2.2581(4)				2.2749(6)			2.2637(7)	
P(2)-Cu(1)-	2.3044(4)				2.2509(6)			2.3073(7)	
P(1)-Ag(1)		2.4735(6)	2.3712(10)	2.3698(5)		2.4427(8)	2.3991(6)		2.4358(4)
P(2)-Ag(1)		2.4366(6)				2.4408(8)			2.4824(5)
C(1)-N(1)	1.157(2)	1.147(3)	1.150(5)	1.152(3)	1.155(3)	1.144(4)	1.149(3)	1.152(3)	1.149(3)
C(2)-N(2)	1.154(2)	1.147(3)	1.142(5)	1.155(3)	1.150(3)	1.147(3)	1.149(3)	1.158(3)	1.152(3)
Pt(1)-Ag(1)							2.9507(2)		
Ag(1)-C(3)							2.482(2)		

Bond angles, ^o									
C(2)-Pt(1)-C(1)	91.84(6)	91.65(9)	89.24(15)	90.20(8)	89.80(8)	89.31(11)	90.17(10)	91.93(8)	91.32(8)
C(2)-Pt(1)-C(3)	92.73(6)	93.04(9)	94.77(16)	93.54(8)	92.53(9)	93.43(11)	94.34(10)	92.36(9)	93.06(7)
C(1)-Pt(1)-C(3)	175.23(6)	173.79(10)	175.95(16)	176.23(8)	177.54(9)	176.77(11)	175.48(10)	175.46(9)	174.43(8)
C(2)-Pt(1)-N(3)	172.90(6)	173.36(9)	174.10(15)	173.19(7)	173.36(8)	173.62(10)	174.75(9)	173.38(8)	173.86(7)
C(1)-Pt(1)-N(3)	95.24(6)	94.93(9)	95.43(14)	95.84(8)	96.79(8)	96.55(10)	94.98(9)	94.63(8)	94.74(7)
C(3)-Pt(1)-N(3)	80.20(6)	80.46(9)	80.53(16)	80.41(8)	80.87(9)	80.79(10)	80.51(9)	81.11(8)	80.94(7)
N(1)-C(1)-Pt(1)	178.79(14)	175.8(2)	177.6(4)	177.5(2)	174.39(19)	177.1(2)	179.3(2)	178.8(2)	176.7(2)
N(2)-C(2)-Pt(1)	176.28(14)	177.6(2)	177.6(3)	177.25(19)	178.21(19)	178.3(3)	177.5(2)	176.06(19)	176.89(18)
C(1)-N(1)-Cu(1)	160.36(14)				160.8(2)			162.45(18)	
C(2)-N(2)-Cu(1)	164.04(15)				162.4(2)			164.37(19)	
C(1)-N(1)-Ag(1)		152.0(2)	155.4(3)	173.6(2)		151.0(2)			156.23(18)
C(2)-N(2)-Ag(1)		154.6(2)	175.4(3)	157.49(18)		147.5(2)	162.7(2)		156.33(18)
N(2)-Cu(1)-N(1)					103.50(8)			100.66(8)	
N(2)-Cu(1)-P(2)					110.92(6)			102.55(6)	
N(2)-Ag(1)-N(1)		100.32(8)	108.12(13)	100.32(7)		101.96(9)			98.83(7)
N(2)-Ag(1)-P(2)		114.16(6)				109.26(7)			103.72(5)

Figure S1. Molecular views of complexes 2, 4, 5, 7 and 8. Thermal ellipsoids are shown at the 50% probability level. H atoms are omitted for clarity. Symmetry transformations used to generate equivalent atoms ('): in 2, -x, 1-y, 1-z; in 4, 1-x, 1-y, 1-z; in 5, 1-x, 1-y, 1-z; in 7, -x, 2-y, -z; in 8, 1-x, -y, 1-z.

Figure S2. Solid state packing of complex 1.

Figure S3. Solid state packing of two polymorphs of complex **3**.

Figure S4. Solid state packing of complex 6 featuring shortest $CH_{Ph}-\pi_{C^{\wedge}N}$ contacts.

Figure S5. Normalized absorption (left) and emission (right) spectra of complexes 1–5, 7, 8 (CH₂Cl₂, 298 K).

Figure S6. Electron density difference plots for the lowest energy singlet excitation $(S_0 \rightarrow S_1)$ and the lowest energy triplet emission $(T_1 \rightarrow S_0)$ of the complexes 1, 3–5, and 7 (isovalue 0.002 a.u.). During the electronic transition, the electron density increases in the blue areas and decreases in the red areas. Hydrogen atoms are omitted for clarity.

Figure S7. Frontier molecular orbitals of the complex **6** (isovalue 0.04 a.u.). Hydrogen atoms are omitted for clarity.