#### **Supporting Information**

### Design and Applications of N-tert-Butyl Sulfinyl Squaramide

#### **Catalysts**

Yao Li, $^{\dagger}$  Cyndi Qixin He, $^{\ddagger}$  Fei-Xiang Gao, $^{\dagger}$  Zhen Li, $^{\dagger}$  Xiao-Song Xue, $^{\dagger}$  Xin Li, $^{*,\dagger}$  Kendall N. Houk $^{*,\ddagger}$  and Jin-Pei Cheng $^{\dagger}$ 

<sup>†</sup>State key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China)

<sup>‡</sup>Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

#### content

| 1. General information                                                                | .S1             |
|---------------------------------------------------------------------------------------|-----------------|
| 2. Catalyst Preparation and Characterization Data.                                    | .S2             |
| 3. Optimization of Reaction Conditions of Indole 3a and $\beta$ -Phenyl-substituted A | cyl             |
| Phosphonates 4d.                                                                      | .S8             |
| 4. General procedure for Friedel-Crafts alkylation and Product Characterization data  | .S9             |
| 5. Procedure for the transformation of product and Characterization Data              | <b>S20</b>      |
| 6. NMR spectra of new compounds                                                       | §24             |
| 7. HPLC spectra S                                                                     | 355             |
| 8. Experimental procedure for the kinetic study by <sup>1</sup> H NMR                 | <b>378</b>      |
| 9. Computational details                                                              | <b>5</b> 79     |
| 10. References S                                                                      | <del>S</del> 91 |

#### 1. General information

Unless otherwise stated, materials were obtained from commercial suppliers and used without further purification.  $CH_2Cl_2$  and  $CHCl_3$  were purified by distillation with  $CaH_2$ . Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). NMR spectra were acquired on a Bruker AV400 spectrometer, running at 400 MHz for  $^1H$  and 100 MHz for  $^{13}C$ , respectively. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift mutiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Mass spectra were obtained using electrospray ionization (ESI) mass spectrometer. Acyl phosphonates 4 were prepared according to literature.

#### 2. Catalyst Preparation and Characterization Data

#### (R)-N-(2-ethoxy-3,4-dioxocyclobut-1-en-1-yl)-2-methylpropane-2-sulfinamide (1)

The compound was prepared according to a modified procedure for synthesis of N-sulfonyl squaramide reported by Li et al.<sup>2</sup> Under an atmosphere of argon, sodium ethoxide (3.40 50 mmol) was added to a stirred solution of g, (R)-tert-butanesulfinamide (6.05 g, 50 mmol) in absolute ethanol (100 mL). The mixture was stirred for 20 min at room temperature, and then diethyl squarate (8.5 g, 50 mmol) was added dropwise. After stirring at room temperature for 24 h, the solution was concentrated in vacuo. H<sub>2</sub>O (30mL) was added to dissolve the mixture. The aqueous layer was acidified to pH < 2 with saturated aqueous NaHSO<sub>4</sub> and then extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 75 mL). The combined extracts were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. Chromatography on silica gel (0% to 5% MeOH in CH<sub>2</sub>Cl<sub>2</sub>) followed by recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Hexane yielded 8.50 g (68 %) 1 as a white solid. The ent-1 was prepared using (S)-tert-butanesulfinamide as material following the same procedure.  ${}^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (br s, 1H), 4.83 (q, J = 6.9 Hz, 2H), 1.50 (t, J = 7.0 Hz, 3H), 1.32 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  187.4, 185.5, 181.5, 171.0, 71.0, 58.7, 22.0, 16.0. HRMS (ESI) calcd for  $C_{10}H_{14}NO_4S$ (M-H) : 244.0649, found: 244.0650.

## General methods for preparation of chiral N-tertiary-butyl sulfinyl squaramide catalysts (2a-2h)

To a solution of 1 or ent-1 (2 mmol) and amine alcohol (3 mmol) in 10 mL  $CH_2Cl_2$  was added  $Et_3N$  (2.4 mmol). The mixture was stirred at room temperature. After 1 was consumed (usually 48-72 h),  $H_2O$  (10mL) was added to the mixture. The aqueous layer was acidified to pH < 2 with saturated aqueous  $NaHSO_4$  and then extracted with

CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined extracts were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated. Chromatography on silica gel (2% to 5% MeOH in CH<sub>2</sub>Cl<sub>2</sub>) or recrystallization from CH<sub>2</sub>Cl<sub>2</sub>/Hexane gave the desired product.

### (R)-N-(2-(((1R,2S)-2-hydroxy-2,3-dihydro-1*H*-inden-1-yl)amino)-3,4-dioxocyclob ut-1-en-1-yl)-2-methylpropane-2-sulfinamide (2a)

Following the general procedure, column chromatography (2% to 5% MeOH in  $CH_2Cl_2$ ) afforded **2a** (592 mg, 85%) as a light yellow foam. And it could be further purified by recrystallization from  $CH_2Cl_2$ /Hexane to give a white solid (488 mg, 70%) . <sup>1</sup>H NMR (400 MHz,  $CD_3OD$ )  $\delta$  7.36 – 7.16 (m, 4H), 5.65 (d, J = 3.8 Hz, 1H), 4.64 (s, 1H), 3.24 – 3.13 (m, 1H), 2.96 (d, J = 16.4 Hz, 1H), 1.29 (s, 9H). <sup>13</sup>C NMR (100 MHz,  $CD_3OD$ )  $\delta$  187.0, 183.9, 171.7, 166.0, 141.8, 129.6, 128.1, 126.4, 125.3, 74.3, 62.9, 59.4, 40.4, 22.1. HRMS (ESI) calcd for  $C_{17}H_{19}N_2O_4S$  (M-H)<sup>-</sup>: 347.1071, found: 347.1068.

## $(S)-N-(2-(((1R,2S)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)amino)-3,4-dioxocyclob \\ ut-1-en-1-yl)-2-methylpropane-2-sulfinamide (2b)$

Following the general procedure, column chromatography (2% to 5% MeOH in  $CH_2Cl_2$ ) afforded **2b** (627 mg, 90%) And it could be further purified by recrystallization from  $CH_2Cl_2$ /Hexane to give a white solid (522 mg, 75%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.11 (br s, 1H), 7.70 (d, J = 7.3 Hz, 1H), 7.30 – 7.26 (m, 4H), 5.63 (s, 1H), 4.69 (s, 1H), 3.20 (dd, J = 16.4, 4.9 Hz, 1H), 2.99 (d, J = 16.9 Hz, 1H),

1.25 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  185.0, 182.6, 170.3, 164.3, 140.1, 128.8, 127.4, 125.7, 124.5, 74.1, 62.0, 59.0, 39.7, 21.9. HRMS (ESI) calcd for  $C_{17}H_{19}N_2O_4S$  (M-H)<sup>-</sup>: 347.1071, found: 347.1070.

### (S)-N-(2-(((1S,2S)-2-hydroxy-2,3-dihydro-1*H*-inden-1-yl)amino)-3,4-dioxocyclob ut-1-en-1-yl)-2-methylpropane-2-sulfinamide (2c)

Following the general procedure, column chromatography (2% to 5% MeOH in  $CH_2Cl_2$ ) afforded **2c** (592 mg, 85%) as a light yellow foam. And it could be further purified by recrystallization from  $CH_2Cl_2$ /Hexane to give a white solid (488 mg, 70%). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.67 (s, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.34 – 7.15 (m, 4H), 5.61 (s, 1H), 5.33 (t, J = 7.7 Hz, 1H), 4.29 (q, J = 6.8 Hz, 1H), 3.20 – 3.12 (m, 1H), 2.76 (dd, J = 15.3, 7.8 Hz, 1H), 1.22 (s, 9H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  185.7, 181.2, 170.0, 164.8, 140.4, 139.4, 128.4, 127.0, 124.9, 124.0, 79.0, 65.7, 57.5, 38.1, 21.6. HRMS (ESI) calcd for  $C_{17}H_{21}N_2O_4S^+$  (M+H) $^+$ : 349.1217, found: 349.1220.

### (S)-N-(2-(((1R,2R)-2-hydroxy-2,3-dihydro-1*H*-inden-1-yl)amino)-3,4-dioxocyclob ut-1-en-1-yl)-2-methylpropane-2-sulfinamide (2d)

Following the general procedure, column chromatography (2% to 5% MeOH in  $CH_2Cl_2$ ) afforded **2d** (592 mg, 85%) as a light yellow foam. And it could be further purified by recrystallization from  $CH_2Cl_2$ /Hexane to give a white solid (522 mg, 75%). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.68 (s, 1H), 7.95 (d, J = 9.3 Hz, 1H), 7.32 – 7.16 (m, 4H), 5.63 (s, 1H), 5.34 (t, J = 8.1 Hz, 1H), 4.29 (dd, J = 14.4, 7.1 Hz, 1H), 3.16 (dd, J = 15.5, 7.2 Hz, 1H), 2.76 (dd, J = 15.5, 8.0 Hz, 1H), 1.22 (s, 9H). <sup>13</sup>C NMR

(100 MHz, DMSO- $d_6$ )  $\delta$  185.7, 181.2, 170.0, 164.8, 140.5, 139.4, 128.4, 127.1, 125.0, 124.0, 79.0, 65.7, 57.4, 38.1, 21.6. HRMS (ESI) calcd for  $C_{17}H_{21}N_2O_4S^+$  (M+H)<sup>+</sup>: 349.1217, found: 349.1219.

## (R)-N-(2-(((S)-1-hydroxy-3,3-dimethylbutan-2-yl)amino)-3,4-dioxocyclobut-1-en-1-yl)-2-methylpropane-2-sulfinamide (2e)

Following the general procedure, column chromatography (3% to 5% MeOH in  $CH_2Cl_2$ ) afforded **2e** (506 mg, 85%) as a white foam. And it could be further purified by recrystallization from  $CH_2Cl_2$ /Hexane to give a white solid (475 mg, 75%). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.57 (s, 1H), 7.57 (d, J = 10.3 Hz, 1H), 4.85 (s, 1H), 3.82 (dd, J = 12.4, 5.1 Hz, 1H), 3.68 (d, J = 11.2 Hz, 1H), 3.46 (d, J = 7.3 Hz, 1H), 1.23 (s, 9H), 0.91 (s, 9H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  185.9, 180.9, 170.6, 164.2, 64.4, 60.3, 57.4, 34.0, 26.5, 21.6. HRMS (ESI) calcd for  $C_{14}H_{25}N_2O_4S+(M+H)^+$ : 317.1530, found: 317.1535.

### (R)-N-(2-(((1R,2R)-2-hydroxycyclohexyl)amino)-3,4-dioxocyclobut-1-en-1-yl)-2-methylpropane-2-sulfinamide (2f)

Following the general procedure, column chromatography (3% to 5% MeOH in  $CH_2Cl_2$ ) afforded **2f** (566 mg, 90%) as a light yellow foam. And it could be further purified by recrystallization from  $CH_2Cl_2$ /Hexane to give a white solid (472 mg, 75%). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.56 (s, 1H), 7.66 (d, J = 8.3 Hz, 1H), 4.98 (s, 1H), 3.67 – 3.52 (m, 1H), 3.26 (s, 1H), 1.98 – 1.76 (m, 2H), 1.69 – 1.55 (m, 2H), 1.38 – 1.23 (m, 4H), 1.21 (s, 9H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  185.8, 180.8, 170.1,

164.4, 72.2, 59.5, 57.3, 34.1, 32.5, 24.2, 23.8, 21.6. HRMS (ESI) calcd for  $C_{14}H_{23}N_2O_4S^+$  (M+H) $^+$ : 315.1373, found: 315.1375

### (S)-N-(2-(((1R,2R)-2-hydroxycyclohexyl)amino)-3,4-dioxocyclobut-1-en-1-yl)-2-m ethylpropane-2-sulfinamide (2g)

Following the general procedure, column chromatography (3% to 5% MeOH in  $CH_2Cl_2$ ) afforded **2g** (566 mg, 90%) as a light yellow foam. And it could be further purified by recrystallization from  $CH_2Cl_2$ /Hexane to give a white solid (472 mg, 75%). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  9.56 (s, 1H), 7.65 (d, J = 8.5 Hz, 1H), 4.94 (s, 1H), 3.67 – 3.51 (m, 1H), 3.31 – 3.18 (m, 1H), 2.02 – 1.81 (m, 2H), 1.73 – 1.56 (m, 2H), 1.41 – 1.23 (m, 4H), 1.22 (s, 9H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  185.7, 180.8, 170.1, 164.5, 72.0, 59.6, 57.3, 34.1, 32.4, 24.2, 23.7, 21.6. HRMS (ESI) calcd for  $C_{14}H_{23}N_2O_4S^+$  (M+H)<sup>+</sup>: 315.1373, found: 315.1377

## 3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-(((1R,2S)-2-hydroxy-2,3-dihydro-1*H* -inden-1-yl)amino)cyclobut-3-ene-1,2-dione (2h)

Following the procedure reported by Rawal et al,<sup>3</sup> **2h** was obtained as a white solid (840 mg, 92%). <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  10.49 (s, 1H), 8.19 (d, J = 9.0 Hz, 1H), 8.10 (s, 2H), 7.68 (s, 1H), 7.35 – 7.16 (m, 4H), 5.64 (s, 1H), 5.52 (dd, J = 8.8, 5.0 Hz, 1H), 4.59 (t, J = 4.1 Hz, 1H), 3.15 (dd, J = 16.4, 4.9 Hz, 1H), 2.88 (d, J = 16.0 Hz, 1H). <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  184.7, 180.5, 169.7, 162.7, 141.3, 140.6, 131.4 (q, J = 33.0 Hz), 128.1, 126.7, 125.2, 124.3, 123.2 (q, J = 273.0 Hz), 117.9,

114.7, 72.3, 61.30. The methylene signal could not be seen due to the overlap with DMSO. HRMS (ESI) calcd for  $C_{21}H_{15}F_6N_2O_3^+$  (M+H) $^+$ : 457.0981, found: 457.0986.

# 3. Optimization of Reaction Conditions of Indole 3a and β-Phenyl-substituted Acyl Phosphonates 4d

Table S1. Optimization of Reaction Conditions of Indole 3a and β-Phenyl-substituted Acyl Phosphonates 4d.<sup>a</sup>

| entry | t/°C | time | CHCl <sub>3</sub> /ml | Additive           | yield/% <sup>b</sup> | ee%°            |
|-------|------|------|-----------------------|--------------------|----------------------|-----------------|
| 1     | -20  | 3 d  | 2.0                   | $3 \text{ Å MS}^d$ | <10                  | 43              |
| 2     | 0    | 3 d  | 2.0                   | $3 \text{ Å MS}^d$ | 20                   | 27              |
| 3     | rt   | 2 d  | 0.5                   | None               | 80                   | 58 <sup>e</sup> |
| 4     | rt   | 2 d  | 0.5                   | None               | 90                   | 70              |
| 5     | rt   | 2 d  | 1.0                   | None               | 68                   | $23^e$          |
| 6     | rt   | 2 d  | 0.5                   | $3 \text{ Å MS}^d$ | 85                   | 55              |
| 7     | 0    | 3 d  | 0.5                   | None               | 75                   | 85              |

<sup>a</sup>Unless otherwise indicated, all reactions were carried out with **3** (0.1 mmol), **4d** (0.2 mmol, 2.0 eq), 10 mol % catalyst **2b**. <sup>b</sup>Isolated yields. <sup>c</sup>Determined by HPLC analysis. <sup>d</sup>40 mg 3 Å MS was added. <sup>e</sup>Reaction was carried out with 0.1 mmol **3** and 0.1 mmol **4d**. (3 Å MS = 3 Å molecular sieves)

# 4. General procedure for Friedel-Crafts alkylation and Product Characterization data

A dry, screw-capped reaction vial containing a magnetic stir bar was charged with acyl phosphonate (0.2 mmol, 2 equiv), catalyst **2b** (0.01 mmol, 0.1 equiv), 40 mg 3 Å molecular sieves and CHCl<sub>3</sub> (2.0 mL). After 10 min of stirring at -20 °C, the indole (0.1 mmol, 1 equiv) was added. The stirring was maintained at this temperature for the time required for almost full conversion of the indole as monitored by TLC (usually 72 h). Upon completion of the reaction, the alcohol/amine (0.1 mL) and DBU (0.2 mmol, 2 equiv) were added in the described sequence. After additionally 30 min of stirring, the crude reaction mixture was diluted with saturated aqueous NH<sub>4</sub>Cl, extracted with EtOAc (3 x 5 mL), dried over MgSO<sub>4</sub> and concentrated *in vacuo*. Purified by chromatography on silica gel afforded the desired products.

#### (S)-Methyl 3-(1H-indol-3-yl)butanoate (5a)

Following the general procedure **5a** was isolated by chromatography (petroleum ether /EtOAc 5:1) as a colorless oil (18.5 mg, 85%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (s, 1H), 7.67 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 6.99 (t, J = 1.9 Hz, 1H), 3.66 (s, 3H), 3.64 – 3.58 (m, 1H), 2.84 (dd, J = 15.0, 6.2 Hz, 1H), 2.59 (dd, J = 15.0, 8.7 Hz, 1H), 1.42 (d, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5, 136.5, 126.4, 122.1, 120.9, 120.1, 119.4, 119.3, 111.3, 51.7, 42.4, 28.1, 21.2. HRMS (ESI) calcd for C<sub>13</sub>H<sub>16</sub>NO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup>: 218.1176, found: 218.1177. The enantiomeric excess was determined to be 94% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm): t<sub>R</sub> (minor) = 13.4 min, t<sub>R</sub> (major) = 19.2 min. [ $\alpha$ ]<sub>D</sub><sup>22</sup>:13.2 (c 1.03, CHCl<sub>3</sub>). Lit. [ $\alpha$ ]<sub>D</sub><sup>28</sup>:7.3 (c 0.7, CHCl<sub>3</sub>).<sup>4</sup>

#### (S)-Ethyl 3-(1*H*-indol-3-yl)butanoate (5b)

Following the general procedure **5b** was isolated by chromatography (petroleum ether /EtOAc 5:1) as a colorless oil (19.4 mg, 84%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (s, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 2.1 Hz, 1H), 4.12 (q, J = 7.1, 7.1, 7.1 Hz, 2H), 3.67 – 3.58 (m, 1H), 2.83 (dd, J = 14.9, 6.1 Hz, 1H), 2.58 (dd, J = 14.9, 8.7 Hz, 1H), 1.43 (d, J = 6.9 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.0, 136.6, 126.5, 122.1, 121.0, 120.1, 119.3, 111.3, 60.4, 42.6, 28.1, 21.2, 14.3. HRMS (ESI) calcd for  $C_{14}H_{18}NO_2^+$  (M+H)<sup>+</sup>: 232.1332, found: 232.1336. The enantiomeric excess was determined to be 93% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_R$  (minor) = 10.6 min,  $t_R$  (major) = 13.6 min.  $[\alpha]_D^{22}:1.4$  (c 0.57, CHCl<sub>3</sub>).

#### (S)-4-methylbenzyl 3-(1*H*-indol-3-yl)butanoate (5c)

Following the general procedure **5c** was isolated by chromatography (petroleum ether /EtOAc 5:1) as a colorless oil (24.6 mg, 80% yield).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.95 (s, 1H), 7.66 (d, J=7.9, 1H), 7.36 (d, J=8.1, 1H), 7.20 (t, J=7.6, 1H), 7.18 – 7.08 (m, 4H), 6.97 (d, J=2.4, 1H), 5.05 (s, 2H), 3.64 (q, J=7.1, 1H), 3.04 – 2.49 (m, 2H), 2.35 (s, 3H), 1.42 (d, J=6.9, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.9, 138.1, 136.5, 133.1, 129.3, 128.4, 126.5, 122.1, 120.9, 120.2, 119.4, 119.3, 111.3, 66.2, 42.6, 28.2, 21.3, 21.3. HRMS (MALDI) calcd for  $C_{20}H_{21}NNaO_2$  (M+Na) $^+$ : 330.1465, found: 330.1468.The enantiomeric excess was determined to be 93% ee by chiral HPLC

analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 18.2 min, tR (major) = 25.4 min.  $\lceil \alpha \rceil_D^{22}$ :-8.2 (c 0.37, CHCl<sub>3</sub>).

#### (S)-N-Benzyl-3-(1H-indol-3-yl)butanamide (5d)

Following the general procedure **5d** was isolated by chromatography (petroleum ether /EtOAc 2:1 to 1:1) as a colorless oil (25.1 mg, 86%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (s, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.24 – 7.16 (m, 4H), 7.11 (t, J = 7.5 Hz, 1H), 7.01 – 6.86 (m, 3H), 4.30 (d, J = 5.8 Hz, 2H), 3.70 – 3.55 (m, 1H), 2.71 (dd, J = 13.8, 7.6 Hz, 1H), 2.54 (dd, J = 13.8, 6.9 Hz, 1H), 1.46 (d, J = 7.0 Hz, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.2, 138.1, 136.6, 128.6, 127.5, 127.3, 126.2, 122.0, 120.7, 120.3, 119.3, 119.3, 111.4, 45.0, 43.5, 28.9, 21.3. HRMS (ESI) calcd for  $C_{19}H_{21}N_2O^+$  (M+H) $^+$ : 293.1648, found: 293.1654. The enantiomeric excess was determined to be 93% ee by chiral HPLC analysis (ChiralCel OD-H, 20% i-PrOH in hexanes, 0.7 mL/min, 210 nm):  $t_R$  (major) = 24.2 min,  $t_R$  (minor) = 27.3 min.  $[\alpha]_D^{22}$ :-7.3 (c 0.93, CHCl<sub>3</sub>).

#### (S)-methyl 3-(5-methoxy-1*H*-indol-3-yl)butanoate (5e)

Following the general procedure **5e** was isolated by chromatography (petroleum ether /EtOAc 5:1) as a colorless oil (22.8 mg, 92%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (s, 1H), 7.24 (d, J=8.8, 1H), 7.09 (d, J=2.4, 1H), 6.97 (d, J=2.5, 1H), 6.86 (dd, J=8.8, 2.4, 1H), 3.88 (s, 3H), 3.66 (s, 3H), 3.63 – 3.52 (m, 1H), 2.82 (dd, J=15.0, 6.1, 1H), 2.57 (dd, J=15.0, 8.8, 1H), 1.41 (d, J=6.9, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5,

153.9, 131.7, 126.8, 120.9, 120.7, 112.3, 112.0, 101.2, 56.1, 51.7, 42.3, 28.0, 21.1. HRMS (ESI) calcd for  $C_{14}H_{17}NNaO_3$  (M+Na)<sup>+</sup> : 270.1101, found: 270.1103. The enantiomeric excess was determined to be 93% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_R$  (minor) = 15.5 min,  $t_R$  (major) = 21.3 min.  $[\alpha]_D^{22}$ :1.1 (c 0.73, CHCl<sub>3</sub>).

#### (S)-methyl 3-(5-methyl-1*H*-indol-3-yl)butanoate (5f)

Following the general procedure **5f** was isolated by chromatography (petroleum ether /EtOAc 6:1) as a colorless oil (20.1 mg, 87%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (s, 1H), 7.45 – 7.41 (m, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.02 (dd, J = 8.4, 1.5 Hz, 1H), 6.96 (d, J = 2.4 Hz, 1H), 3.66 (s, 3H), 3.63 – 3.53 (m, 1H), 2.83 (dd, J = 15.0, 6.0 Hz, 1H), 2.56 (dd, J = 15.0, 8.8 Hz, 1H), 2.46 (s, 3H), 1.41 (d, J = 6.9 Hz, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5, 134.9, 128.6, 126.7, 123.8, 120.5, 120.2, 118.9, 111.0, 51.7, 42.4, 28.1, 21.7, 21.1. HRMS (ESI) calcd for  $C_{14}H_{17}NNaO_{2}$  (M+Na)<sup>+</sup>: 254.1151, found: 254.1155. The enantiomeric excess was determined to be 95% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_{R}$  (minor) = 14.1 min,  $t_{R}$  (major) = 28.0 min.  $[\alpha]_{D}^{22}$ :5.1 (c 0.70, CHCl<sub>3</sub>).

#### (S)-methyl 3-(5-(benzyloxy)-1*H*-indol-3-yl)butanoate (5g)

Following the general procedure **5g** was isolated by chromatography (petroleum ether /EtOAc 4:1) as a colorless oil (25.2 mg, 78%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.87 (s, 1H), 7.53 – 7.46 (m, 2H), 7.43 – 7.36 (m, 2H), 7.36 – 7.29 (m, 1H), 7.24 (d, J = 7.9 Hz, 1H), 7.18 (d, J = 2.3 Hz, 1H), 7.00 – 6.90 (m, 2H), 5.12 (s, 2H), 3.66 (s, 3H), 3.61

-3.50 (m, 1H), 2.80 (dd, J = 15.0, 6.0 Hz, 1H), 2.55 (dd, J = 15.0, 8.7 Hz, 1H), 1.39 (d, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.4, 153.1, 137.8, 131.9, 128.6, 127.9, 127.8, 126.9, 121.0, 120.8, 113.0, 112.0, 103.1, 71.2, 51.7, 42.2, 28.0, 21.0. HRMS (ESI) calcd for  $C_{20}H_{21}NNaO_3$  (M+Na)<sup>+</sup> : 346.1414, found: 346.1418. The enantiomeric excess was determined to be 92% ee by chiral HPLC analysis (ChiralCel OD-H, 20% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_R$  (minor) = 11.1 min,  $t_R$  (major) = 17.7 min.  $[\alpha]_D^{22}$ :13.2 (c 1.03, CHCl<sub>3</sub>).  $[\alpha]_D^{22}$ :23.0 (c 0.60, CHCl<sub>3</sub>).

#### (S)-methyl 3-(5-iodo -1*H*-indol-3-yl)butanoate (5h)

Following the general procedure **5h** was isolated by chromatography (petroleum ether /EtOAc 4:1) as a colorless oil (24.0 mg, 70%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (s, 1H), 7.97 (d, J = 1.6 Hz, 1H), 7.43 (dd, J = 8.6, 1.6 Hz, 1H), 7.13 (d, J = 8.5 Hz, 1H), 6.96 (d, J = 2.4 Hz, 1H), 3.65 (s, 3H), 3.54 (h, J = 7.1 Hz, 1H), 2.77 (dd, J = 15.0, 6.5 Hz, 1H), 2.57 (dd, J = 15.1, 8.4 Hz, 1H), 1.39 (d, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.2, 135.6, 130.5, 129.1, 128.1, 121.0, 120.4, 113.3, 82.9, 51.7, 42.3, 27.9, 21.2. HRMS (ESI) calcd for  $C_{13}H_{13}INO_2$  (M-H) : 341.9996, found: 341.9993. The enantiomeric excess was determined to be 93% ee by chiral HPLC analysis (ChiralCel OD-H, 5% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_R$  (minor) = 27.7 min,  $t_R$  (major) = 36.1 min.  $[\alpha]_D^{22} : -9.2$  (c 0.50, CHCl<sub>3</sub>).

#### (S)-methyl 3-(5-chloro-1*H*-indol-3-yl)butanoate (5i)

Following the general procedure **5i** was isolated by chromatography (petroleum ether /EtOAc 4:1) as a colorless oil (18.1 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.02 (s,

1H), 7.61 (d, J = 2.0 Hz, 1H), 7.26 (d, J = 6.5 Hz, 1H), 7.14 (dd, J = 8.6, 2.0 Hz, 1H), 7.02 (d, J = 2.4 Hz, 1H), 3.65 (s, 3H), 3.61 – 3.50 (m, 1H), 2.78 (dd, J = 15.1, 6.5 Hz, 1H), 2.58 (dd, J = 15.0, 8.4 Hz, 1H), 1.40 (d, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.2, 134.9, 127.6, 125.1, 122.5, 121.6, 120.7, 118.8, 112.3, 51.7, 42.3, 28.0, 21.2. HRMS (ESI) calcd for  $C_{13}H_{15}CINO_2^+$  (M+H)<sup>+</sup> : 252.0786, found: 252.0783. The enantiomeric excess was determined to be 86% ee by chiral HPLC analysis (ChiralCel OD-H, 5% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 23.9 min, tR (major) = 29.5 min.  $\lceil \alpha \rceil_D^{22}$ :-1.2 (c 1.30, CHCl<sub>3</sub>).

#### (S)-methyl 3-(5-bromo-1*H*-indol-3-yl)butanoate (5j)

Following the general procedure **5j** was isolated by chromatography (petroleum ether /EtOAc 4:1) as a pale red oil (21.0 mg, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 (s, 1H), 7.77 (d, J = 1.8 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.22 (d, J = 8.6 Hz, 1H), 7.00 (d, J = 2.3 Hz, 1H), 3.65 (s, 3H), 3.60 – 3.51 (m, 1H), 2.78 (dd, J = 15.0, 6.5 Hz, 1H), 2.57 (dd, J = 15.0, 8.4 Hz, 1H), 1.39 (d, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.2, 135.2, 128.3, 125.0, 121.9, 121.4, 120.7, 112.8, 112.7, 51.7, 42.3, 27.9, 21.2. HRMS (ESI) calcd for C<sub>13</sub>H<sub>15</sub>BrNO<sub>2</sub><sup>+</sup> (M+H)<sup>+</sup> : 296.0281, found: 296.0278. The enantiomeric excess was determined to be 86% ee by chiral HPLC analysis (ChiralCel OD-H, 5% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 25.5min, tR (major) = 31.7 min.  $[\alpha]_D^{22}$ :12.5 (c 1.20, CHCl<sub>3</sub>).

#### (S)-methyl 3-(6-methoxy-1*H*-indol-3-yl)butanoate (5k)

Following the general procedure **5k** was isolated by chromatography (petroleum ether /EtOAc 5:1) as a colorless oil (21.1 mg, 86%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.82 (s,

1H), 7.51 (d, J = 8.6 Hz, 1H), 6.86 (dd, J = 13.7, 2.2 Hz, 2H), 6.79 (dd, J = 8.6, 2.3 Hz, 1H), 3.84 (s, 3H), 3.65 (s, 3H), 3.60 – 3.53 (m, 1H), 2.81 (dd, J = 15.0, 6.1 Hz, 1H), 2.56 (dd, J = 15.0, 8.7 Hz, 1H), 1.39 (d, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5, 156.6, 137.3, 121.0, 120.9, 119.9, 118.8, 109.4, 94.8, 55.8, 51.7, 42.4, 28.1, 21.2. HRMS (ESI) calcd for  $C_{14}H_{17}NNaO_3$  (M+Na)<sup>+</sup> : 270.1101, found: 270.1106. The enantiomeric excess was determined to be 93% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_R$  (minor) = 18.2 min,  $t_R$  (major) = 24.8 min.  $[\alpha]_D^{22}$ :9.8 (c 0.90, CHCl<sub>3</sub>).

#### (S)-methyl 3-(6-chloro -1*H*-indol-3-yl)butanoate (5l)

Following the general procedure **51** was isolated by chromatography (petroleum ether /EtOAc 5:1) as a colorless oil (17.1 mg, 68%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (s, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 1.8 Hz, 1H), 7.08 (dd, J = 8.5, 1.8 Hz, 1H), 6.98 (d, J = 2.3 Hz, 1H), 3.64 (s, 3H), 3.56 (m, 1H), 2.78 (dd, J = 15.0, 6.4 Hz, 1H), 2.57 (dd, J = 15.0, 8.4 Hz, 1H), 1.40 (d, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.3, 136.9, 128.1, 125.1, 121.1, 120.8, 120.1, 120.1, 111.2, 51.7, 42.4, 28.0, 21.2. HRMS (ESI) calcd for C<sub>13</sub>H<sub>13</sub>ClNO<sub>2</sub> (M-H)<sup>-</sup>: 250.0640, found: 250.0638. The enantiomeric excess was determined to be 93% ee by chiral HPLC analysis (ChiralCel OD-H, 5% i-PrOH in hexanes, 1 mL/min, 210 nm): t<sub>R</sub> (minor) = 17.7 min, t<sub>R</sub> (major) = 22.4 min.  $\lceil \alpha \rceil_D^{22}$ :3.7 (c 0.60, CHCl<sub>3</sub>).

#### (S)-methyl 3-(2-methyl-1*H*-indol-3-yl)butanoate (5m)

Following the general procedure **5m** was isolated by chromatography (petroleum ether /EtOAc 6:1) as a yellow oil (13.9 mg, 60%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (s, 1H), 7.63 – 7.58 (m, 1H), 7.28 – 7.24 (m, 1H), 7.13 – 7.02 (m, 2H), 3.60 (s, 3H), 3.59 – 3.51 (m, 1H), 2.81 (dd, J = 7.6, 1.6 Hz, 2H), 2.41 (s, 3H), 1.45 (d, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5, 135.6, 130.5, 127.2, 120.8, 119.2, 119.1, 115.0, 110.5, 51.5, 41.5, 28.2, 20.9, 12.2. HRMS (ESI) calcd for C<sub>14</sub>H<sub>17</sub>NNaO<sub>2</sub> (M+Na)<sup>+</sup>: 254.1151, found: 254.1156. The enantiomeric excess was determined to be 88% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm): t<sub>R</sub> (minor) = 12.7 min, t<sub>R</sub> (major) = 21.4 min. [ $\alpha$ ]<sub>D</sub><sup>22</sup>:10.0 (c 0.40, CHCl<sub>3</sub>).

#### (S)-methyl 3-(7-methyl-1*H*-indol-3-yl)butanoate (5n)

Following the general procedure **5n** was isolated by chromatography (petroleum ether /EtOAc 6:1) as a colorless oil (16.2 mg, 70%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (s, 1H), 7.52 (d, J = 7.7 Hz, 1H), 7.08 – 6.97 (m, 3H), 3.65 (s, 3H), 3.64 – 3.56 (m, 1H), 2.84 (dd, J = 15.0, 6.1 Hz, 1H), 2.58 (dd, J = 15.0, 8.7 Hz, 1H), 2.48 (s, 3H), 1.42 (d, J = 6.9 Hz, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.5, 136.1, 126.0, 122.7, 121.5, 120.5, 119.8, 119.7, 117.1, 51.7, 42.4, 28.2, 21.2, 16.8. HRMS (ESI) calcd for  $C_{14}H_{17}NNaO_2$  (M+Na) $^+$ : 254.1151, found: 254.1156. The enantiomeric excess was determined to be 96% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_R$  (minor) = 9.9 min,  $t_R$  (major) = 13.8 min. [ $\alpha$ ] $_D^{22}$ :10.2 (c 0.45, CHCl<sub>3</sub>).

#### (S)-methyl 3-(4-methyl-1*H*-indol-3-yl)butanoate (50)

Following the general procedure **50** was isolated by chromatography (petroleum ether /EtOAc 6:1) as a colorless oil (16.1 mg, 70%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (s, 1H), 7.19 (dt, J = 8.1, 0.9 Hz, 1H), 7.07 (dd, J = 8.1, 7.1 Hz, 1H), 7.01 (dd, J = 2.6, 0.8 Hz, 1H), 6.86 (dt, J = 7.2, 0.9 Hz, 1H), 3.96 – 3.86 (m, 1H), 3.67 (s, 3H), 2.83 (dd, J = 15.1, 5.5 Hz, 1H), 2.75 (s, 3H), 2.50 (dd, J = 15.2, 9.2 Hz, 1H), 1.38 (d, J = 6.8 Hz, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.3, 136.8, 130.8, 125.1, 122.6, 122.2, 121.6, 119.9, 109.2, 51.7, 43.7, 28.5, 22.7, 20.6. HRMS (ESI) calcd for  $C_{14}H_{17}NNaO_{2}$  (M+Na) $^{+}$ : 254.1151, found: 254.1153. The enantiomeric excess was determined to be 92% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm):  $t_{R}$  (minor) = 11.1 min,  $t_{R}$  (major) = 12.4 min.  $[\alpha]_{D}^{22}$ :5.5 (c 0.55, CHCl<sub>3</sub>).

#### (S)-methyl 3-(1-methyl-1*H*-indol-3-yl)butanoate (5p)

Following the general procedure **5p** was isolated by chromatography (petroleum ether /EtOAc 6:1) as a colorless oil (9.2 mg, 40%).  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.67 – 7.62 (m, 1H), 7.31 – 7.27 (m, 1H), 7.25 – 7.19 (m, 1H), 7.14 – 7.07 (m, 1H), 6.85 (s, 1H), 3.74 (s, 3H), 3.65 (s, 3H), 3.63 – 3.57 (m, 1H), 2.82 (dd, J = 15.0, 6.1 Hz, 1H), 2.57 (dd, J = 15.0, 8.7 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H).  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  173.3, 137.1, 126.7, 124.8, 121.5, 119.3, 119.2, 118.6, 109.3, 51.5, 42.4, 32.6, 27.9, 21.2. The enantiomeric excess was determined to be 11% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 8.3 min, tR (major) = 10.0 min.  $\lceil \alpha \rceil_D^{22}$ : 0.4 (c 0.57, CHCl<sub>3</sub>).

#### (S)-methyl 3-(1*H*-indol-3-yl)pentanoate (5q)

Following the general procedure **5q** was isolated by chromatography (petroleum ether /EtOAc 6:1) as a colorless oil (18.5 mg, 80%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (s, 1H), 7.66 (dd, J = 7.9, 1.1 Hz, 1H), 7.35 (dt, J = 8.1, 0.9 Hz, 1H), 7.19 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.11 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), 3.60 (s, 3H), 3.48 – 3.28 (m, 1H), 2.75 (d, J = 7.5 Hz, 2H), 1.92 – 1.62 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  173.6, 136.6, 126.8, 122.0, 121.2, 119.4, 119.3, 118.7, 111.3, 51.6, 40.7, 35.2, 28.4, 12.1. HRMS (ESI) calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>2</sub> (M+H)<sup>+</sup>: 232.1332, found: 232.1335. The enantiomeric excess was determined to be 95% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 12.1 min, tR (major) = 22.3 min. [ $\alpha$ ]<sub>D</sub><sup>26</sup>:5.6 (c 0.90, CHCl<sub>3</sub>).

#### (R)-methyl 3-(1*H*-indol-3-yl)-4-methylpentanoate (5r)

Following the general procedure **5r** was isolated by chromatography (petroleum ether /EtOAc 6:1) as a colorless oil (14.7 mg, 60%).  $^{1}$ H NMR (400 MHz, Chloroform-d)  $\delta$  8.00 (s, 1H), 7.64 (dd, J = 8.0, 1.2 Hz, 1H), 7.34 (dt, J = 8.1, 0.9 Hz, 1H), 7.17 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.10 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 6.98 (d, J = 2.4 Hz, 1H), 3.52 (s, 3H), 3.43 – 3.26 (m, 1H), 2.82 (dd, J = 15.0, 5.7 Hz, 1H), 2.70 (dd, J = 15.0, 9.6 Hz, 1H), 2.17 – 2.00 (m, 1H), 0.91 (dd, J = 11.5, 6.7 Hz, 6H).  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  173.9, 136.3, 127.5, 121.9, 121.6, 119.7, 119.3, 117.8, 111.2, 51.6, 39.9, 37.8, 32.5, 20.5, 20.4. HRMS (ESI) calcd for  $C_{15}H_{20}NO_{2}$  (M+H) $^{+}$ : 246.1489, found: 246.1493. The enantiomeric excess was determined to be 93% ee by chiral HPLC analysis (ChiralCel OD-H, 10% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 8.8 min, tR (major) = 13.4 min.  $[\alpha]_{D}^{26}$ :4.2 (c 1.05, CHCl<sub>3</sub>).

#### (R)-methyl 3-(1*H*-indol-3-yl)-3-phenylpropanoate (5s)

# 5. Procedure for the transformation of product and Characterization Data

#### (S)-3-(1*H*-indol-3-yl)butanamide (6)

A dry 100 ml flask containing a magnetic stir bar was charged with acyl phosphonate 4a (356 mg, 2 mmol, 2 equiv), catalyst 2b (34.5 mg, 0.1 mmol, 0.1 equiv), 400 mg 3 Å molecular sieves and CHCl<sub>3</sub> (20.0 mL). After 10 min of stirring at -20 °C, indole **3a** (117 mg, 1 mmol, 1 equiv) was added. After stirring was at this temperature for 72 h, a solution of 0.4 M NH<sub>3</sub> in 1,4-dioxane (40 ml, 16 mmol) was added to the mixture. Then DBU(304 mg, 2 mmol, 2 equiv) was added dropwise. The reaction mixture was warmed up to room temperature and stirred for 1 h. After 1 h, the resulting suspension was filtered and concentrated in vacuo. Chromatography on silica gel (petroleum ether /EtOAc 1:2 to EtOAc) gave the desired product 6 as a white solid (121.4 mg, 60%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.11 (s, 1H), 7.67 (dd, J = 8.0, 1.1 Hz, 1H), 7.37 (dt, J= 8.1, 0.9 Hz, 1H), 7.20 (ddd, J = 8.1, 7.0, 1.3 Hz, 1H), 7.12 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 5.38 (s, 1H), 5.32 (s, 1H), 3.58 (q, J = 7.1 Hz, 1H), 2.75 (dd, J = 14.3, 7.0 Hz, 1H), 2.51 (dd, J = 14.3, 7.5 Hz, 1H), 1.45 (d, J = 7.0 Hz, 3H).<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 174.7, 136.7, 126.2, 122.3, 120.6, 120.6, 119.5, 119.3, 111.5, 44.1, 28.6, 21.3. HRMS (ESI) calcd for  $C_{12}H_{15}N_2O(M+H)^+$ : 203.1179, found: 203.1178. The enantiomeric excess was determined to be 94% ee by chiral HPLC analysis (ChiralCel OD-H, 20% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 15.5 min, tR (major) = 19.1 min.  $[\alpha]_D^{26}$ :4.7 (c 0.60, CHCl<sub>3</sub>).

#### (S)-3-(1*H*-indol-3-yl)butan-1-amine (7)

To the solution of **6** (101 mg, 0.5 mmol) in tetrahydrofuran (5 mL) is added lithium aluminum hydride (190 mg, 2.5 mmol) at 0 °C. The resulting mixture was warmed to room temperature and then refluxed for 6 h. The mixture was then cooled to room temperature and quenched by slow addition of water (1 mL) followed by aqueous 15% sodium hydroxide (1 mL) and water (1 mL). The resulting suspension was filtered. The aqueous layer was acidified to pH<2 with 1 M aqueous HCl and washed with AcOEt (20 mL). The aqueous solution was then basified with 6 M NaOH and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined CH<sub>2</sub>Cl<sub>2</sub> was dried with Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The desired product **7** was obtained as a pale yellow solid (70.5 mg, 75%).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.33 (s, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.22 – 7.15 (m, 1H), 7.15 – 7.06 (m, 1H), 6.95 (d, J = 1.8 Hz, 1H), 3.15 (q, J = 7.0 Hz, 1H), 2.84 – 2.67 (m, 2H), 1.96 (dq, J = 14.4, 7.4 Hz, 1H), 1.81 (dq, J = 13.6, 7.0 Hz, 1H), 1.38 (d, J = 7.0 Hz, 3H), 1.50 – 1.27 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 136.6, 126.8, 121.9, 121.9, 120.2, 119.4, 119.1, 111.3, 41.6, 40.7, 28.8, 21.9. HRMS (ESI) calcd for  $C_{12}H_{17}N_2$  (M+H)<sup>+</sup>: 189.1386, found: 189.1390. [α]<sub>D</sub><sup>26</sup>:-6.3 (c 0.60, CHCl<sub>3</sub>).

$$\begin{array}{c|c} & & & \\ \hline & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

#### (S)-N-(3-(1H-indol-3-yl)butyl)-4-methylbenzenesulfonamide (8)

To a stirred solution of 7 (19 mg, 0.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL), were sequentially added Et<sub>3</sub>N (16 mg, 0.12 mmol) and TsCl (23 mg, 0.12 mmol). The reaction mixture was then stirred for 24 h at room temperature. Chromatography on silica gel (petroleum ether /EtOAc 4:1 to 2:1) gave the desired product **8** as a white solid (30 mg, 88%).

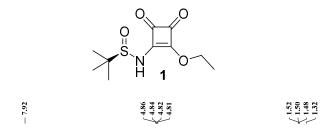
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.97 (s, 1H), 7.62 (d, J = 7.9 Hz, 2H), 7.53 (d, J = 7.9 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.20 (dd, J = 18.7, 7.9 Hz, 3H), 7.08 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 2.3 Hz, 1H), 4.39 (t, J = 6.2 Hz, 1H), 3.15 – 3.01 (m, 1H), 3.01 – 2.86 (m, 2H), 2.40 (s, 3H), 1.98 – 1.75 (m, 2H), 1.31 (d, J = 6.9 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 143.4, 137.0, 136.7, 129.7, 127.1, 126.4, 122.1, 120.6, 120.5, 119.3, 119.3, 111.5, 42.0, 37.1, 28.8, 21.7, 21.6. HRMS (ESI) calcd for C<sub>19</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>S (M+H)<sup>+</sup>: 343.1475, found: 343.1469. The enantiomeric excess was determined to be 94% ee by chiral HPLC analysis (ChiralCel AD-H, 20% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 24.4 min, tR (major) = 22.6 min. [α]<sub>D</sub><sup>26</sup>:4.5 (c 0.85, CHCl<sub>3</sub>).

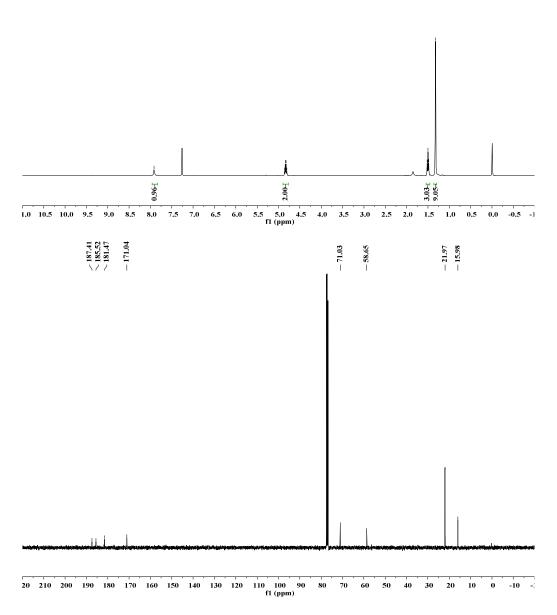
$$\begin{array}{c|c} & & & \\ \hline & NH_2 \\ \hline & PhCOCI, Et_3N \\ \hline & CH_2Cl_2, rt \\ \hline & N \\ H \\ \hline & 9 \\ \end{array}$$

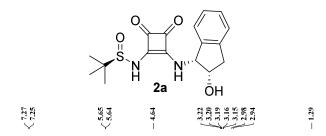
#### (S)-N-(3-(1H-indol-3-yl)butyl)benzamide (9)

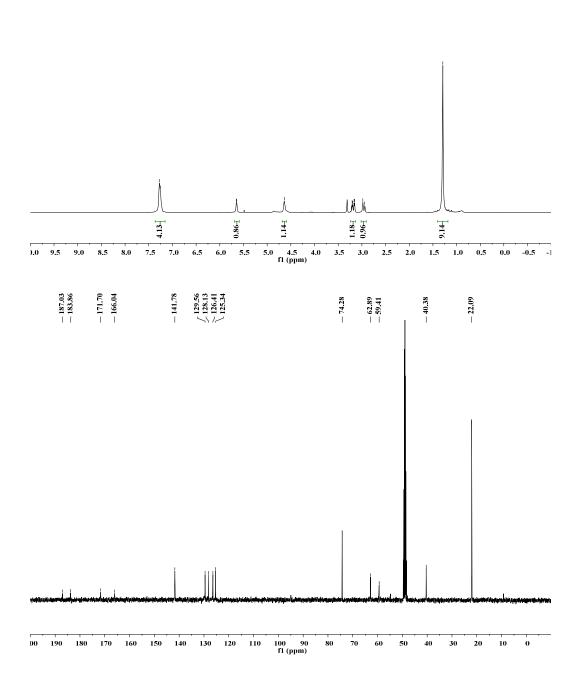
To a stirred solution of 7 (28 mg, 0.15 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL), were sequentially added Et<sub>3</sub>N (24 mg, 0.18 mmol) and PhCOCl (25 mg, 0.18 mmol). The reaction mixture was then stirred at room temperature overnight. Chromatography on silica gel (petroleum ether /EtOAc 2:1) gave the desired product 9 as a white solid (37.3 mg, 85%).

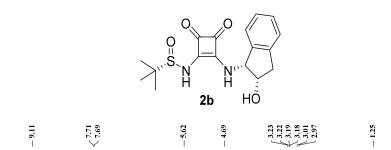
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.14 (s, 1H), 7.68 (dq, J = 8.0, 0.9 Hz, 1H), 7.44 – 7.33 (m, 4H), 7.32 – 7.26 (m, 2H), 7.21 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.12 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H), 7.01 (d, J = 2.3 Hz, 1H), 5.95(s, 1H), 3.59 – 3.48 (m, 1H), 3.42 (dtd, J = 13.7, 6.9, 5.3 Hz, 1H), 3.18 (h, J = 7.0 Hz, 1H), 2.08 (qd, J = 6.8, 1.7 Hz, 2H),

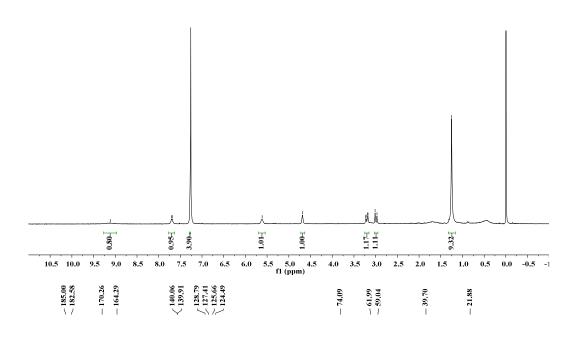

1.43 (d, J = 7.0 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  167.3, 136.8, 134.6, 131.2, 128.5, 126.7, 126.4, 122.3, 121.0, 120.8, 119.6, 119.4, 111.6, 39.0, 36.8, 30.0, 21.9. HRMS (ESI) calcd for  $C_{19}H_{21}N_2O$  (M+H)<sup>+</sup> : 293.1648, found: 293.1650. The enantiomeric excess was determined to be 95% ee by chiral HPLC analysis (ChiralCel AD-H, 20% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 9.4 min, tR (major) = 11.8 min.  $[\alpha]_D^{26}$ :-4.4 (c 0.55, CHCl<sub>3</sub>).

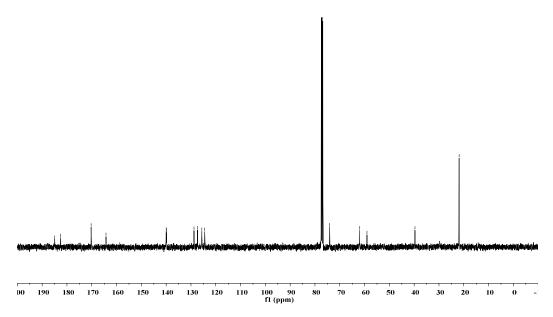

#### (S)-5-methyl-1-phenyl-3,4,5,10-tetrahydroazepino[3,4-b]indole (10)

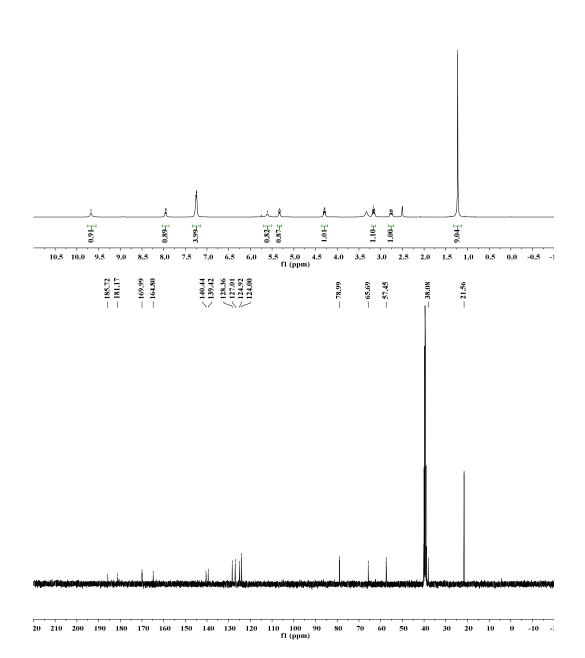

To a stirred solution of **9** (29 mg, 0.1 mmol) in toluene (2.0 mL), were added POCl<sub>3</sub> (0.1 ml). The reaction mixture was reflux overnight. The mixture was then cooled to room temperature and quenched by slow addition of water, basified with 6M NaOH, and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 10 mL), dried over MgSO<sub>4</sub> and concentrated *in vacuo*. Purified by chromatography on silica gel (petroleum ether /EtOAc 2:1 to 1:1) afforded the desired product **10** as a yellow solid (17.6 mg, 64%).

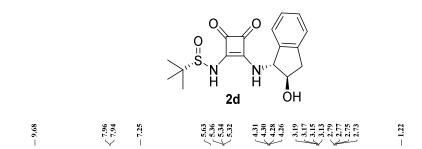

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.99 (s, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.65 – 7.59 (m, 2H), 7.45 (qd, J = 8.7, 7.6, 3.6 Hz, 3H), 7.31 – 7.24 (m, 2H), 7.17 (ddd, J = 8.1, 5.9, 2.1 Hz, 1H), 4.13 (dd, J = 12.7, 7.7 Hz, 1H), 3.76 (dd, J = 12.6, 8.6 Hz, 1H), 3.70 – 3.58 (m, 1H), 2.33 (dt, J = 14.7, 7.4 Hz, 1H), 1.86 (dt, J = 14.5, 8.4 Hz, 1H), 1.47 (d, J = 6.8 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 162.4, 140.2, 135.7, 129.8, 128.8, 128.6, 127.8, 127.7, 126.5, 124.7, 120.8, 119.9, 111.7, 50.6, 36.7, 31.9, 23.4. HRMS (ESI) calcd for C<sub>19</sub>H<sub>19</sub>N<sub>2</sub> (M+H)<sup>+</sup> : 275.1543, found: 275.1547. The enantiomeric excess was determined to be 94% ee by chiral HPLC analysis (ChiralCel AD-H, 20% i-PrOH in hexanes, 1 mL/min, 210 nm): tR (minor) = 5.3 min, tR (major) = 8.5 min. [α]<sub>D</sub><sup>26</sup>:89.6 (c 0.50, CHCl<sub>3</sub>).

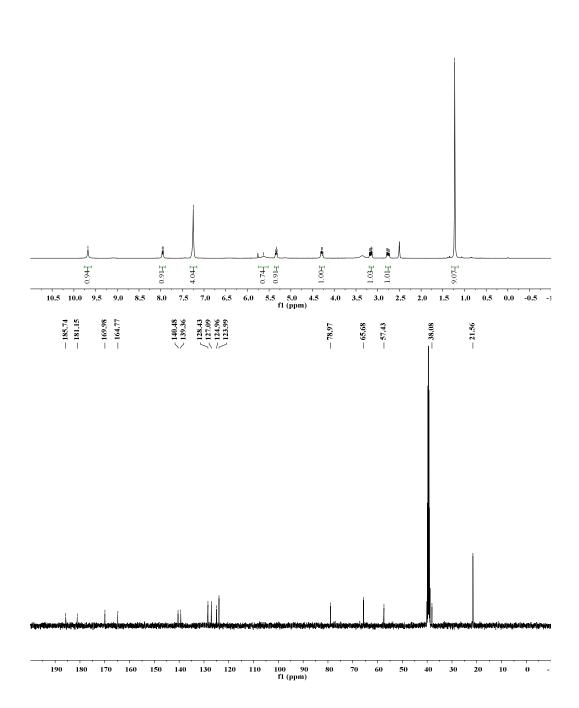

### 6. NMR spectra of new compounds

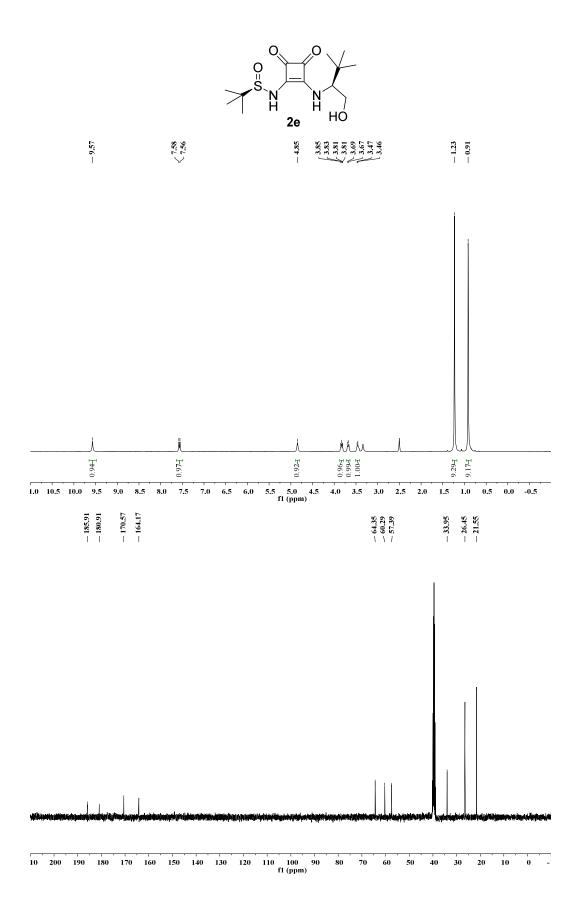


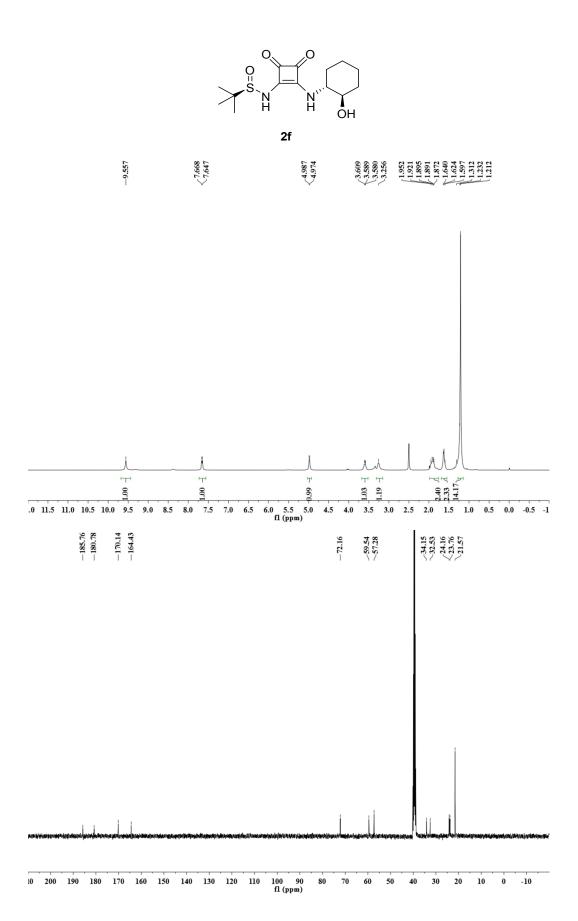



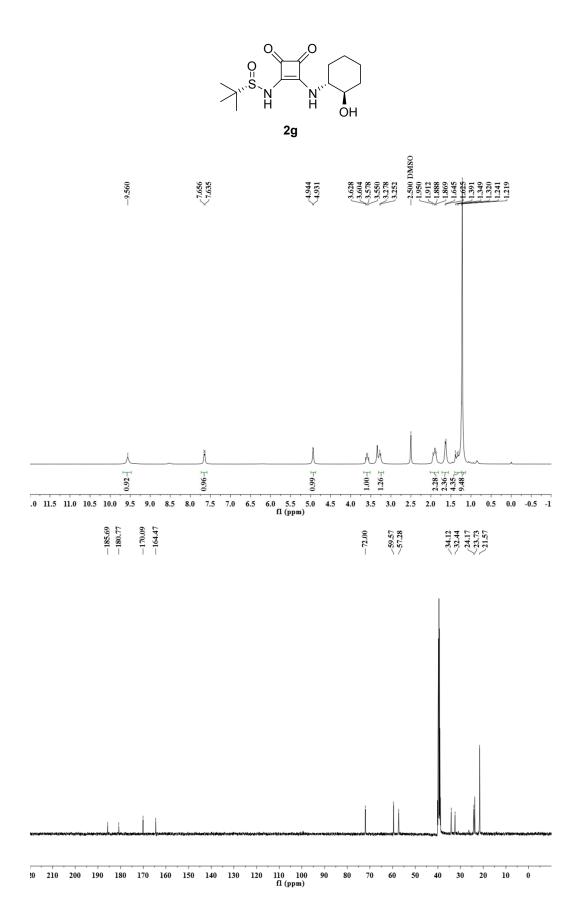



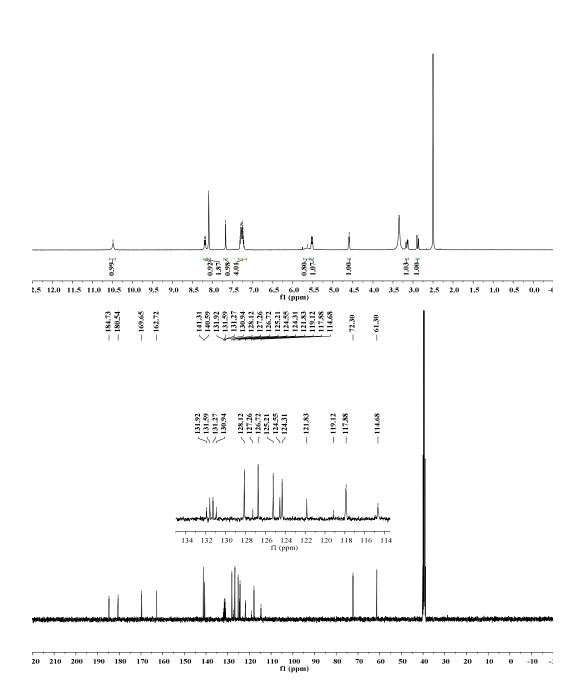



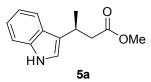



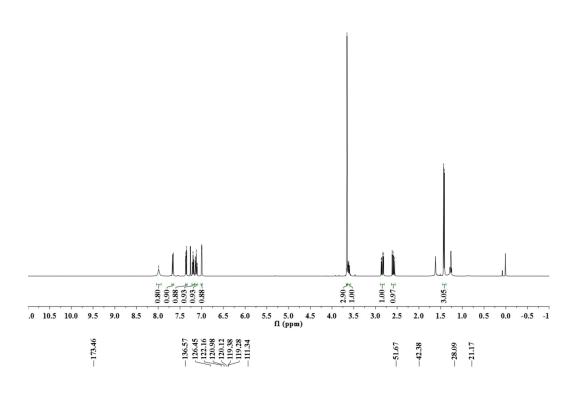



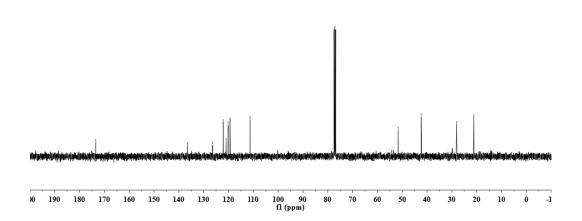



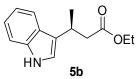



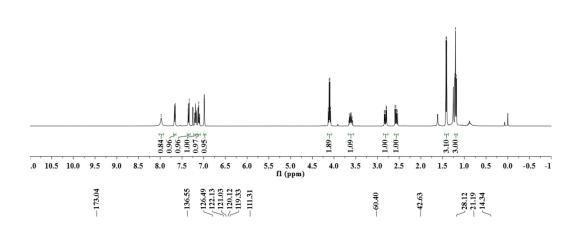


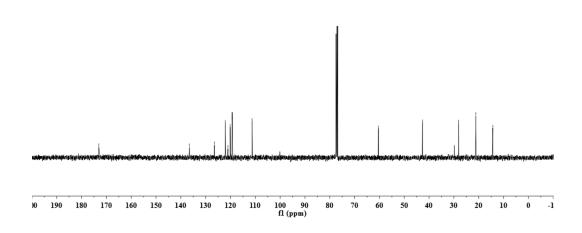



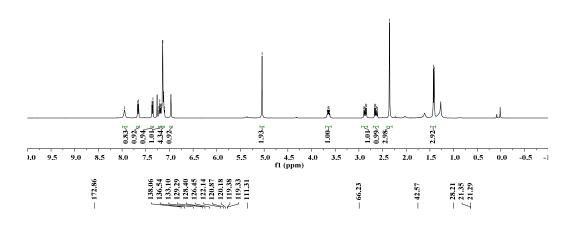



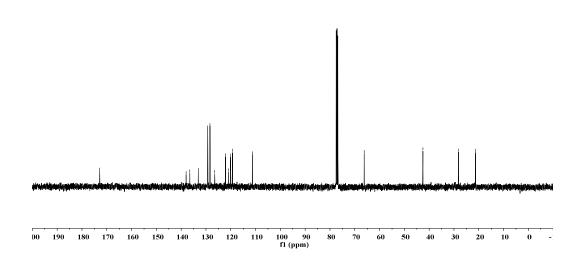







### 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,090 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000

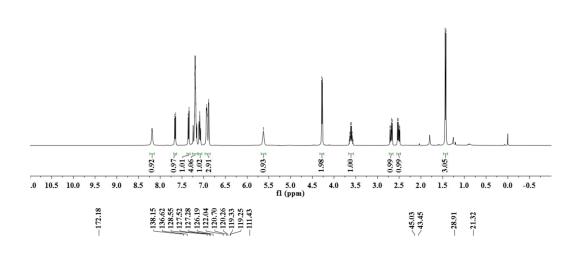


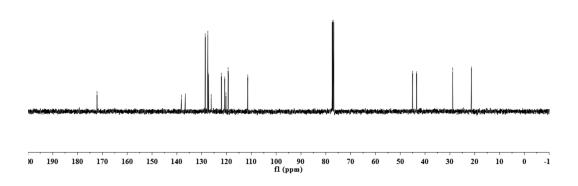



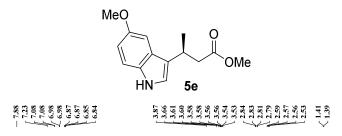



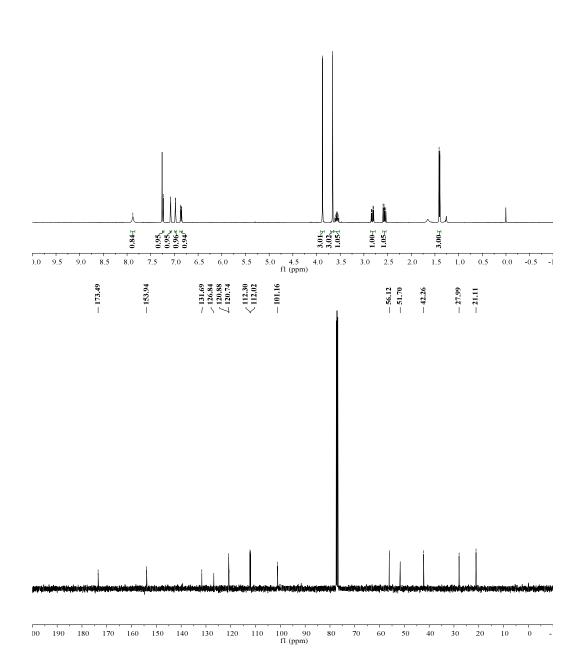

#### 7.078 7.765 7.765 7.765 7.765 7.738 7.738 7.738 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739 7.739

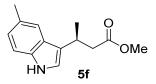




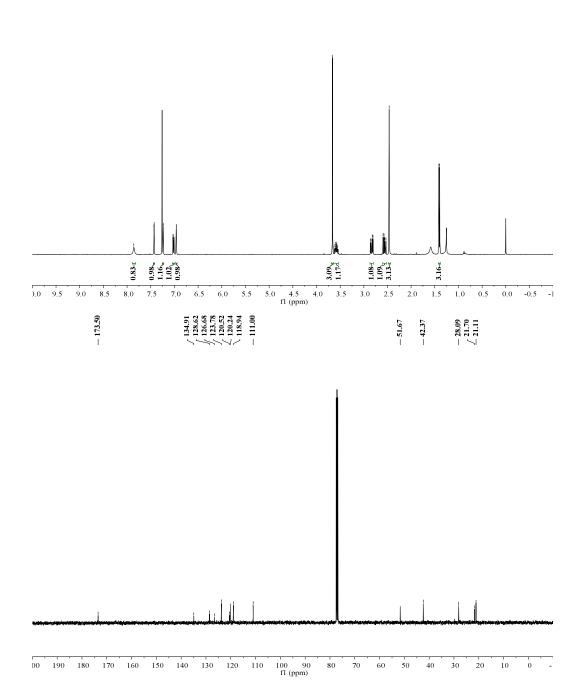



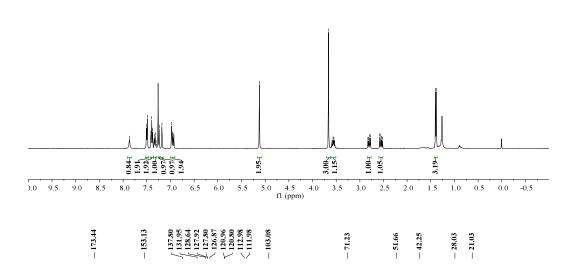



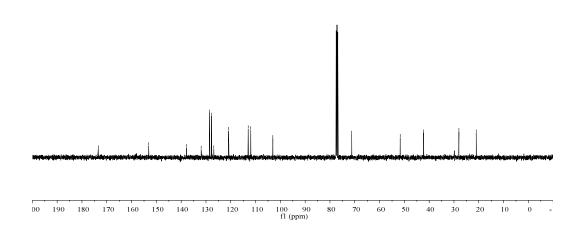


7.667 7.647 7.648 7.238 7.210 7.109 7.119 7.119 7.109 7.109 7.109 7.109 7.109 7.109 7.109 6.934 6.934 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.937 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.937 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.936 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937 6.937

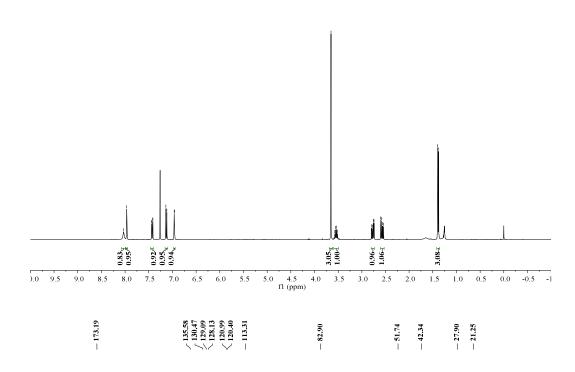

4.282 4.267 3.652 3.634 3.634 3.581 3.581 3.583 2.692 2.692 2.692 2.692 2.692 2.692 2.692 2.692 2.692 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693 2.693

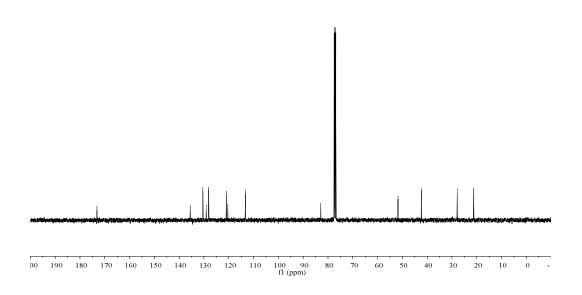


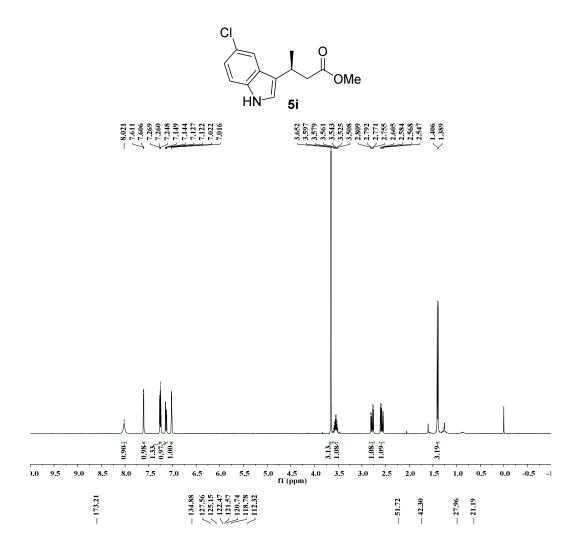


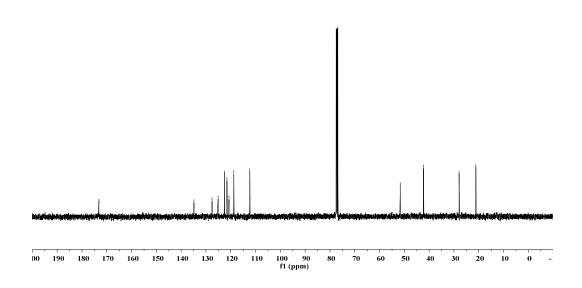



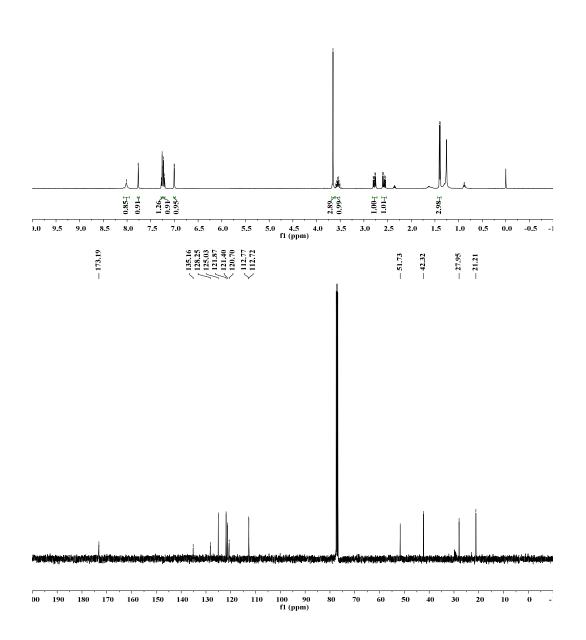



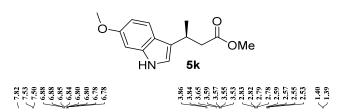



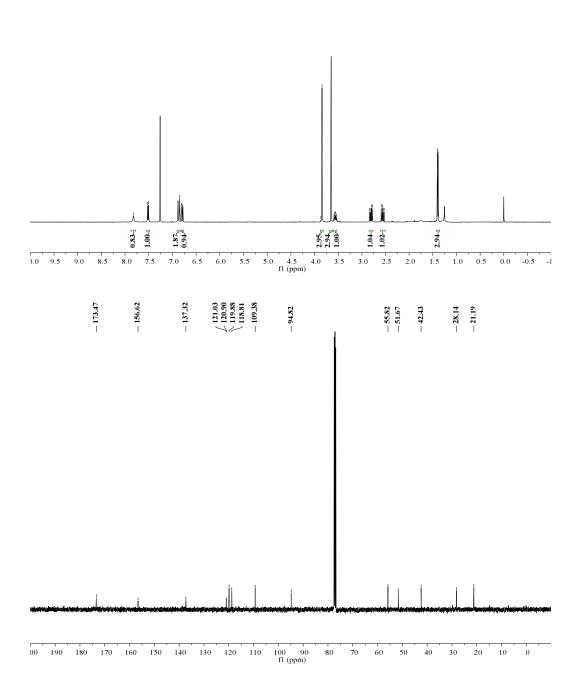


7.86 7.43 7.43 7.43 7.73 7.03 7.01 7.01 6.96

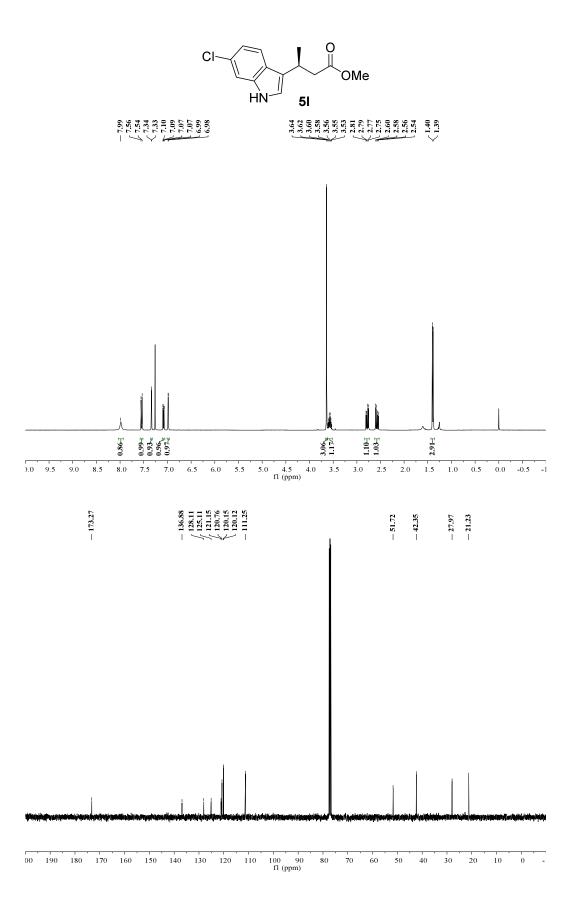


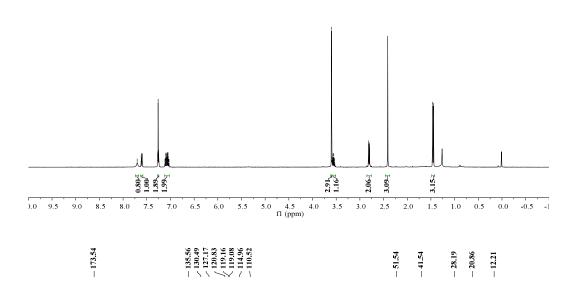



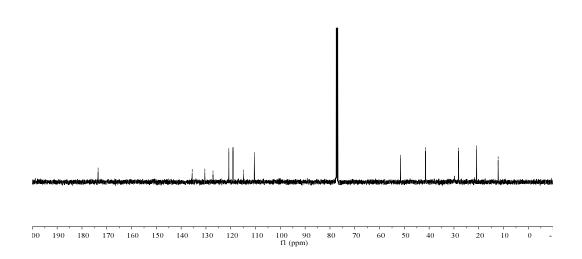



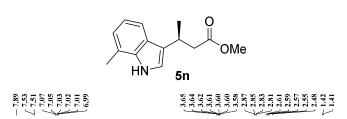



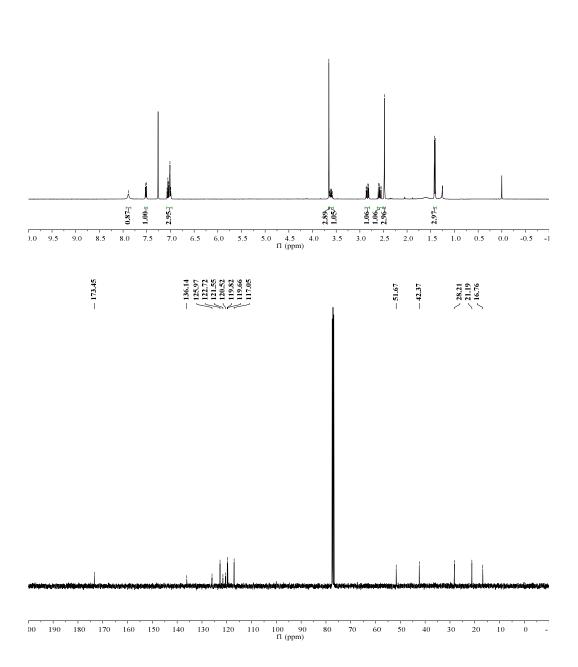



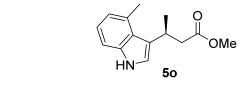


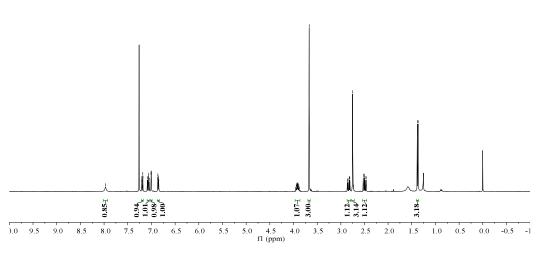



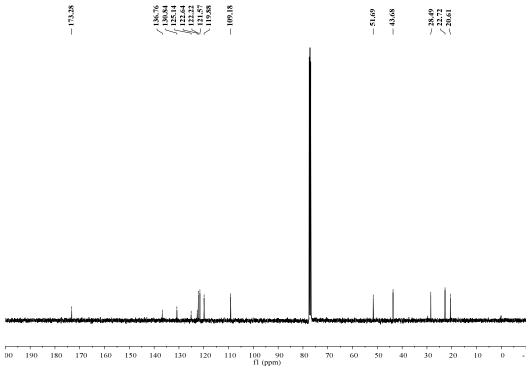





3.60 3.57 3.57 3.55 3.55 3.55 2.82 2.81 2.81 2.80 2.79 21.46 1.46 1.46

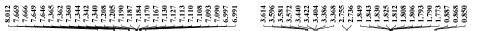


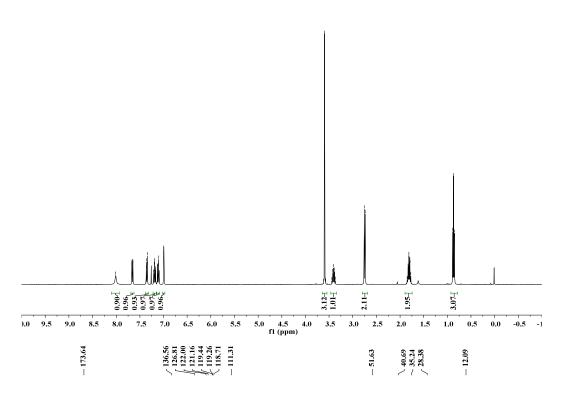


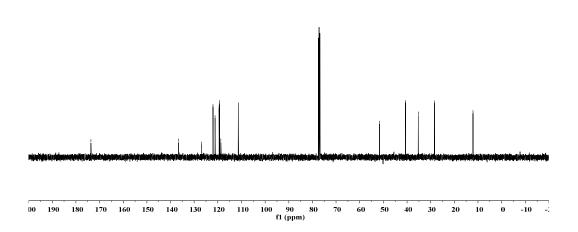



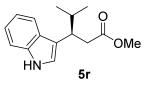




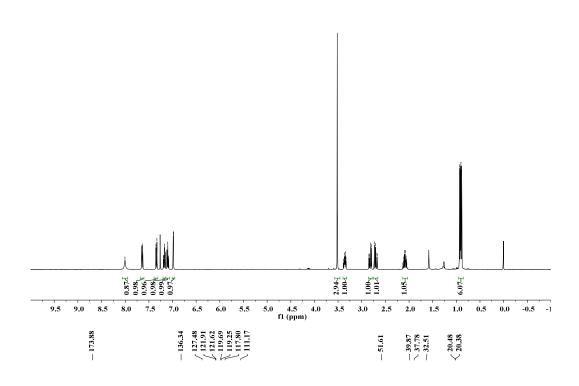


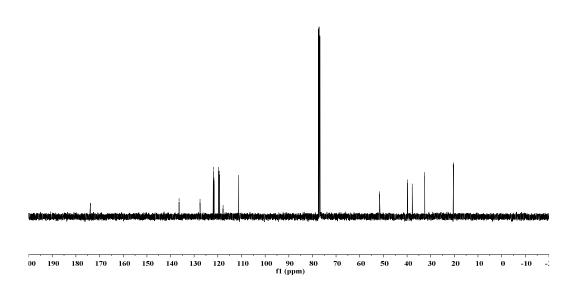


#### 7.39 7.118 7.120 7.118 7.118 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7.101 7

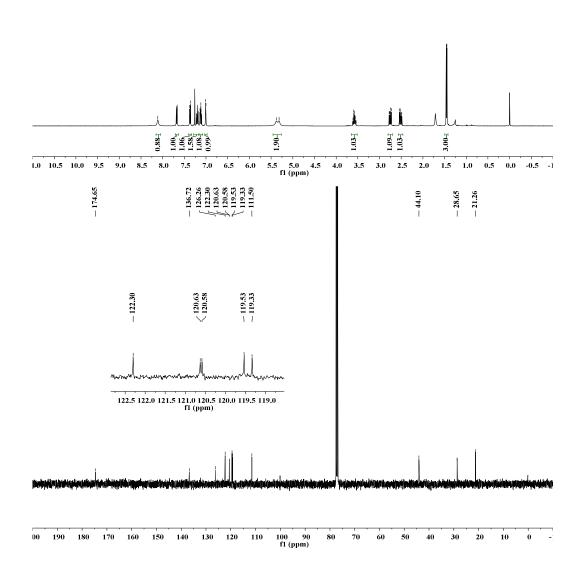


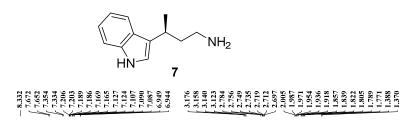



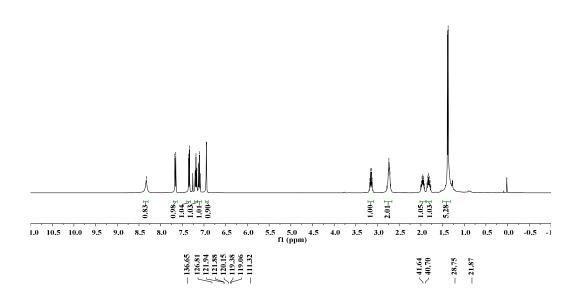


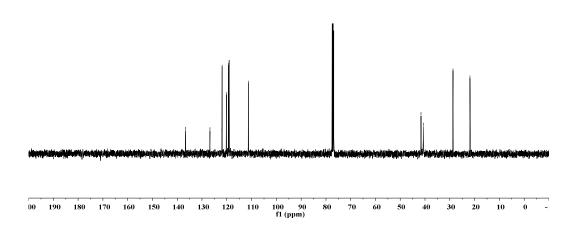



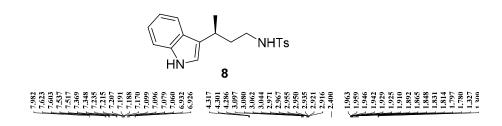



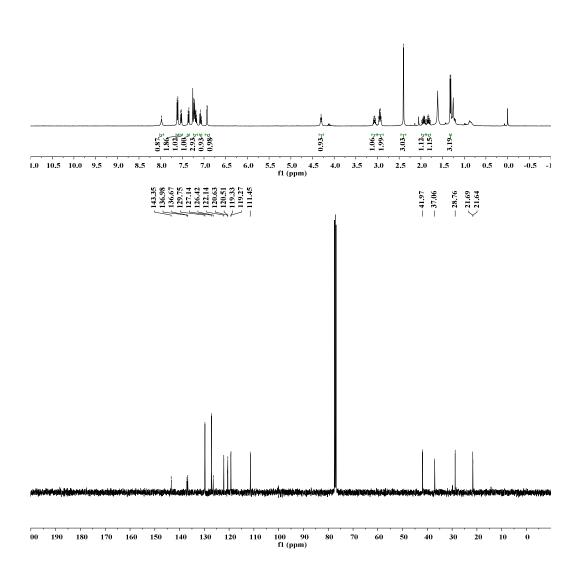



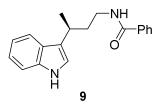





8.005 7.652 7.632 7.632 7.633 7.331 7.331 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 7.333 3.518 3.385 3.361 3.361 3.364 3.331 2.847 2.847 2.847 2.710 2.677 2.673 2.130 2.130 2.130 2.130 2.130 2.097 2.080 2.080 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081 2.081

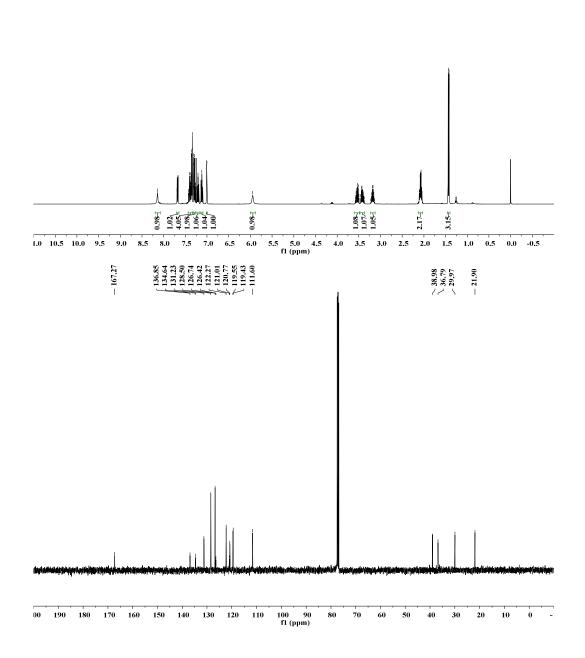


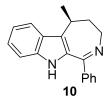



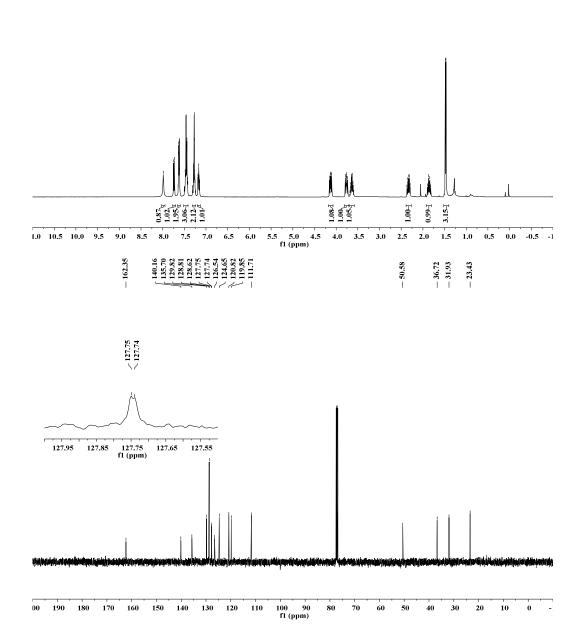





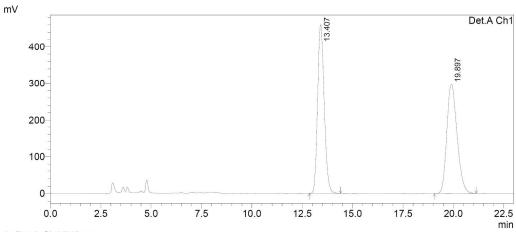





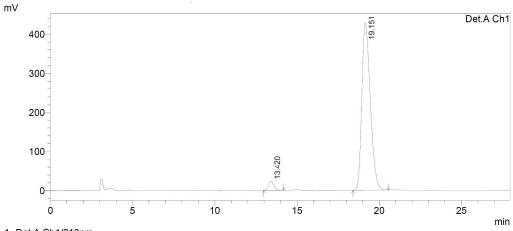




7.689
7.687
7.687
7.687
7.687
7.687
7.687
7.687
7.687
7.687
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688
7.688





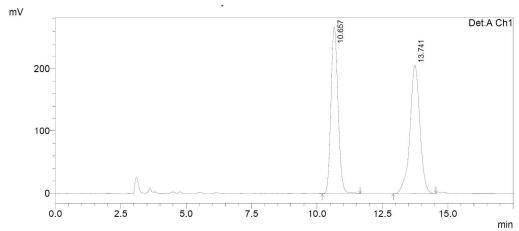

#### 7.798 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751




# 7. HPLC spectra

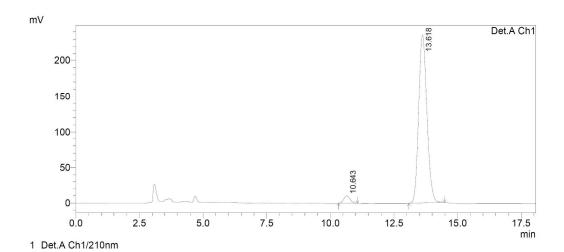


PeakTable


| L | Detector A Citi 210iiii |           |          |        |         |          |  |  |  |  |
|---|-------------------------|-----------|----------|--------|---------|----------|--|--|--|--|
|   | Peak#                   | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |  |
|   | 1                       | 13.407    | 10452016 | 459644 | 49.910  | 60.641   |  |  |  |  |
|   | 2                       | 19.897    | 10489778 | 298326 | 50.090  | 39.359   |  |  |  |  |
|   | Total                   |           | 20941795 | 757970 | 100.000 | 100.000  |  |  |  |  |

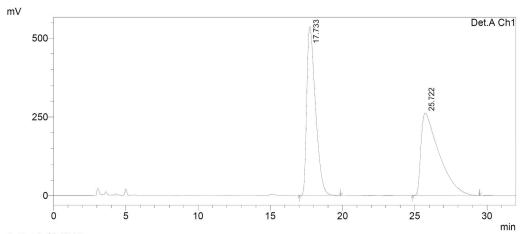


1 Det.A Ch1/210nm


PeakTable

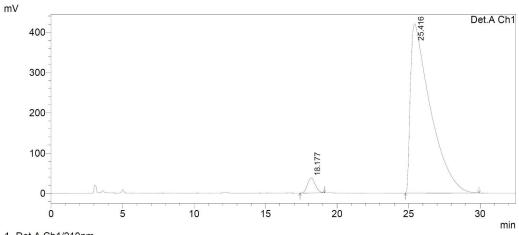
|            |           | 1 0      | akiabic |         |          |
|------------|-----------|----------|---------|---------|----------|
| Detector A | Ch1 210nm |          |         |         |          |
| Peak#      | Ret. Time | Area     | Height  | Area %  | Height % |
| 1          | 13.420    | 506461   | 22033   | 3.199   | 4.901    |
| 2          | 19.151    | 15323500 | 427509  | 96.801  | 95.099   |
| Total      |           | 15829961 | 449542  | 100.000 | 100.000  |




PeakTable

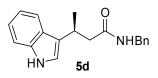
| Detector A ( | Ch1 210nm |          |        |         |          |
|--------------|-----------|----------|--------|---------|----------|
| Peak#        | Ret. Time | Area     | Height | Area %  | Height % |
| 1            | 10.657    | 5009169  | 267208 | 48.080  | 56.467   |
| 2            | 13.741    | 5409309  | 206004 | 51.920  | 43.533   |
| Total        |           | 10418477 | 473212 | 100.000 | 100,000  |

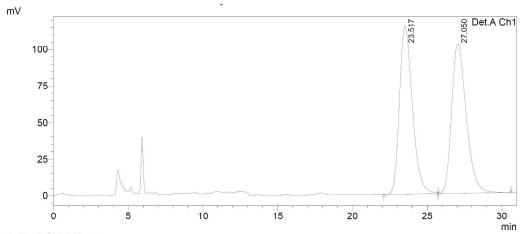



PeakTable

| Detector A | Ch1 210nm |         |        |         |          |
|------------|-----------|---------|--------|---------|----------|
| Peak#      | Ret. Time | Area    | Height | Area %  | Height % |
| 1          | 10.643    | 177779  | 10314  | 3.234   | 4.192    |
| 2          | 13.618    | 5318576 | 235726 | 96.766  | 95.808   |
| Total      |           | 5496355 | 246040 | 100.000 | 100.000  |

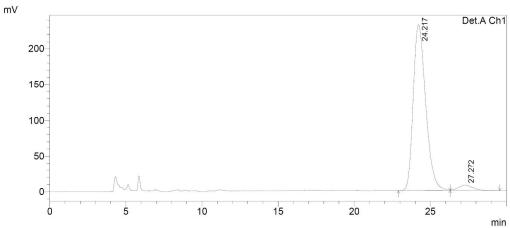



PeakTable


| Detector A Chi 210nm |           |          |        |         |          |  |  |  |  |
|----------------------|-----------|----------|--------|---------|----------|--|--|--|--|
| Peak#                | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |  |
| 1                    | 17.733    | 22591862 | 535898 | 49.675  | 67.188   |  |  |  |  |
| 2                    | 25.722    | 22887480 | 261707 | 50.325  | 32.812   |  |  |  |  |
| Total                |           | 45479341 | 797605 | 100.000 | 100.000  |  |  |  |  |

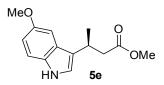


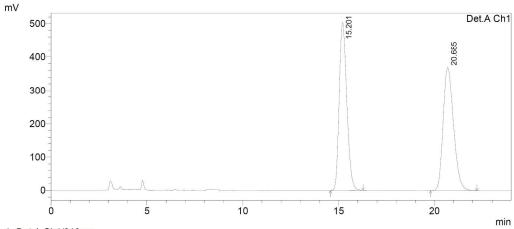
PeakTable


| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 18.177    | 1406655  | 37039  | 3.343   | 8.098    |
| 2     | 25.416    | 40664887 | 420328 | 96.657  | 91.902   |
| Total |           | 42071543 | 457367 | 100.000 | 100.000  |



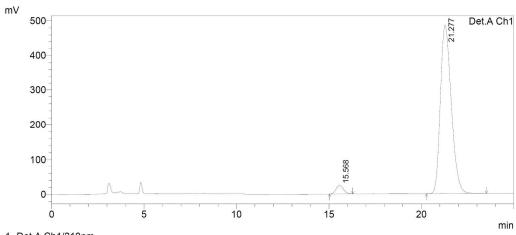



PeakTable


| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 23.517    | 6918067  | 114792 | 49.855  | 52.907   |
| 2     | 27.050    | 6958250  | 102179 | 50.145  | 47.093   |
| Total |           | 13876318 | 216971 | 100.000 | 100.000  |



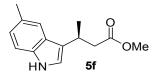
PeakTable

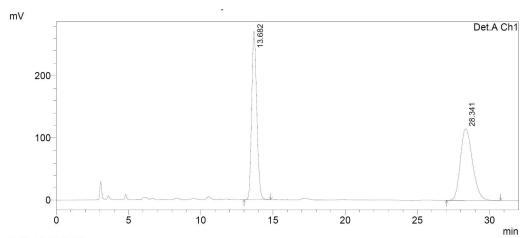

|            |           | 1 00     | ik i doic |         |          |
|------------|-----------|----------|-----------|---------|----------|
| Detector A | Ch1 210nm |          |           |         |          |
| Peak#      | Ret. Time | Area     | Height    | Area %  | Height % |
| 1          | 24.217    | 13258366 | 232598    | 96.304  | 96.869   |
| 2          | 27.272    | 508867   | 7519      | 3.696   | 3.131    |
| Total      |           | 13767233 | 240117    | 100.000 | 100.000  |





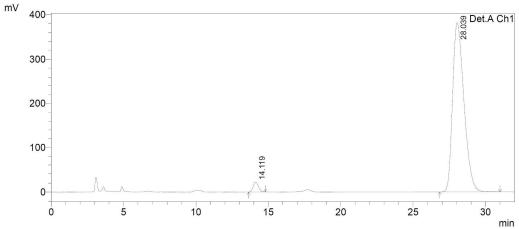
PeakTable


| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 15.201    | 13903999 | 503453 | 49.876  | 57.713   |
| 2     | 20.685    | 13973205 | 368880 | 50.124  | 42.287   |
| Total |           | 27877204 | 872333 | 100.000 | 100.000  |



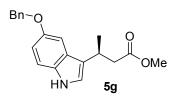

1 Det.A Ch1/210nm

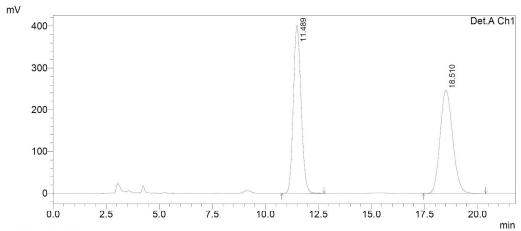
PeakTable


| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 15.568    | 687565   | 24370  | 3 344   | 4.785    |
| 2     | 21.277    | 19871910 | 484914 | 96.656  | 95.215   |
| Total | 21.277    | 20559475 | 509285 | 100.000 | 100.000  |



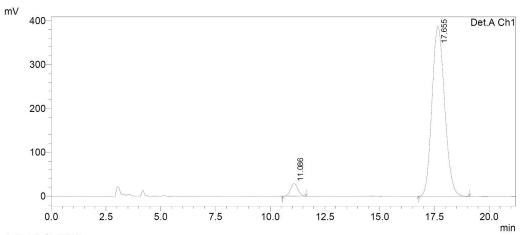



PeakTable


|            |           | 1 0      | ak i doic |         |          |
|------------|-----------|----------|-----------|---------|----------|
| Detector A | Ch1 210nm |          |           |         |          |
| Peak#      | Ret. Time | Area     | Height    | Area %  | Height % |
| 1          | 13.682    | 6680657  | 271083    | 49.939  | 70.133   |
| 2          | 28.341    | 6696910  | 115445    | 50.061  | 29.867   |
| Total      |           | 13377567 | 386528    | 100.000 | 100.000  |

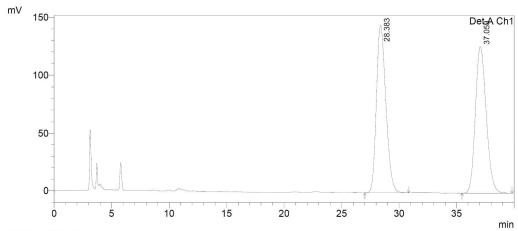


PeakTable


| Detector A ( | Ch1 210nm |          |        |         |          |
|--------------|-----------|----------|--------|---------|----------|
| Peak#        | Ret. Time | Area     | Height | Area %  | Height % |
| 1            | 14.119    | 540027   | 21815  | 2.534   | 5.418    |
| 2            | 28.039    | 20773239 | 380862 | 97.466  | 94.582   |
| Total        |           | 21313265 | 402677 | 100.000 | 100.000  |

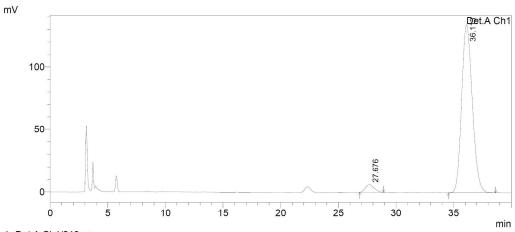





PeakTable

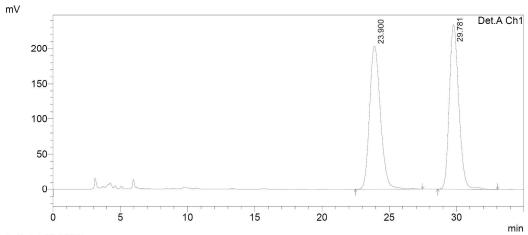
| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 11.489    | 10213164 | 402227 | 50.127  | 61.959   |
| 2     | 18.510    | 10161352 | 246950 | 49.873  | 38.041   |
| Total |           | 20374516 | 649177 | 100.000 | 100.000  |




PeakTable

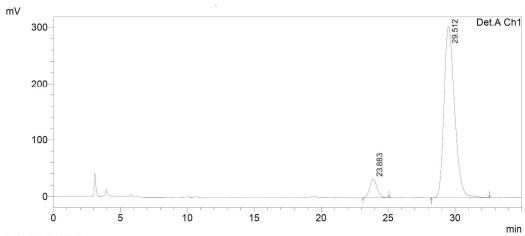
| etector A Ch1 210nm |           |          |        |         |          |  |  |  |
|---------------------|-----------|----------|--------|---------|----------|--|--|--|
| Peak#               | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |
| 1                   | 11.086    | 647436   | 28237  | 3.983   | 6.794    |  |  |  |
| 2                   | 17.655    | 15608066 | 387359 | 96.017  | 93.206   |  |  |  |
| Total               |           | 16255502 | 415597 | 100.000 | 100.000  |  |  |  |




PeakTable

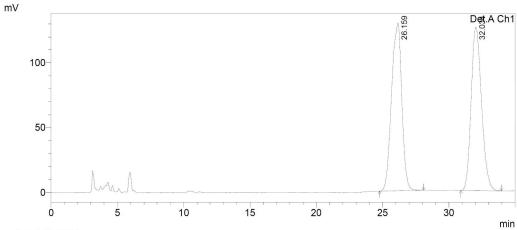
| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 28.383    | 8304885  | 145086 | 49.946  | 53.358   |
| 2     | 37.059    | 8322986  | 126825 | 50.054  | 46.642   |
| Total |           | 16627870 | 271911 | 100.000 | 100.000  |




PeakTable

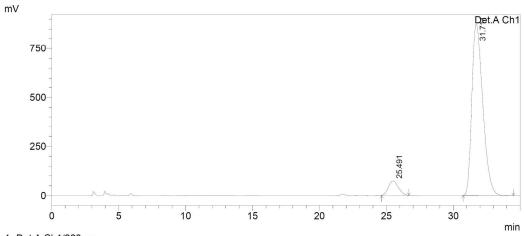
| Detector A | Detector A Ch1 210nm |         |        |         |          |  |  |  |  |
|------------|----------------------|---------|--------|---------|----------|--|--|--|--|
| Peak#      | Ret. Time            | Area    | Height | Area %  | Height % |  |  |  |  |
| 1          | 27.676               | 324238  | 6068   | 3.618   | 4.324    |  |  |  |  |
| 2          | 36.113               | 8637671 | 134273 | 96.382  | 95.676   |  |  |  |  |
| Total      |                      | 8961909 | 140341 | 100.000 | 100.000  |  |  |  |  |




PeakTable

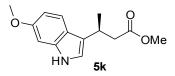
| etector A Ch1 220nm |           |          |        |         |          |  |  |
|---------------------|-----------|----------|--------|---------|----------|--|--|
| Peak#               | Ret. Time | Area     | Height | Area %  | Height % |  |  |
| 1                   | 23.900    | 11463968 | 203771 | 50.029  | 46.578   |  |  |
| 2                   | 29.781    | 11450896 | 233709 | 49.971  | 53.422   |  |  |
| Total               |           | 22914864 | 437481 | 100.000 | 100.000  |  |  |

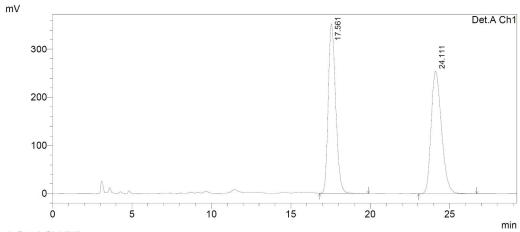



PeakTable

| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 23.883    | 1219860  | 32184  | 6.851   | 9.587    |
| 2     | 29.512    | 16586751 | 303505 | 93.149  | 90.413   |
| Total |           | 17806611 | 335688 | 100.000 | 100.000  |

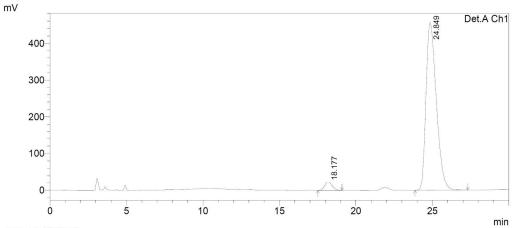



PeakTable


| Detector A ( | Ch1 220nm |          |        |         |          |
|--------------|-----------|----------|--------|---------|----------|
| Peak#        | Ret. Time | Area     | Height | Area %  | Height % |
| 1            | 26.159    | 6941581  | 129273 | 50.246  | 50.597   |
| 2            | 32.034    | 6873638  | 126222 | 49.754  | 49.403   |
| Total        |           | 13815218 | 255495 | 100,000 | 100.000  |

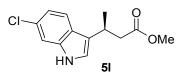


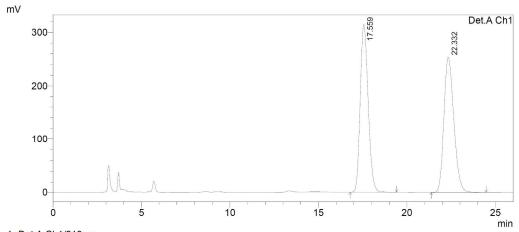
PeakTable


| Detector A | Detector A Ch1 220nm |          |        |         |          |  |  |  |  |
|------------|----------------------|----------|--------|---------|----------|--|--|--|--|
| Peak#      | Ret. Time            | Area     | Height | Area %  | Height % |  |  |  |  |
| 1          | 25.491               | 3747141  | 72222  | 7.024   | 7.634    |  |  |  |  |
| 2          | 31.711               | 49600533 | 873778 | 92.976  | 92.366   |  |  |  |  |
| Total      |                      | 53347675 | 946001 | 100.000 | 100.000  |  |  |  |  |



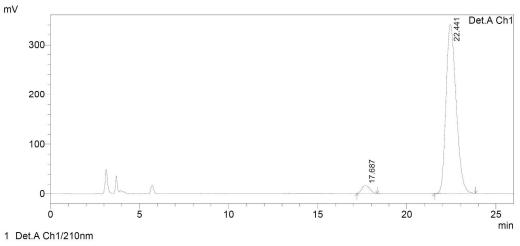



PeakTable


| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 17.561    | 11519944 | 352967 | 49.897  | 58.060   |
| 2     | 24.111    | 11567530 | 254973 | 50.103  | 41.940   |
| Total |           | 23087474 | 607940 | 100.000 | 100.000  |

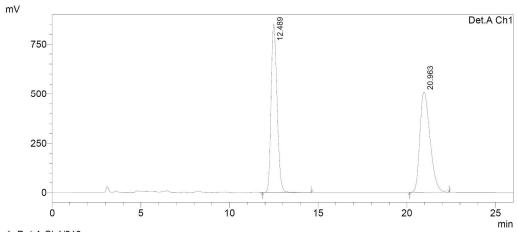


PeakTable


| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 18.177    | 760486   | 23222  | 3.432   | 4.851    |
| 2     | 24.849    | 21396803 | 455465 | 96.568  | 95.149   |
| Total |           | 22157289 | 478688 | 100.000 | 100.000  |

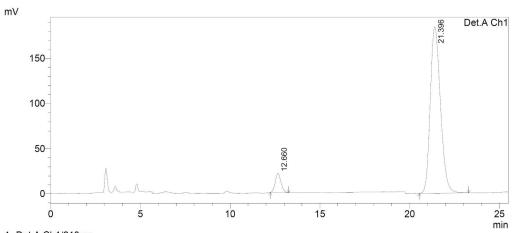





PeakTable

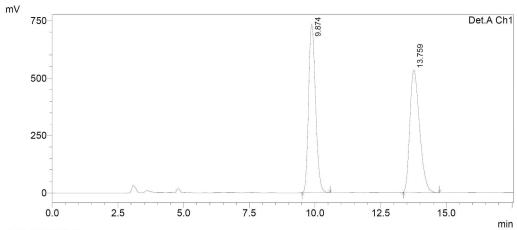
| Detector A ( | Detector A Ch1 210nm |          |        |         |          |  |  |  |  |
|--------------|----------------------|----------|--------|---------|----------|--|--|--|--|
| Peak#        | Ret. Time            | Area     | Height | Area %  | Height % |  |  |  |  |
| 1            | 17.559               | 9813825  | 314427 | 49.813  | 55.401   |  |  |  |  |
| 2            | 22.332               | 9887447  | 253118 | 50.187  | 44.599   |  |  |  |  |
| Total        |                      | 19701272 | 567545 | 100.000 | 100.000  |  |  |  |  |




PeakTable

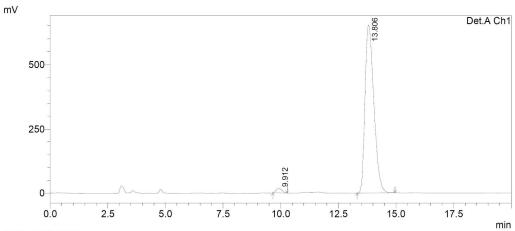
| Detector A ( | Jh1 210nm |          |        |         |          |
|--------------|-----------|----------|--------|---------|----------|
| Pcak#        | Ret. Time | Arca     | Height | Arca %  | Height % |
| 1            | 17.687    | 488245   | 16491  | 3.512   | 4.627    |
| 2            | 22.441    | 13414962 | 339952 | 96.488  | 95.373   |
| Total        |           | 13903206 | 356443 | 100.000 | 100.000  |




PeakTable

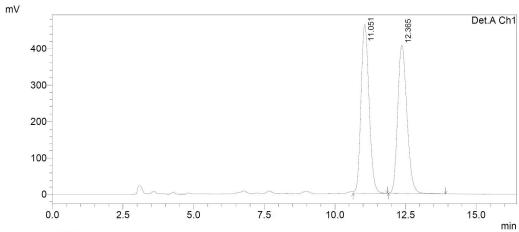
| Peak# | Ret. Time | Area     | Height  | Area %  | Height % |
|-------|-----------|----------|---------|---------|----------|
| 1     | 12.489    | 19867331 | 850515  | 49.493  | 62.558   |
| 2     | 20.963    | 20274204 | 509040  | 50.507  | 37.442   |
| Total |           | 40141535 | 1359555 | 100.000 | 100.000  |




PeakTable

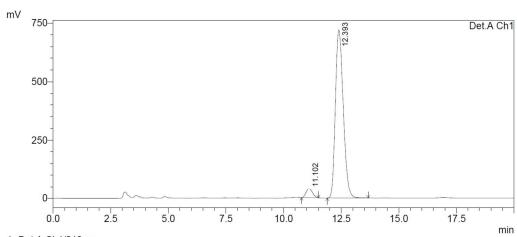
| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 12.660    | 476093  | 21519  | 6.131   | 10.432   |
| 2     | 21.396    | 7288627 | 184761 | 93.869  | 89.568   |
| Total |           | 7764720 | 206280 | 100,000 | 100.000  |




PeakTable

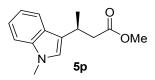
| Peak# | Ret. Time | Area     | Height  | Area %  | Height % |
|-------|-----------|----------|---------|---------|----------|
| 1     | 9.874     | 13455680 | 733162  | 49.683  | 57.967   |
| 2     | 13.759    | 13627471 | 531633  | 50.317  | 42.033   |
| Total |           | 27083151 | 1264795 | 100.000 | 100.000  |

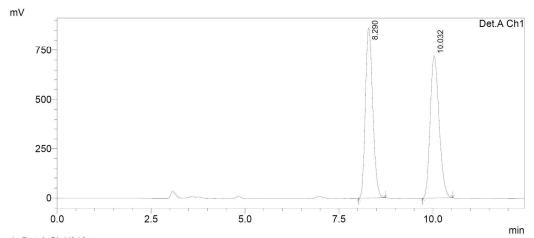



PeakTable

| Detector A ( | Detector A Ch1 210nm |          |        |         |          |  |  |  |
|--------------|----------------------|----------|--------|---------|----------|--|--|--|
| Peak#        | Ret. Time            | Area     | Height | Area %  | Height % |  |  |  |
| 1            | 9.912                | 289547   | 17207  | 1.636   | 2.567    |  |  |  |
| 2            | 13.806               | 17414207 | 652995 | 98.364  | 97.433   |  |  |  |
| Total        |                      | 17703754 | 670202 | 100.000 | 100.000  |  |  |  |

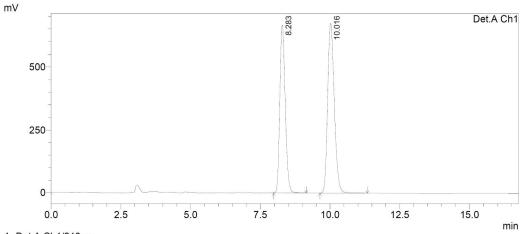



#### PeakTable


| Detector A ( | etector A Ch1 210nm |          |        |         |          |  |  |  |
|--------------|---------------------|----------|--------|---------|----------|--|--|--|
| Peak#        | Ret. Time           | Area     | Height | Area %  | Height % |  |  |  |
| 1            | 11.051              | 9259124  | 463599 | 50.042  | 53.257   |  |  |  |
| 2            | 12.365              | 9243549  | 406892 | 49.958  | 46.743   |  |  |  |
| Total        |                     | 18502674 | 870490 | 100.000 | 100.000  |  |  |  |

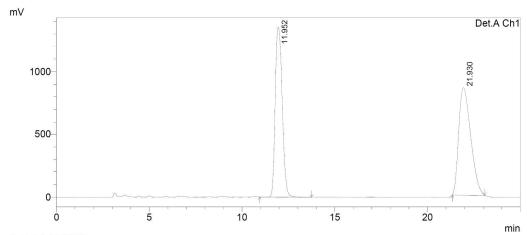


PeakTable


| Detector A | Cn1 210nm |          |        |         |          |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 11.102    | 754494   | 39451  | 4.219   | 5.187    |
| 2          | 12.393    | 17130811 | 721159 | 95.781  | 94.813   |
| Total      |           | 17885305 | 760610 | 100.000 | 100.000  |

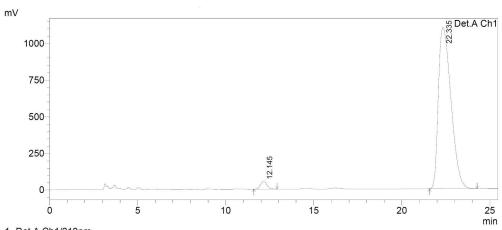





PeakTable

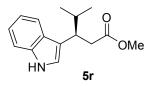
| Peak# | Ret. Time | Area     | Height  | Area %  | Height % |
|-------|-----------|----------|---------|---------|----------|
| 1     | 8.290     | 11724555 | 865010  | 49.617  | 54.536   |
| 2     | 10.032    | 11905422 | 721111  | 50.383  | 45.464   |
| Total |           | 23629977 | 1586121 | 100.000 | 100.000  |

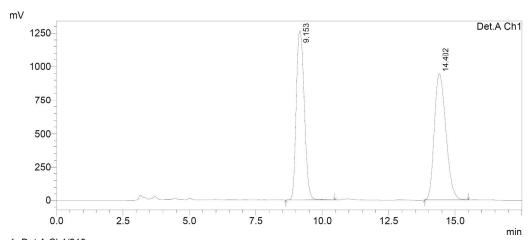



PeakTable

| Detector A ( | Ch1 210nm |          |         |         |          |
|--------------|-----------|----------|---------|---------|----------|
| Peak#        | Ret. Time | Area     | Height  | Area %  | Height % |
| 1            | 8.283     | 8981232  | 665940  | 44.506  | 49.692   |
| 2            | 10.016    | 11198475 | 674203  | 55.494  | 50.308   |
| Total        |           | 20179707 | 1340144 | 100.000 | 100.000  |

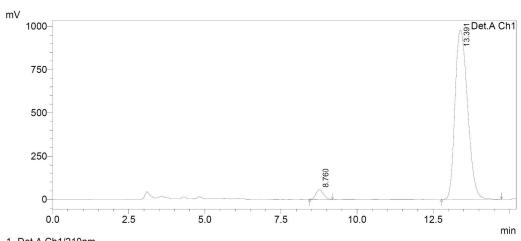



PeakTable


| Peak# | Ret. Time | Area     | Height  | Area %  | Height % |
|-------|-----------|----------|---------|---------|----------|
| 1     | 11.952    | 35255243 | 1350458 | 48.009  | 61.261   |
| 2     | 21.930    | 38179441 | 853986  | 51.991  | 38.739   |
| Total |           | 73434683 | 2204444 | 100.000 | 100.000  |



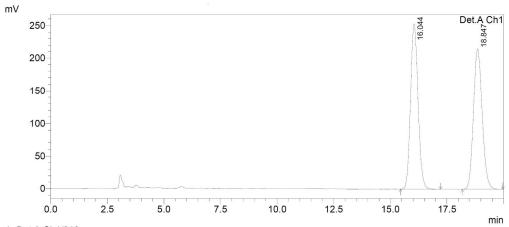
PeakTable


|                      |           | 1 02     | ik i abic |         |          |  |  |
|----------------------|-----------|----------|-----------|---------|----------|--|--|
| Detector A Ch1 210nm |           |          |           |         |          |  |  |
| Peak#                | Ret. Time | Area     | Height    | Area %  | Height % |  |  |
| 1                    | 12.145    | 1319858  | 55321     | 2.345   | 4.782    |  |  |
| 2                    | 22.335    | 54962574 | 1101589   | 97.655  | 95.21    |  |  |
| Total                |           | 56282433 | 1156910   | 100.000 | 100.000  |  |  |



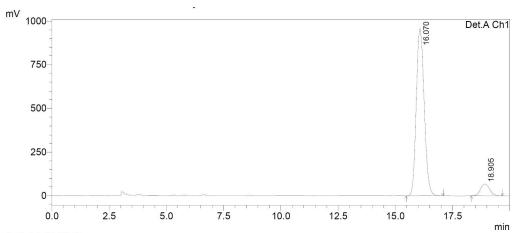


PeakTable


| Pcak# | Ret. Time | Arca     | Height  | Arca %  | Height % |
|-------|-----------|----------|---------|---------|----------|
| 1     | 9.153     | 26703722 | 1266920 | 48.205  | 57.331   |
| 2     | 14.402    | 28692387 | 942905  | 51.795  | 42.669   |
| Total |           | 55396109 | 2209825 | 100.000 | 100.000  |

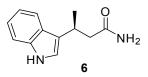


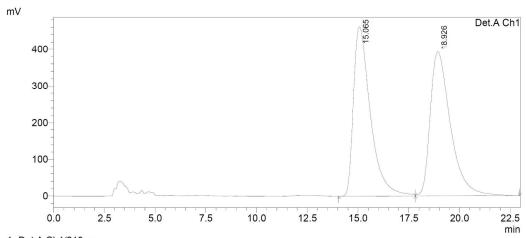
1 Det.A Ch1/210nm


PeakTable

|                      |           | 1 Cu     | K I dole |         |          |  |  |  |  |
|----------------------|-----------|----------|----------|---------|----------|--|--|--|--|
| Detector A Ch1 210nm |           |          |          |         |          |  |  |  |  |
| Peak#                | Ret. Time | Area     | Height   | Area %  | Height % |  |  |  |  |
| 1                    | 8.760     | 973370   | 55509    | 3.345   | 5.368    |  |  |  |  |
| 2                    | 13.391    | 28126378 | 978561   | 96.655  | 94.632   |  |  |  |  |
| Total                |           | 29099749 | 1034069  | 100.000 | 100.000  |  |  |  |  |

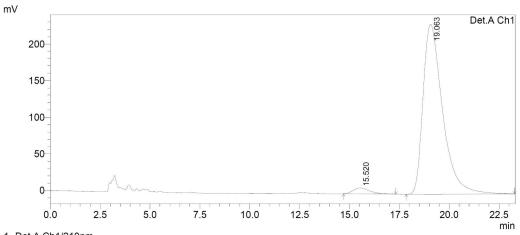



PeakTable


| etector A Ch1 210nm |           |          |        |         |          |  |  |  |  |
|---------------------|-----------|----------|--------|---------|----------|--|--|--|--|
| Peak#               | Ret. Time | Area     | Height | Area %  | Height % |  |  |  |  |
| 1                   | 16.044    | 5843277  | 253502 | 50.224  | 54.140   |  |  |  |  |
| 2                   | 18.847    | 5791134  | 214732 | 49.776  | 45.860   |  |  |  |  |
| Total               |           | 11634411 | 468234 | 100.000 | 100.000  |  |  |  |  |

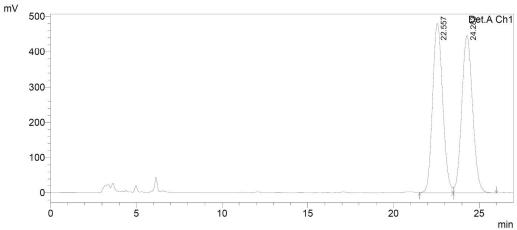


PeakTable


| Detector A ( | Detector A Ch1 210nm |          |         |         |          |  |  |  |  |  |
|--------------|----------------------|----------|---------|---------|----------|--|--|--|--|--|
| Peak#        | Ret. Time            | Area     | Height  | Area %  | Height % |  |  |  |  |  |
| 1            | 16.070               | 23058097 | 958083  | 92.446  | 93.170   |  |  |  |  |  |
| 2            | 18.905               | 1884176  | 70236   | 7.554   | 6.830    |  |  |  |  |  |
| Total        |                      | 24942273 | 1028319 | 100.000 | 100.000  |  |  |  |  |  |

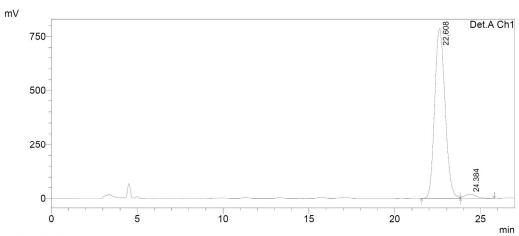





PeakTable

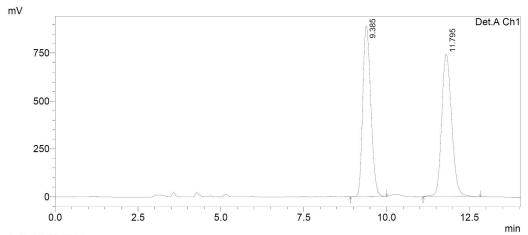
| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 15.065    | 26759928 | 461530 | 49.596  | 54.038   |
| 2     | 18.926    | 27195757 | 392560 | 50.404  | 45.962   |
| Total |           | 53955684 | 854090 | 100.000 | 100.000  |




PeakTable

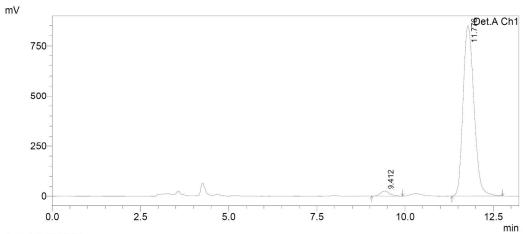
| Detector A | Ch1 210nm |          |        |         |          |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 15.520    | 464061   | 8050   | 2.843   | 3.351    |
| 2          | 19.063    | 15859167 | 232144 | 97.157  | 96.649   |
| Total      |           | 16323228 | 240193 | 100.000 | 100.000  |




PeakTable

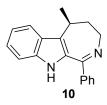
| Peak# | Ret. Time | Area     | Height | Area %  | Height % |
|-------|-----------|----------|--------|---------|----------|
| 1     | 22.557    | 19799494 | 480524 | 50.143  | 51.841   |
| 2     | 24.283    | 19686311 | 446399 | 49.857  | 48.159   |
| Total |           | 39485805 | 926923 | 100.000 | 100.000  |

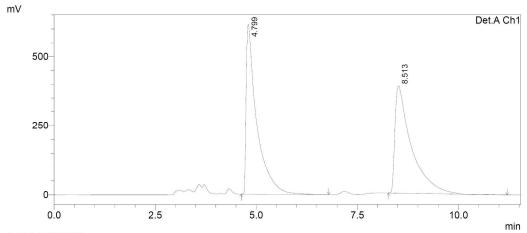



PeakTable

| Detector A ( | Detector A Ch1 210nm |          |        |         |          |  |  |  |  |  |
|--------------|----------------------|----------|--------|---------|----------|--|--|--|--|--|
| Peak#        | Ret. Time            | Area     | Height | Area %  | Height % |  |  |  |  |  |
| 1            | 22.608               | 33126386 | 785323 | 97.389  | 97.597   |  |  |  |  |  |
| 2            | 24.384               | 888219   | 19332  | 2.611   | 2.403    |  |  |  |  |  |
| Total        |                      | 34014605 | 804656 | 100.000 | 100.000  |  |  |  |  |  |

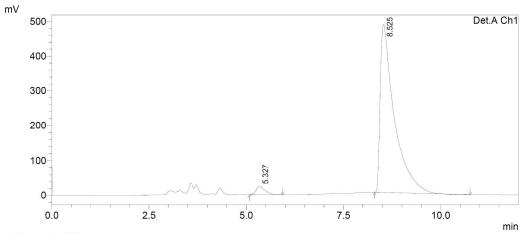



PeakTable


| Peak# | Ret. Time | Area     | Height  | Area %  | Height % |
|-------|-----------|----------|---------|---------|----------|
| 1     | 9.385     | 15027141 | 889676  | 49.128  | 54.561   |
| 2     | 11.795    | 15560535 | 740947  | 50.872  | 45.439   |
| Total |           | 30587675 | 1630623 | 100.000 | 100.000  |



PeakTable

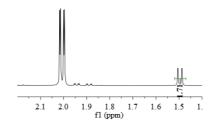

|            |           | 1 00     | ik i autc |         |          |
|------------|-----------|----------|-----------|---------|----------|
| Detector A | Ch1 210nm |          |           |         |          |
| Peak#      | Ret. Time | Area     | Height    | Area %  | Height % |
| 1          | 9.412     | 430401   | 24426     | 2.298   | 2.799    |
| 2          | 11.776    | 18295850 | 848152    | 97.702  | 97.201   |
| Total      |           | 18726251 | 872577    | 100.000 | 100.000  |

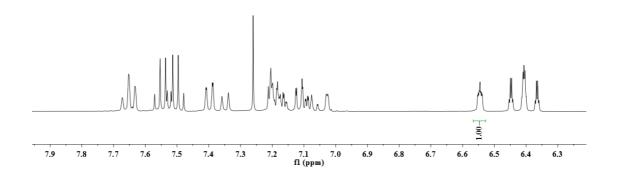




PeakTable

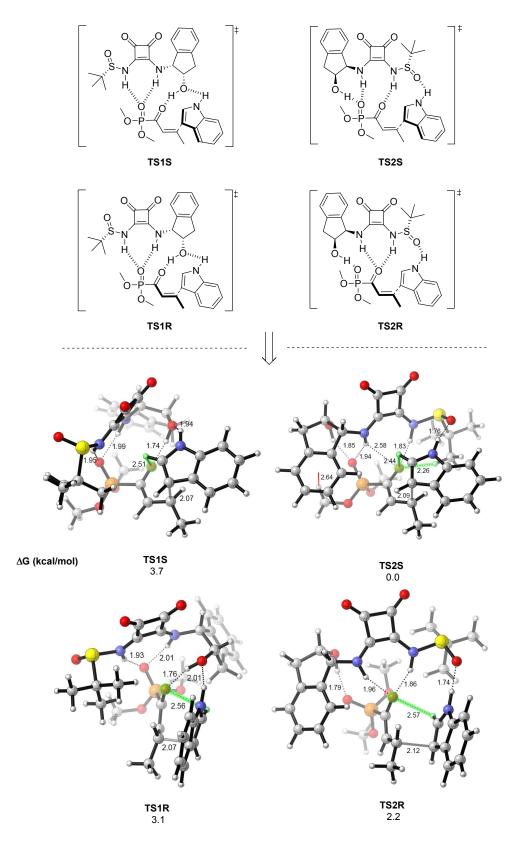
| Detector A | Detector A Ch1 210nm |          |         |         |          |  |  |  |  |  |
|------------|----------------------|----------|---------|---------|----------|--|--|--|--|--|
| Peak#      | Ret. Time            | Area     | Height  | Area %  | Height % |  |  |  |  |  |
| 1          | 4.799                | 11119621 | 613586  | 50.642  | 61.284   |  |  |  |  |  |
| 2          | 8.513                | 10837512 | 387632  | 49.358  | 38.716   |  |  |  |  |  |
| Total      |                      | 21957133 | 1001218 | 100.000 | 100.000  |  |  |  |  |  |





PeakTable

| Detector A | Ch1 210nm |          |        |         |          |
|------------|-----------|----------|--------|---------|----------|
| Peak#      | Ret. Time | Area     | Height | Area %  | Height % |
| 1          | 5.327     | 375530   | 24001  | 2.988   | 4.730    |
| 2          | 8.525     | 12190936 | 483468 | 97.012  | 95.270   |
| Total      |           | 12566466 | 507469 | 100.000 | 100.000  |

# 8. Experimental procedure for the kinetic study by <sup>1</sup>H NMR


A dry, screw-capped reaction vial containing a magnetic stir bar was charged with acyl phosphonate **4a** (0.2 mmol, 2 equiv), catalyst **2b** or **2i** (0.01 mmol, 0.1 equiv). After 10 min of stirring, indole **3a** (0.1 mmol, 1 equiv) was added. After 10 min, the solution was transferred to a NMR tube. The reaction progress was monitored by a Bruker AV400 spectrometer in situ. For each reaction, both the signal of hydrogen of indole at 6.55 ppm and the appearance of new signal at 1.52 ppm (doublet) were recorded. The conversion was determined by calculating the ratio of the integral of **3a** and **5a**.





## 9. Computational details

The transition states structures were optimized using the functional M06-2X<sup>5</sup> and the 6-311G(d) basis set as implemented in Gaussian 09.<sup>6</sup> The IEF-PCM solvation model was used to account for the effects of the chloroform environment.<sup>7</sup> The transition structures were confirmed by frequency calculations at the same level. The single-point energy calculations were performed at the M06-2X/def2TZVPP<sup>8</sup>-IEF-PCM(chloroform) level with the previously optimized structures. AIM analysis<sup>9</sup> were conducted by using Multiwfn.<sup>10</sup> The estimated energies of hydrogen bonding interactions in transition states were calculated using the formula (E=1/2V(r)) reported by Espinosa et al.<sup>11</sup> The C-H····O hydrogen bonding in TS2S was confirmed by electron density and its Laplacian (See Table S2), which are within the range of criteria for hydrogen bonding (0.002-0.04 au for the electron density and 0.02-0.15 au for its Laplacian).<sup>12</sup> All energetics reported throughout the text are in kcal/mol and the bond lengths are in angstroms (Å). Structures were generated using CYLview.<sup>13</sup>



Optimized Transition States calculated with M06-2X/def2-TZVPP-IEF-PCM (Chloroform)//M06-2X/6-311G(d)-IEF-PCM (Chloroform)

Table S2. Topological Parameters (in Hartree) at the Bond Critical Points of Hydrogen bonding interactions and Estimated Hydrogen bonding energy (kcal/mol) in the Transition-State Structures.

| TS1S            | Bond<br>length | ρ(r)   | $\nabla^2 \rho(r)$          | G(r)   | H(r)    | V(r)    | Е     |
|-----------------|----------------|--------|-----------------------------|--------|---------|---------|-------|
| $N-H\cdots O=P$ | 1.95           | 0.0249 | 0.0919                      | 0.0222 | 0.0008  | -0.0213 | -6.7  |
| $N-H\cdots O=P$ | 1.99           | 0.0225 | 0.0843                      | 0.0199 | 0.0011  | -0.0188 | -5.9  |
| O-H···O=C       | 1.74           | 0.0371 | 0.1166                      | 0.0341 | -0.0049 | -0.0390 | -12.2 |
| $N-H\cdots O=C$ | 1.94           | 0.0250 | 0.1038                      | 0.0242 | 0.0018  | -0.0224 | -7.0  |
| TS1R            | Bond<br>length | p(r)   | $\nabla^2 \rho(\mathbf{r})$ | G(r)   | H(r)    | V(r)    | Е     |
| N-H···O=P       | 1.93           | 0.0256 | 0.0923                      | 0.0227 | 0.0004  | -0.0223 | -7.0  |
| $N-H\cdots O=P$ | 2.01           | 0.0224 | 0.0831                      | 0.0196 | 0.0011  | -0.0185 | -5.8  |
| O-H···O=C       | 1.76           | 0.0352 | 0.1130                      | 0.0322 | -0.0039 | -0.0361 | -11.3 |
| $N-H\cdots O=C$ | 2.01           | 0.0220 | 0.0893                      | 0.0203 | 0.0020  | -0.0183 | -5.7  |
| TS2S            | Bond<br>length | p(r)   | $\nabla^2 \rho(\mathbf{r})$ | G(r)   | H(r)    | V(r)    | Е     |
| $N-H\cdots O=S$ | 1.76           | 0.0392 | 0.1069                      | 0.0328 | -0.0060 | -0.0388 | -12.2 |
| C-H···O=C       | 2.26           | 0.0140 | 0.0542                      | 0.0115 | 0.0021  | -0.0094 | -3.0  |
| $N-H\cdots O=C$ | 1.83           | 0.0296 | 0.1107                      | 0.0282 | -0.0005 | -0.0287 | -9.0  |
| $N-H\cdots O=P$ | 1.94           | 0.0261 | 0.0950                      | 0.0234 | 0.0004  | -0.0230 | -7.2  |
| O-H···O=P       | 1.85           | 0.0285 | 0.1049                      | 0.0268 | -0.0005 | -0.0273 | -8.6  |
| N-H···O=C       | 2.58           | 0.0080 | 0.0307                      | 0.0062 | 0.0015  | -0.0048 | -1.5  |
| TS2R            | Bond<br>length | ρ(r)   | $\nabla^2 \rho(\mathbf{r})$ | G(r)   | H(r)    | V(r)    | Е     |
| $N-H\cdots O=S$ | 1.74           | 0.0397 | 0.1135                      | 0.0343 | -0.0059 | -0.0402 | -12.6 |
| N-H···O=C       | 1.86           | 0.0275 | 0.1070                      | 0.0264 | 0.0003  | -0.0261 | -8.2  |
| N-H···O=C       | 1.96           | 0.0248 | 0.0889                      | 0.0218 | 0.0004  | -0.0214 | -6.7  |
| O-H···O=P       | 1.79           | 0.0336 | 0.1046                      | 0.0298 | -0.0036 | -0.0334 | -10.5 |

M06-2X/6-311G(d)-IEF-PCM (chloroform) calculated Cartesian coordinates, energies and free energies (in Hartrees), and imaginary frequencies of the transition states structures.

TS1S

M06-2X/6-311G(d)-IEFPCM(chloroform) Energy = -2709.412876
M06-2X/6-311G(d)-IEFPCM(chloroform) Free Energy = -2708.824934
M06-2X/def2-TZVPP-IEFPCM(chloroform) Energy = -2709.772429
Imaginary Frequencies = -393.03

| Center | Atomic | Atomic | Со        | ordinates (Ang | gstroms)  |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Type   | X         | Y              | Z         |
| 1      | 6      | 0      | -0.218228 | 0.885947       | 2.215661  |
| 2      | 6      | 0      | -1.034321 | 0.254979       | 3.261875  |
| 3      | 7      | 0      | -0.361321 | 2.006948       | 1.453565  |
| 4      | 1      | 0      | 0.437542  | 2.254339       | 0.863080  |
| 5      | 8      | 0      | -2.065847 | 0.510866       | 3.832624  |
| 6      | 6      | 0      | 4.942504  | -0.708796      | 1.325800  |
| 7      | 1      | 0      | 4.863151  | 0.004598       | 2.139694  |
| 8      | 6      | 0      | 6.087281  | -0.763068      | 0.536937  |
| 9      | 1      | 0      | 6.914942  | -0.092468      | 0.737361  |
| 10     | 6      | 0      | 6.175171  | -1.680715      | -0.511816 |
| 11     | 1      | 0      | 7.073116  | -1.715356      | -1.118949 |
| 12     | 6      | 0      | 5.122521  | -2.549555      | -0.785668 |
| 13     | 1      | 0      | 5.193737  | -3.254876      | -1.607554 |
| 14     | 6      | 0      | 3.973060  | -2.489675      | -0.002614 |
| 15     | 6      | 0      | 3.894585  | -1.580126      | 1.047726  |
| 16     | 6      | 0      | 2.555094  | -1.640877      | 1.733197  |
| 17     | 1      | 0      | 2.644809  | -1.792872      | 2.810612  |
| 18     | 6      | 0      | 1.850590  | -2.886989      | 1.081653  |
| 19     | 1      | 0      | 1.875362  | -3.695921      | 1.812656  |
| 20     | 6      | 0      | 2.690399  | -3.260625      | -0.162731 |
| 21     | 1      | 0      | 2.850388  | -4.337945      | -0.237150 |
| 22     | 1      | 0      | 2.167310  | -2.945248      | -1.072105 |
| 23     | 6      | 0      | 0.721171  | -0.140372      | 2.206208  |
| 24     | 6      | 0      | -0.004002 | -0.877769      | 3.273132  |
| 25     | 7      | 0      | 1.835809  | -0.390159      | 1.532027  |
| 26     | 1      | 0      | 2.055001  | 0.197339       | 0.729687  |
| 27     | 8      | 0      | 0.492845  | -2.671220      | 0.781433  |
| 28     | 1      | 0      | 0.448761  | -2.100221      | -0.008130 |
| 29     | 8      | 0      | 0.160098  | -1.920489      | 3.850616  |
| 30     | 6      | 0      | -1.744412 | 4.011012       | 0.349895  |
| 31     | 6      | 0      | -2.367469 | 2.950513       | -0.547528 |
| 32     | 1      | 0      | -1.651366 | 2.169688       | -0.807693 |
| 33     | 1      | 0      | -2.709417 | 3.419050       | -1.474644 |

| 34 | 1  | 0 | -3.231777 | 2.483037  | -0.066067 |
|----|----|---|-----------|-----------|-----------|
| 35 | 6  | 0 | -0.449436 | 4.581929  | -0.210086 |
| 36 | 1  | 0 | 0.018329  | 5.250993  | 0.513653  |
| 37 | 1  | 0 | -0.672767 | 5.149818  | -1.117550 |
| 38 | 1  | 0 | 0.262424  | 3.800345  | -0.479493 |
| 39 | 6  | 0 | -2.740207 | 5.129776  | 0.658071  |
| 40 | 1  | 0 | -3.659779 | 4.737134  | 1.099423  |
| 41 | 1  | 0 | -3.001482 | 5.640545  | -0.271343 |
| 42 | 1  | 0 | -2.309445 | 5.862581  | 1.342115  |
| 43 | 16 | 0 | -1.413017 | 3.245756  | 2.007333  |
| 44 | 8  | 0 | -0.619173 | 4.265918  | 2.758448  |
| 45 | 6  | 0 | -1.958152 | -0.909006 | -2.619859 |
| 46 | 1  | 0 | -1.549170 | -1.877935 | -2.340966 |
| 47 | 6  | 0 | -1.030624 | 0.162261  | -2.641490 |
| 48 | 1  | 0 | -1.271444 | 1.086311  | -3.153690 |
| 49 | 6  | 0 | -3.030953 | -0.941352 | -3.673372 |
| 50 | 1  | 0 | -3.764170 | -1.726646 | -3.500530 |
| 51 | 1  | 0 | -3.538851 | 0.021279  | -3.759110 |
| 52 | 1  | 0 | -2.544989 | -1.144793 | -4.632632 |
| 53 | 6  | 0 | 0.178532  | 0.039098  | -1.973054 |
| 54 | 8  | 0 | 0.586372  | -0.943831 | -1.298748 |
| 55 | 15 | 0 | 1.390495  | 1.406414  | -1.905838 |
| 56 | 8  | 0 | 1.747470  | 1.743139  | -0.492843 |
| 57 | 8  | 0 | 2.659409  | 0.975539  | -2.770420 |
| 58 | 8  | 0 | 0.782877  | 2.596601  | -2.760629 |
| 59 | 6  | 0 | 3.570035  | -0.023816 | -2.272529 |
| 60 | 1  | 0 | 3.092054  | -1.002057 | -2.313988 |
| 61 | 1  | 0 | 4.439104  | -0.000306 | -2.924250 |
| 62 | 1  | 0 | 3.867747  | 0.206855  | -1.247799 |
| 63 | 6  | 0 | 1.570152  | 3.772134  | -3.029815 |
| 64 | 1  | 0 | 0.886958  | 4.507333  | -3.444873 |
| 65 | 1  | 0 | 2.011325  | 4.152957  | -2.107756 |
| 66 | 1  | 0 | 2.350465  | 3.529652  | -3.749599 |
| 67 | 6  | 0 | -2.092893 | -0.907034 | 0.002731  |
| 68 | 6  | 0 | -3.135732 | -0.724560 | -0.932471 |
| 69 | 6  | 0 | -3.301209 | -2.783174 | 0.083669  |
| 70 | 6  | 0 | -3.770060 | -4.054647 | 0.395883  |
| 71 | 6  | 0 | -4.960349 | -4.446255 | -0.196930 |
| 72 | 6  | 0 | -5.655800 | -3.591191 | -1.065803 |
| 73 | 6  | 0 | -5.169416 | -2.330495 | -1.377987 |
| 74 | 6  | 0 | -3.963093 | -1.918259 | -0.805069 |
| 75 | 1  | 0 | -3.233631 | -4.701959 | 1.079143  |
| 76 | 1  | 0 | -5.366937 | -5.426337 | 0.022675  |
| 77 | 1  | 0 | -6.593385 | -3.923981 | -1.495644 |

| 78 | 1 | 0 | -5.720484 | -1.675306 | -2.043560 |
|----|---|---|-----------|-----------|-----------|
| 79 | 1 | 0 | -3.505088 | 0.249466  | -1.218054 |
| 80 | 1 | 0 | -1.273375 | -0.243140 | 0.232704  |
| 81 | 7 | 0 | -2.170102 | -2.115858 | 0.555898  |
| 82 | 1 | 0 | -1.415687 | -2.528709 | 1.104606  |
|    |   |   |           |           |           |

TS1R

M06-2X/6-311G(d)—IEFPCM(chloroform) Energy = -2709.412592

M06-2X/6-311G(d)—IEFPCM(chloroform) Free Energy = -2708.825836

M06-2X/def2-TZVPP—IEFPCM(chloroform) Energy = -2709.772254

Imaginary Frequencies = -391.94

| Center | Atomic | Atomic | Coo       | rdinates (Angs | stroms)   |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Type   | X         | Y              | Z         |
|        |        |        |           |                |           |
| 1      | 6      | 0      | -0.330912 | 2.247480       | -1.661425 |
| 2      | 6      | 0      | 0.234862  | 2.306424       | -3.017210 |
| 3      | 7      | 0      | -0.014047 | 2.844063       | -0.493170 |
| 4      | 1      | 0      | -0.506814 | 2.569954       | 0.362474  |
| 5      | 8      | 0      | 1.146842  | 2.894660       | -3.550356 |
| 6      | 6      | 0      | -5.363916 | -0.259774      | -1.189120 |
| 7      | 1      | 0      | -5.529622 | 0.641668       | -1.769965 |
| 8      | 6      | 0      | -6.383844 | -0.798714      | -0.408166 |
| 9      | 1      | 0      | -7.353723 | -0.315487      | -0.378097 |
| 10     | 6      | 0      | -6.169596 | -1.967149      | 0.323617  |
| 11     | 1      | 0      | -6.976880 | -2.383678      | 0.915967  |
| 12     | 6      | 0      | -4.929838 | -2.601176      | 0.303115  |
| 13     | 1      | 0      | -4.763471 | -3.504248      | 0.881674  |
| 14     | 6      | 0      | -3.906410 | -2.054234      | -0.461260 |
| 15     | 6      | 0      | -4.132922 | -0.903403      | -1.217839 |
| 16     | 6      | 0      | -2.894537 | -0.511883      | -1.985322 |
| 17     | 1      | 0      | -3.093272 | -0.267192      | -3.029421 |
| 18     | 6      | 0      | -2.010223 | -1.799642      | -1.885580 |
| 19     | 1      | 0      | -2.241600 | -2.421882      | -2.752353 |
| 20     | 6      | 0      | -2.479430 | -2.512546      | -0.603316 |
| 21     | 1      | 0      | -2.365822 | -3.596854      | -0.660223 |
| 22     | 1      | 0      | -1.903899 | -2.156960      | 0.259258  |
| 23     | 6      | 0      | -1.282681 | 1.297219       | -2.020728 |
| 24     | 6      | 0      | -0.813661 | 1.276884       | -3.425027 |
|        |        |        |           |                |           |

| 25 | 7  | 0 | -2.253924 | 0.649365  | -1.377228 |
|----|----|---|-----------|-----------|-----------|
| 26 | 1  | 0 | -2.352634 | 0.824828  | -0.380320 |
| 27 | 8  | 0 | -0.628023 | -1.542241 | -1.934298 |
| 28 | 1  | 0 | -0.394954 | -0.975468 | -1.174919 |
| 29 | 8  | 0 | -1.130470 | 0.689234  | -4.428323 |
| 30 | 6  | 0 | 2.625173  | 2.948480  | 0.227342  |
| 31 | 6  | 0 | 2.811502  | 1.801744  | -0.760162 |
| 32 | 1  | 0 | 1.986150  | 1.087609  | -0.696714 |
| 33 | 1  | 0 | 3.737081  | 1.270968  | -0.517649 |
| 34 | 1  | 0 | 2.892231  | 2.162922  | -1.788972 |
| 35 | 6  | 0 | 2.273621  | 2.458537  | 1.619959  |
| 36 | 1  | 0 | 2.082708  | 3.294893  | 2.293812  |
| 37 | 1  | 0 | 3.100766  | 1.863732  | 2.019496  |
| 38 | 1  | 0 | 1.391577  | 1.816819  | 1.588610  |
| 39 | 6  | 0 | 3.833571  | 3.882877  | 0.244040  |
| 40 | 1  | 0 | 4.052258  | 4.269867  | -0.754559 |
| 41 | 1  | 0 | 4.710527  | 3.330422  | 0.590255  |
| 42 | 1  | 0 | 3.672195  | 4.725087  | 0.919797  |
| 43 | 16 | 0 | 1.232286  | 4.011231  | -0.391974 |
| 44 | 8  | 0 | 0.849412  | 4.874372  | 0.770713  |
| 45 | 6  | 0 | 2.350481  | -1.254038 | 1.944638  |
| 46 | 1  | 0 | 2.603341  | -0.772743 | 1.000463  |
| 47 | 6  | 0 | 1.079192  | -0.908768 | 2.462056  |
| 48 | 1  | 0 | 0.863696  | -1.007681 | 3.520014  |
| 49 | 6  | 0 | 3.483773  | -1.418648 | 2.919749  |
| 50 | 1  | 0 | 4.398169  | -1.766659 | 2.444010  |
| 51 | 1  | 0 | 3.692313  | -0.437604 | 3.358688  |
| 52 | 1  | 0 | 3.216517  | -2.092545 | 3.735669  |
| 53 | 6  | 0 | 0.127022  | -0.394413 | 1.589672  |
| 54 | 8  | 0 | 0.230613  | -0.328245 | 0.340619  |
| 55 | 15 | 0 | -1.392467 | 0.400938  | 2.248384  |
| 56 | 8  | 0 | -1.785182 | 1.563542  | 1.397992  |
| 57 | 8  | 0 | -2.476657 | -0.755624 | 2.330866  |
| 58 | 8  | 0 | -1.174749 | 0.775299  | 3.785367  |
| 59 | 6  | 0 | -3.854026 | -0.405395 | 2.591146  |
| 60 | 1  | 0 | -4.291867 | 0.049541  | 1.701943  |
| 61 | 1  | 0 | -4.364054 | -1.335628 | 2.819787  |
| 62 | 1  | 0 | -3.913581 | 0.274125  | 3.441800  |
| 63 | 6  | 0 | -0.391910 | 1.933028  | 4.128734  |
| 64 | 1  | 0 | 0.668470  | 1.704287  | 4.008322  |
| 65 | 1  | 0 | -0.667740 | 2.780612  | 3.500195  |
| 66 | 1  | 0 | -0.609528 | 2.153333  | 5.169764  |
| 67 | 6  | 0 | 1.303261  | -2.925705 | 0.153540  |
| 68 | 6  | 0 | 2.358367  | -3.132181 | 1.068386  |

| 69 | 6 | 0 | 3.169687 | -2.822698 | -1.065561 |
|----|---|---|----------|-----------|-----------|
| 70 | 6 | 0 | 4.072769 | -2.670733 | -2.112116 |
| 71 | 6 | 0 | 5.410517 | -2.898500 | -1.825593 |
| 72 | 6 | 0 | 5.824011 | -3.271025 | -0.537872 |
| 73 | 6 | 0 | 4.913658 | -3.402835 | 0.500934  |
| 74 | 6 | 0 | 3.561638 | -3.162655 | 0.242946  |
| 75 | 1 | 0 | 3.743018 | -2.394323 | -3.106414 |
| 76 | 1 | 0 | 6.147818 | -2.795132 | -2.612841 |
| 77 | 1 | 0 | 6.874748 | -3.462150 | -0.353857 |
| 78 | 1 | 0 | 5.245529 | -3.703783 | 1.488252  |
| 79 | 1 | 0 | 2.227935 | -3.667008 | 1.997813  |
| 80 | 1 | 0 | 0.242356 | -2.892653 | 0.343541  |
| 81 | 7 | 0 | 1.779734 | -2.704009 | -1.067352 |
| 82 | 1 | 0 | 1.178674 | -2.418008 | -1.837362 |
|    |   |   |          |           |           |

TS2S
M06-2X/6-311G(d)—IEFPCM(chloroform) Energy = -2709.414894
M06-2X/6-311G(d)—IEFPCM(chloroform) Free Energy = -2708.831170
M06-2X/def2-TZVPP—IEFPCM(chloroform) Energy = -2709.774143
Imaginary Frequencies = -375.39

| Center | Atomic | Atomic | Co        | ordinates (An | gstroms)  |
|--------|--------|--------|-----------|---------------|-----------|
| Number | Number | Type   | X         | Y             | Z         |
|        |        |        |           |               |           |
| 1      | 6      | 0      | 0.716709  | -2.489434     | -0.812576 |
| 2      | 6      | 0      | 1.005270  | -3.383484     | -1.943478 |
| 3      | 7      | 0      | 1.416913  | -2.169217     | 0.314032  |
| 4      | 1      | 0      | 1.118851  | -1.333266     | 0.826889  |
| 5      | 8      | 0      | 1.901336  | -4.130594     | -2.242180 |
| 6      | 6      | 0      | -2.857520 | 1.447756      | -1.273725 |
| 7      | 1      | 0      | -1.781944 | 1.577384      | -1.198226 |
| 8      | 6      | 0      | -3.713600 | 2.541953      | -1.160757 |
| 9      | 1      | 0      | -3.303348 | 3.531463      | -0.990021 |
| 10     | 6      | 0      | -5.093193 | 2.369866      | -1.263304 |
| 11     | 1      | 0      | -5.749226 | 3.229315      | -1.178312 |
| 12     | 6      | 0      | -5.638654 | 1.100053      | -1.453396 |
| 13     | 1      | 0      | -6.714217 | 0.968824      | -1.514907 |
| 14     | 6      | 0      | -4.786198 | 0.006926      | -1.551358 |
| 15     | 6      | 0      | -3.405966 | 0.190676      | -1.477689 |
| 16     | 6      | 0      | -2.703356 | -1.131169     | -1.686599 |
| 17     | 1      | 0      | -2.447478 | -1.242260     | -2.744796 |
|        |        |        |           |               |           |

| 18 | 6  | 0 | -3.806409 | -2.173455 | -1.342477 |
|----|----|---|-----------|-----------|-----------|
| 19 | 1  | 0 | -3.648105 | -3.100856 | -1.895152 |
| 20 | 6  | 0 | -5.105635 | -1.454475 | -1.765396 |
| 21 | 1  | 0 | -5.320036 | -1.644444 | -2.822622 |
| 22 | 1  | 0 | -5.955742 | -1.809419 | -1.180465 |
| 23 | 6  | 0 | -0.512512 | -2.095114 | -1.322372 |
| 24 | 6  | 0 | -0.329565 | -2.930005 | -2.541801 |
| 25 | 7  | 0 | -1.470013 | -1.255538 | -0.926243 |
| 26 | 1  | 0 | -1.537911 | -1.029381 | 0.065618  |
| 27 | 8  | 0 | -3.801223 | -2.522604 | 0.020062  |
| 28 | 1  | 0 | -3.661601 | -1.737222 | 0.573774  |
| 29 | 8  | 0 | -0.962330 | -3.127105 | -3.544141 |
| 30 | 6  | 0 | 3.424685  | -2.079586 | 2.090282  |
| 31 | 6  | 0 | 2.393690  | -2.672674 | 3.044865  |
| 32 | 1  | 0 | 1.412415  | -2.212228 | 2.924618  |
| 33 | 1  | 0 | 2.728534  | -2.498642 | 4.070610  |
| 34 | 1  | 0 | 2.289870  | -3.752036 | 2.906539  |
| 35 | 6  | 0 | 3.453509  | -0.556895 | 2.112343  |
| 36 | 1  | 0 | 4.167038  | -0.171402 | 1.381669  |
| 37 | 1  | 0 | 3.777245  | -0.233085 | 3.105001  |
| 38 | 1  | 0 | 2.474131  | -0.114000 | 1.920998  |
| 39 | 6  | 0 | 4.818132  | -2.651219 | 2.359741  |
| 40 | 1  | 0 | 4.818002  | -3.743112 | 2.332069  |
| 41 | 1  | 0 | 5.140899  | -2.336045 | 3.354192  |
| 42 | 1  | 0 | 5.544808  | -2.280251 | 1.634400  |
| 43 | 16 | 0 | 3.051043  | -2.667468 | 0.370831  |
| 44 | 8  | 0 | 3.838945  | -1.755983 | -0.540037 |
| 45 | 6  | 0 | 1.074791  | 2.894855  | 0.787006  |
| 46 | 1  | 0 | 1.881717  | 2.232635  | 1.095866  |
| 47 | 6  | 0 | -0.231441 | 2.489539  | 1.143622  |
| 48 | 1  | 0 | -1.036600 | 3.215155  | 1.171830  |
| 49 | 6  | 0 | 1.384104  | 4.366381  | 0.845594  |
| 50 | 1  | 0 | 2.389851  | 4.598399  | 0.503943  |
| 51 | 1  | 0 | 0.660840  | 4.951025  | 0.273262  |
| 52 | 1  | 0 | 1.305385  | 4.678344  | 1.891536  |
| 53 | 6  | 0 | -0.496314 | 1.170889  | 1.486219  |
| 54 | 8  | 0 | 0.289724  | 0.188839  | 1.416693  |
| 55 | 15 | 0 | -2.127939 | 0.704223  | 2.183786  |
| 56 | 8  | 0 | -2.661862 | -0.547545 | 1.576661  |
| 57 | 8  | 0 | -1.900692 | 0.574931  | 3.761152  |
| 58 | 8  | 0 | -3.074844 | 1.968203  | 2.077284  |
| 59 | 6  | 0 | -1.129534 | -0.521186 | 4.280058  |
| 60 | 1  | 0 | -0.070223 | -0.346399 | 4.089455  |
| 61 | 1  | 0 | -1.318683 | -0.550182 | 5.349395  |
|    |    |   |           |           |           |

| 62 | 1 | 0 | -1.444662 | -1.457281 | 3.817985  |
|----|---|---|-----------|-----------|-----------|
| 63 | 6 | 0 | -4.501477 | 1.769063  | 2.017168  |
| 64 | 1 | 0 | -4.933078 | 2.739578  | 1.791015  |
| 65 | 1 | 0 | -4.741415 | 1.058850  | 1.225945  |
| 66 | 1 | 0 | -4.863457 | 1.409419  | 2.980495  |
| 67 | 6 | 0 | 1.432973  | 1.117713  | -1.144332 |
| 68 | 6 | 0 | 1.384449  | 2.527350  | -1.248686 |
| 69 | 6 | 0 | 3.548623  | 1.776306  | -1.402405 |
| 70 | 6 | 0 | 4.934955  | 1.788218  | -1.526305 |
| 71 | 6 | 0 | 5.527285  | 3.009787  | -1.805291 |
| 72 | 6 | 0 | 4.756176  | 4.173953  | -1.956198 |
| 73 | 6 | 0 | 3.376879  | 4.148506  | -1.814847 |
| 74 | 6 | 0 | 2.756748  | 2.930312  | -1.522345 |
| 75 | 1 | 0 | 5.514823  | 0.878358  | -1.423303 |
| 76 | 1 | 0 | 6.603465  | 3.066090  | -1.919104 |
| 77 | 1 | 0 | 5.251756  | 5.108735  | -2.190793 |
| 78 | 1 | 0 | 2.792113  | 5.053903  | -1.934948 |
| 79 | 1 | 0 | 0.505522  | 3.067665  | -1.568330 |
| 80 | 1 | 0 | 0.617083  | 0.426057  | -0.989091 |
| 81 | 7 | 0 | 2.696270  | 0.696954  | -1.177137 |
| 82 | 1 | 0 | 3.035526  | -0.262490 | -1.015009 |
|    |   |   |           |           |           |

TS2R
M06-2X/6-311G(d)-IEFPCM(chloroform) Energy = -2709.413803
M06-2X/6-311G(d)-IEFPCM(chloroform) Free Energy = -2708.826507
M06-2X/def2-TZVPP-IEFPCM(chloroform) Energy = -2709.774199
Imaginary Frequencies = -366.93

| Center | Atomic | Atomic | C         | oordinates (Ar | ngstroms) |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Type   | X         | Y              | Z         |
| 1      | 6      | 0      | 0.269364  | 2.601057       | -1.202150 |
| 2      | 6      | 0      | 0.727029  | 3.874710       | -1.764156 |
| 3      | 7      | 0      | -0.819150 | 2.217164       | -0.486152 |
| 4      | 1      | 0      | -0.856695 | 1.265172       | -0.110416 |
| 5      | 8      | 0      | 0.309017  | 5.007206       | -1.789760 |
| 6      | 6      | 0      | 2.293566  | -2.283866      | -1.757845 |
| 7      | 1      | 0      | 1.270646  | -2.048424      | -2.039297 |
| 8      | 6      | 0      | 2.659446  | -3.593507      | -1.449470 |
| 9      | 1      | 0      | 1.918428  | -4.384141      | -1.490431 |
| 10     | 6      | 0      | 3.970542  | -3.891491      | -1.084600 |

| 11 | 1  | 0 | 4.240092  | -4.913837 | -0.842850 |
|----|----|---|-----------|-----------|-----------|
| 12 | 6  | 0 | 4.935780  | -2.886773 | -1.012186 |
| 13 | 1  | 0 | 5.950573  | -3.122657 | -0.708675 |
| 14 | 6  | 0 | 4.570448  | -1.581394 | -1.307255 |
| 15 | 6  | 0 | 3.260689  | -1.292862 | -1.686410 |
| 16 | 6  | 0 | 3.107607  | 0.190816  | -1.916378 |
| 17 | 1  | 0 | 3.230466  | 0.432015  | -2.978861 |
| 18 | 6  | 0 | 4.312935  | 0.791535  | -1.128828 |
| 19 | 6  | 0 | 5.386362  | -0.310324 | -1.260216 |
| 20 | 1  | 0 | 5.950623  | -0.182227 | -2.190419 |
| 21 | 1  | 0 | 6.092849  | -0.270487 | -0.429393 |
| 22 | 6  | 0 | 1.401643  | 1.907286  | -1.613024 |
| 23 | 6  | 0 | 1.967843  | 3.122488  | -2.255833 |
| 24 | 7  | 0 | 1.802406  | 0.650445  | -1.481673 |
| 25 | 1  | 0 | 1.262185  | 0.052652  | -0.860880 |
| 26 | 8  | 0 | 3.978806  | 1.057515  | 0.209669  |
| 27 | 1  | 0 | 3.652100  | 0.243421  | 0.636269  |
| 28 | 8  | 0 | 2.970116  | 3.374819  | -2.870908 |
| 29 | 6  | 0 | -1.830138 | 3.603932  | 1.611550  |
| 30 | 6  | 0 | -0.500994 | 4.347846  | 1.692375  |
| 31 | 1  | 0 | 0.337974  | 3.718139  | 1.393166  |
| 32 | 1  | 0 | -0.332700 | 4.665663  | 2.724316  |
| 33 | 1  | 0 | -0.500453 | 5.239310  | 1.060262  |
| 34 | 6  | 0 | -1.831936 | 2.292638  | 2.383653  |
| 35 | 1  | 0 | -2.798120 | 1.792265  | 2.286512  |
| 36 | 1  | 0 | -1.669226 | 2.501624  | 3.444192  |
| 37 | 1  | 0 | -1.039654 | 1.611502  | 2.060368  |
| 38 | 6  | 0 | -2.993670 | 4.499522  | 2.032895  |
| 39 | 1  | 0 | -3.020455 | 5.422010  | 1.447432  |
| 40 | 1  | 0 | -2.869337 | 4.771686  | 3.083399  |
| 41 | 1  | 0 | -3.949083 | 3.984646  | 1.921742  |
| 42 | 16 | 0 | -2.116878 | 3.265419  | -0.184136 |
| 43 | 8  | 0 | -3.345199 | 2.389002  | -0.224803 |
| 44 | 6  | 0 | -1.485729 | -2.949761 | -0.122446 |
| 45 | 1  | 0 | -1.574256 | -2.191713 | -0.897533 |
| 46 | 6  | 0 | -0.482754 | -2.729146 | 0.844348  |
| 47 | 1  | 0 | -0.163402 | -3.529778 | 1.500657  |
| 48 | 6  | 0 | -1.788917 | -4.358543 | -0.543494 |
| 49 | 1  | 0 | -0.935435 | -4.717234 | -1.128460 |
| 50 | 1  | 0 | -1.900683 | -5.021653 | 0.316240  |
| 51 | 1  | 0 | -2.671827 | -4.423824 | -1.176112 |
| 52 | 6  | 0 | 0.087241  | -1.469672 | 0.962855  |
| 53 | 8  | 0 | -0.230349 | -0.437689 | 0.305551  |
| 54 | 15 | 0 | 1.471817  | -1.178069 | 2.127645  |

| 55 | 8 | 0 | 2.816049  | -1.087699 | 1.501153  |
|----|---|---|-----------|-----------|-----------|
| 56 | 8 | 0 | 1.075451  | 0.173010  | 2.894627  |
| 57 | 8 | 0 | 1.297232  | -2.299055 | 3.238450  |
| 58 | 6 | 0 | 1.651404  | 1.416575  | 2.459811  |
| 59 | 1 | 0 | 1.412290  | 1.600678  | 1.409417  |
| 60 | 1 | 0 | 1.213049  | 2.188011  | 3.088698  |
| 61 | 1 | 0 | 2.733117  | 1.399168  | 2.581444  |
| 62 | 6 | 0 | 2.262936  | -2.393005 | 4.301444  |
| 63 | 1 | 0 | 3.258746  | -2.546315 | 3.887059  |
| 64 | 1 | 0 | 2.238020  | -1.483972 | 4.902705  |
| 65 | 1 | 0 | 1.971087  | -3.247501 | 4.904368  |
| 66 | 6 | 0 | -3.070237 | -1.084433 | 0.938465  |
| 67 | 6 | 0 | -3.354674 | -2.450933 | 0.743277  |
| 68 | 6 | 0 | -4.498161 | -1.154526 | -0.769726 |
| 69 | 6 | 0 | -5.329500 | -0.805266 | -1.829844 |
| 70 | 6 | 0 | -6.045329 | -1.828811 | -2.430593 |
| 71 | 6 | 0 | -5.933141 | -3.155062 | -1.982472 |
| 72 | 6 | 0 | -5.090706 | -3.491860 | -0.933983 |
| 73 | 6 | 0 | -4.348226 | -2.479049 | -0.318229 |
| 74 | 1 | 0 | -5.415392 | 0.222701  | -2.161742 |
| 75 | 1 | 0 | -6.708627 | -1.600415 | -3.256467 |
| 76 | 1 | 0 | -6.519161 | -3.927925 | -2.466075 |
| 77 | 1 | 0 | -5.019017 | -4.518065 | -0.590560 |
| 78 | 1 | 0 | -3.243506 | -3.196772 | 1.515984  |
| 79 | 1 | 0 | -2.402304 | -0.634517 | 1.657437  |
| 80 | 7 | 0 | -3.703559 | -0.340279 | 0.032857  |
| 81 | 1 | 0 | -3.585691 | 0.676730  | -0.074803 |
| 82 | 1 | 0 | 4.624379  | 1.741483  | -1.563436 |
|    |   |   |           |           |           |

#### 10. References

- 1 (a) Evans, D. A.; Johnson, J. S. *J. Am. Chem. Soc.* **1998**, *120*, 4895-4896. (b) Evans, D. A.; Johnson, J. S.; Olhava, E. J. *J. Am. Chem. Soc.* **2000**, *122*, 1635-1649. (c) Evans, D. A.; Scheidt K. A.; Fandrick, K. R.; Lam, H. W.; Wu, J. *J. Am. Chem. Soc.* **2003**, *125*, 10780-10781.
- 2 Li, J.-C.; Zhou, H.-B.; Chen, Y.-Z. J. Sichuan Univ. Nat. Sci. Ed. 1998, 35, 144-146.
- 3 Qian, Y.; Ma, G.-Y.; Lv, A.-F.; Zhu, H.-L.; Zhao, J.; Rawal, V. H. *Chem. Commun.* **2010**, *46*, 3004-3006.
- 4 Kang, Y. K.; Suh, K. H.; Kim, D. Y. Synlett 2011, 1125-1128.
- 5 (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157-167. (b) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.
- 6 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- 7 (a) Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. **1997**, 107, 3032-3041. (b) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Struct. (Theochem) **1999**, 464, 211-226. (c) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. **2005**, 105, 2999-3093.
- 8 Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- 9 (a) Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9-15. (b) Bader, R. F. W. Chem. Rev. 1991, 91, 893-928. (c) Matta, C. F.; Boyd, R. J. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; WileyVCH; Weinheim, 2007. (d) Grabowski, S. J. Chem. Rev. 2011, 111, 2597-2625.
- 10 Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580-592.
- 11 Espinosa, E.; Molins, E.; Lecomte, C. Chem. Phys. Lett. 1998, 285, 170-173.
- 12 (a) Koch, U.; Popelier, P. L. A. *J. Phys. Chem.* **1995**, *99*, 9747-9751. (b) Popelier, P. L. A. *J. Phys. Chem. A* **1998**, *102*, 1873-1878. (c) Lipkowski, P.; Grabowski, S. J.; Robinson, T, L.; Leszczynski, J.; *J. Phys. Chem. A* **2004**, *108*, 10865-10872.
- 13 CYLview, 1.0b; Legault, C. Y. Université de Sherbrooke, 2009. (http://www.cylview.org).