Enantioselective Total Synthesis of (+)-Lysergol: A Formal anti-Carbopalladation/Heck Cascade as Key Step

Bastian Milde, Martin Pawliczek, Peter G. Jones, Daniel B. Werz* Institut für Organische Chemie, Technische Universität Braunschweig Hagenring 30, 38106 Braunschweig, Germany

Supporting Information

Table of Contents

General Experimental S2
Experimental Section S3
${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Spectra of all New Compounds S14
HPLC Chromatograms S23
Crystallographic Data S25
References S33

General Experimental

All solvents were distilled before use unless otherwise stated. Air and moisture sensitive reactions were carried out in oven-dried or flame-dried glassware, septum-capped under atmospheric pressure of argon. Commercially available compounds were used without further purification unless otherwise stated.

Proton $\left({ }^{1} \mathrm{H}\right)$, carbon $\left({ }^{13} \mathrm{C}\right)$ and fluorine $\left({ }^{19} \mathrm{~F}\right)$ NMR spectra were recorded on a 300 or 600 MHz instrument using the residual signals from $\mathrm{CHCl}_{3}, \delta=7.26 \mathrm{ppm}$ and $\delta=77.16 \mathrm{ppm}$, as internal references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts, respectively. ESI-HRMS mass spectrometry was carried out on a FTICR instrument. IR spectra were measured on an ATR spectrometer and UV spectra with a common photometer. Optical rotations were measured using a common optical rotation instrument. A HPLC system equipped with an analytical Chiralpak IG column (particle size: $5 \mu \mathrm{~m}$, dimensions: $4.6 \mathrm{~mm} \emptyset \times 150 \mathrm{mmL}$) was used to determine ee values.

Experimental Section

1-(4-Bromo-1-tosyl-1H-indol-3-yl)-4-(trimethylsilyl)but-3-yn-2-ol (13)

Trimethylsilylacetylene ($481 \mathrm{mg}, 677 \mu \mathrm{~L}, 4.90 \mathrm{mmol}, 2.00$ eq.) was dissolved in THF (25.0 mL) and the solution was cooled to $-78^{\circ} \mathrm{C}$. nBuLi ($2.5 \mathrm{M}, 1.42 \mathrm{~mL}, 3.55 \mathrm{mmol}, 1.45 \mathrm{eq}$.) was added dropwise and the reaction mixture was allowed to stir for 30 min . A solution of 2-(4-bromo-1-tosyl-1H-indol-3yl)acetaldehyde ${ }^{1}\left(960 \mathrm{mg}, 2.45 \mathrm{mmol}, 1.00 \mathrm{eq}\right.$.) in THF (6.0 mL) was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 2.5 h while warming up to $-15{ }^{\circ} \mathrm{C}$ and for 1.5 h at ambient temperature. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$-solution was added and the aqueous layer was extracted three times with EtOAc. The combined organic phases were washed once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc $=10: 1$) afforded the desired product 13 ($847 \mathrm{mg}, 1.73 \mathrm{mmol}, 71 \%$) as light yellow solid.
$\mathbf{R}_{\mathrm{f}}: 0.10$ (n-hexane:EtOAc = 10:1).
m.p.: $60-61^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.16(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.32$ (ddd, J=14.5, $6.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (ddd, $J=14.5,6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.72 (td, J = 6.7, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08-7.15$ (m, 1 H), $7.18-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.37$ (dd, J = 7.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.76$ (m, 2 H), 7.94 (dd, J = $8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.2,21.6,34.4,62.9,90.5,105.7,112.9,114.4,117.6,125.3,126.8$, 126.9, 127.9, 128.7, 130.0, 134.9, 136.3, 145.2.

IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3529,2959,1597,1554,1412,1371,1248,1171$.
UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }(\lg \varepsilon)=296$ (3.63), 261 (4.07), 220 (4.44), 196 (4.73).
MS (ESI): $m / z=514.0[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{SSi}(490.49)$
calcd.: 514.0303
found: 514.0300, [M+Na] ${ }^{+}$(ESI-HRMS).

1-(4-Bromo-1-tosyl-1H-indol-3-yl)-4-(trimethylsilyl)but-3-yn-2-one (14)

Secondary alcohol 13 (287 mg , $585 \mu \mathrm{~mol}$, 1.00 eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6.5 mL) and Dess-Martin periodinane ($645 \mathrm{mg}, 1.52 \mathrm{mmol}, 2.6$ eq.) was added. The reaction mixture was stirred for 26 h at ambient temperature. Sat. aq. NaHCO_{3}-solution and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$-solution were added to the mixture, which was allowed to stir for further $10 \mathrm{~min} .$. The aqueous layer was extracted three times with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic phases were washed once with sat. aq. NaHCO_{3}-solution and once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc $=8: 1$) afforded the desired product 14 (252 mg , $516 \mu \mathrm{~mol}, 88 \%)$ as light yellow, highly viscous oil.
$\mathbf{R}_{\mathrm{f}}: 0.23$ (n-hexane:EtOAc $=7: 1$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.09(\mathrm{~s}, 9 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ 7.26 (m, 2 H), 7.37 (dd, J = 7.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (s, 1 H), $7.72-7.78$ (m, 2 H), 7.95 (dd, J = 8.4, 0.9 Hz , 1 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-1.0,21.7,42.2,100.3,101.6,112.9,114.6,114.7,125.7,127.0,127.3$, $127.8,128.6,130.1,134.9,136.2,145.5,184.3$.

IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=2961,1676,1597,1555,1412,1373,1249,1171,1088$.
UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }(\lg \varepsilon)=296$ (3.69), 258 (4.11), 218 (4.52), 196 (4.73).
MS (ESI): $m / z=512.0[\mathrm{M}+\mathrm{Na}]^{+}$.
calcd.: 512.0145
found: 512.0144, [M+Na] ${ }^{+}$(ESI-HRMS).

(S)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)-4-(trimethylsilyl)but-3-yn-2-ol (16)

15

Ketone 14 ($252 \mathrm{mg}, 516 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) was dissolved in $\mathrm{iPrOH}\left(5.2 \mathrm{~mL}\right.$) and Ru complex 15^{2} ($30.9 \mathrm{mg}, 51.6 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) was added. The reaction mixture was stirred for 17 h at ambient temperature.

Afterwards, the solvent was removed in vacuo and silica gel column chromatography (n-pentane:EtOAc $=10: 1 \rightarrow 8: 1$) afforded the desired product 16 ($223 \mathrm{mg}, 455 \mu \mathrm{~mol}, 88 \%, 99 \%$ ee) as light brownish solid.
$\mathbf{R}_{\mathrm{f}}: 0.10$ (n-hexane: $\mathrm{EtOAc}=10: 1$).
m.p.: $55-56^{\circ} \mathrm{C}$.

Specific Rotation: $[a]_{D}^{23}=+21.9^{\circ}\left(c=5.7 \mathrm{mM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.16(\mathrm{~s}, 9 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.32$ (ddd, J=14.5, $6.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.42 (ddd, J = 14.5, 6.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.72 (td, J = 6.7, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.08-7.15$ (m, 1 H), $7.18-7.27$ (m, 2 H), 7.37 (dd, J = 7.8, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.76$ (m, 2 H), 7.94 (dd, J = $8.3,0.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.2,21.6,34.4,62.9,90.5,105.7,112.9,114.4,117.6,125.3,126.8$, 126.9, 127.9, 128.7, 130.0, 134.9, 136.3, 145.2.

IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right)=3529,2959,1597,1554,1412,1371,1248,1171$.
UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }(\lg \varepsilon)=296(3.63), 261$ (4.07), 220 (4.44), 196 (4.73).
MS (ESI): $m / z=514.0[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrNO}_{3} \mathrm{SSi}$ (490.49) calcd.: 514.0303
found: 514.0300, $[\mathrm{M}+\mathrm{Na}]^{+}$(ESI-HRMS).

Determination of enantiomeric excess via Mosher ester formation:

$(R)-(-)-M o s h e r ~ e s t e r ~ a c i d ~ c h l o r i d e ~(1.3 ~ m g, ~ 1.0 ~ \mu L, ~ 5.14 ~ \mu \mathrm{~mol}, ~ 1.2 ~ e q) ~ a n d ~ 4-.D M A P ~(~ 1.1 ~ m g, ~$ $8.56 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.) were added to a solution of the alcohol 13 or 16 ($4.28 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ at ambient temperature. The reaction mixture was stirred for 15 min before aq. $\mathrm{HCl}(1.0 \mathrm{~m})$ was added. The phases were separated and the organic layer was washed once with sat. aq. $\mathrm{NaHCO}_{3}-$
solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Via ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ of the crude Mosher esters the enantiomeric excess was determined.

${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$; top right: full spectra)

${ }^{19}$ F-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$; top right: full spectra)
(S)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)-4-(trimethylsilyl)but-3-yn-2-yl (1S,4R)-4,7,7-trimethyl-3-oxo-

2-oxabicyclo[2.2.1]heptane-1-carboxylate (18)

Chiral alcohol 16 (36.0 mg , $73.4 \mu \mathrm{~mol}, 1.00$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}$) and 4-DMAP (1.8 mg , $14.7 \mu \mathrm{~L}, 0.2$ eq.), pyridine ($11.6 \mathrm{mg}, 11.8 \mu \mathrm{~L}, 147 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$.) and (-)-camphanoyl chloride ($31.8 \mathrm{mg}, 147 \mu \mathrm{~mol}, 2.0$ eq.) were added at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to stir for 25 h while warming up to ambient temperature. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$-solution was added and the aqueous layer was extracted three times with EtOAc. The combined organic phases were washed once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc $=10: 1 \rightarrow 8: 1$) afforded the desired product 18 (41.4 mg , $61.7 \mu \mathrm{~mol}, 84 \%)$ as white solid.
$\mathbf{R}_{\mathrm{f}}: 0.07$ (n-hexane: $\mathrm{EtOAc}=10: 1$).
m.p.: $149-151{ }^{\circ} \mathrm{C}$.

Specific Rotation: $[a]_{D}^{23}=-31.8^{\circ}\left(c=4.2 \mathrm{~mm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.15(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.69(\mathrm{~m}$, 1 H), $1.87-1.93$ (m, 2 H), 2.31 - 2.38 (m, 1 H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 3.51$ (ddd, $J=14.8,7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (ddd, $J=14.8,6.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H})$, 7.38 (dd, J = 7.8, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (s, 1 H), $7.71-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.92(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}-$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-0.4,9.6,16.5,16.8,21.6,29.1,30.2,31.2,54.6,54.8,65.1,90.7,92.2$, $101.2,112.8,114.3,116.3,125.5,126.8,126.9,127.9,128.3,130.1,134.8,136.1,145.4,166.1,177.9$. IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3112,2962,1791,1750,1376,1250,1171,1062$. MS (ESI): $m / z=694.1[\mathrm{M}+\mathrm{Na}]^{+}$.

(E)-4-Methyl-N-(4-(trimethylsilyl)but-2-en-1-yl)benzenesulfonamide (17)

N-Allyl-4-methylbenzenesulfonamide ($300 \mathrm{mg}, 1.42 \mathrm{mmol}, 1.00 \mathrm{eq}$.) and allyltrimethylsilane (811 mg , $1.13 \mathrm{~mL}, 7.10 \mathrm{mmol}, 5.00$ eq.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.8 \mathrm{~mL})$ and heated to $50^{\circ} \mathrm{C} .1,4-$ Benzoquinone ($76.7 \mathrm{mg}, 710 \mu \mathrm{~mol}, 0.50 \mathrm{eq}$.) and Hoveyda-Grubbs catalyst $2^{\text {nd }}$ generation (44.5 mg , $71.0 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%)$ were added and the vial was sealed under an argon atmosphere. The reaction mixture was allowed to stir for three days at $50^{\circ} \mathrm{C}$. After cooling to ambient temperature, the solvent was removed in vacuo and silica gel column chromatography (n-pentane:EtOAc =12:1) afforded the desired product 17 ($287 \mathrm{mg}, 965 \mu \mathrm{~mol}, 68 \%, E: Z=\sim 3: 1$) as colorless oil.

All analytical data were in agreement with those previously reported. ${ }^{3}$

(R)-N-(1-(4-Bromo-1-tosyl-1H-indol-3-yl)-4-(trimethylsilyl)but-3-yn-2-yl)-4-methyl-N-(4-(trimethyl-

 silyl)but-2-en-1-yl)benzenesulfonamide (10)

Chiral alcohol 16 ($476 \mathrm{mg}, 970 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.), sulfonamide $17(577 \mathrm{mg}, 1.94 \mathrm{mmol}, 2.00 \mathrm{eq}$.) and PPh_{3} ($865 \mathrm{mg}, 3.30 \mathrm{mmol}, 3.40 \mathrm{eq}$.) were dissolved in THF (7.0 mL) and the solution was cooled to $0^{\circ} \mathrm{C}$. DIAD ($569 \mathrm{mg}, 553 \mu \mathrm{~L}, 2.81 \mathrm{mmol}, 2.90 \mathrm{eq}$.) was added slowly over a period of one hour. The reaction mixture was allowed to warm to ambient temperature and stirring continued for 2 h . The solvent was removed in vacuo and silica gel column chromatography (n-pentane:EtOAc $=15: 1$) afforded the desired product 10 (554 mg, $720 \mu \mathrm{~mol}, 74 \%, E: Z=\sim 3: 1$) as white solid

Rff : 0.22 (n-hexane:EtOAc = 10:1).
m.p.: 91-93 ${ }^{\circ} \mathrm{C}$.

Specific Rotation: $[a]_{D}^{23}=+30.9^{\circ}\left(c=4.6 \mathrm{mM}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the major product: $\delta=-0.03(\mathrm{~s}, 9 \mathrm{H}),-0.02(\mathrm{~s}, 9 \mathrm{H}), 1.34-1.40(\mathrm{~m}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{dd}, \mathrm{J}=14.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=14.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=$
$15.5,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=15.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.37(\mathrm{~m}, 1 \mathrm{H}), 5.60-$ $5.69(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{dd}, J=7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H})$, $7.69-7.72$ (m, 2 H), $7.74-7.77$ (m, $2 H$ H), 7.89 (dd, J = 8.3, 0.9 Hz, 1 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the major product: $\delta=-1.9,-0.4,21.5,21.6,22.7,32.2,47.9,52.0,91.4$, $101.3,125.2,125.4,127.0,127.2,127.7,127.7,128.7,129.3,130.0,131.0,134.8,136.1,136.1,143.1$, 145.1.

IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2956,1598,1413,1372,1247,1158,1091$.
UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }}(\lg \varepsilon)=286$ (3.73), 255 (4.11), 221 (4.59), 196 (4.96).
MS (ESI): $m / z=793.1[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}_{2}$ (769.96) calcd.: 793.1414
found: 793.1421, $[\mathrm{M}+\mathrm{Na}]^{+}$(ESI-HRMS).

(6aR,9S)-4,7-ditosyl-10-(trimethylsilyl)-9-vinyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline (9)

Domino precursor $10(38.3 \mathrm{mg}, 49.8 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) was dissolved in DMA (2.0 mL) and the solution was degassed with argon for 20 min . Afterwards, $\mathrm{Et}_{3} \mathrm{~N}(25.2 \mathrm{mg}, 34.5 \mu \mathrm{~L}, 249 \mu \mathrm{~mol}, 5.00 \mathrm{eq}$.), XPhos $(4.84 \mathrm{mg}, 9.95 \mu \mathrm{~mol}, 20 \mathrm{~mol} \%)$ and $\left[\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}\right](1.91 \mathrm{mg}, 4.98 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ were added and the vial was sealed under an argon atmosphere. The reaction mixture was stirred for 30 min at ambient temperature and for 2 h at $120^{\circ} \mathrm{C}$. Sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$-solution was added to the mixture and the aqueous layer was extracted three times with EtOAc. The combined organic phases were washed three times with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc $=14: 1 \rightarrow 8: 1$) afforded the desired product 9 ($24.6 \mathrm{mg}, 39.9 \mu \mathrm{~mol}, 80 \%, 99 \%$ ee) as light yellow solid.
$\mathbf{R}_{\mathrm{f}}: 0.21$ (n-hexane:EtOAc $=5: 1$).
m.p.: 110-112 ${ }^{\circ} \mathrm{C}$.

Specific Rotation: $[a]_{D}^{22}=-69.2^{\circ}\left(c=10.4 \mathrm{mM}, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.02(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.97$ (ddd, J=14.8, 11.8, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.11-3.16(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, J=13.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, \mathrm{J}=13.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (dd, J = 11.7, $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.83 (ddd, J = 10.0, 1.6, $0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (ddd, $J=17.1,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$),
5.47 (ddd, $J=17.1,10.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=4.4,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-$ 7.26 (m, 4 H), $7.64-7.67$ (m, 2 H), $7.76-7.82$ (m, 3 H).
${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.7,21.5,21.6,29.4,42.6,43.7,55.1,113.3,116.9,118.0,120.2$, $120.7,124.5,126.8,127.3,129.3,129.4,129.9,132.6,133.1,135.4,135.9,138.0,138.8,142.5,143.2$, 144.9.

IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2955,1597,1435,1339,1249,1173,1112,1089$.
UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }}(\lg \varepsilon)=293$ (4.20), 229 (4.51), 193 (4.94).
MS (ESI): $m / z=639.2[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathrm{C}_{33} \mathrm{H}_{36} \mathbf{N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}(616.87) \quad$ calcd.: 639.1778
found: 639.1780, $[\mathrm{M}+\mathrm{Na}]^{+}$(ESI-HRMS).

(6aR,9R)-4,7-Ditosyl-10-(trimethylsilyl)-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-

 carbaldehyde (20)

Domino product $9\left(31.9 \mathrm{mg}, 51.7 \mu \mathrm{~mol}, 1.00 \mathrm{eq}\right.$.) was dissolved in a mixture of THF (0.50 mL), $\mathrm{H}_{2} \mathrm{O}$ ($58 \mu \mathrm{~L}$) and acetone (0.6 mL). 2,6-Lutidine ($11.1 \mathrm{mg}, 12.0 \mu \mathrm{~L}, 103 \mu \mathrm{~mol}, 2.00$ eq.) and NMO (12.1 mg , $103 \mu \mathrm{~mol}, 2.00$ eq.) were added and the solution was cooled to $0^{\circ} \mathrm{C} . \mathrm{OsO}_{4}(2.5 \mathrm{wt} \%$ in $t \mathrm{BuOH}, 158 \mu \mathrm{~L}$, $15.5 \mu \mathrm{~mol}, 0.30 \mathrm{eq}$.$) was added in one portion and the reaction mixture was allowed to stir for 2 \mathrm{~d}$ and 15 h at $0^{\circ} \mathrm{C}$. Afterwards, aq. sat. $\mathrm{Na}_{2} \mathrm{SO}_{3}$-solution was added and stirring continued for 10 min while warming up to ambient temperature. The aqueous layer was extracted three times with EtOAc. The combined organic phases were washed once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo.

The crude diol was dissolved in a mixture of THF (1.2 mL) and $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ and $\mathrm{NaIO}_{4}(44.2 \mathrm{mg}$, $207 \mu \mathrm{~mol}, 4.00$ eq.) was added. After being stirred for 4 h at ambient temperature, the suspension was diluted with EtOAc. The aqueous layer was extracted three times with EtOAc. The combined organic phases were washed once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc $=5: 1$) afforded the desired product 20 ($18.8 \mathrm{mg}, 30.4 \mu \mathrm{~mol}, 59 \%$) as yellow solid.
$\mathbf{R}_{\mathrm{f}}: 0.40$ (n-hexane: $\mathrm{EtOAc}=5: 3$).
m.p.: $109-111^{\circ} \mathrm{C}$.

Specific Rotation: $[a]_{D}^{22}=-168.7^{\circ}\left(c=12.1 \mathrm{~mm}, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.06(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.99$ (ddd, J = 14.5, 11.9, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.17 (dd, $J=14.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.26(\mathrm{dt}, J=3.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{dd}, J=13.7,3.7 \mathrm{~Hz}$, 1 H), 4.15 (dd, $J=13.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.66(\mathrm{dd}, J=11.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ $7.28(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{dd}, \mathrm{J}=7.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 9.26(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.4,21.6,21.6,29.2,38.5,51.1,55.1,113.8,117.3,120.5,120.8$, $124.7,126.8,127.2,129.3,129.9,130.0,130.1,132.0,133.0,135.3,137.0,144.0,145.0,145.8,199.6$.

IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2954,1718,1597,1436,1356,1340,1172,1158,1112,1088$.
UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }(\lg \varepsilon)=293$ (4.10), 231 (4.49), 193 (4.87).
MS (ESI): $m / z=641.2[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}(618.84)$
calcd.: 641.1571
found: 641.1571, $[\mathrm{M}+\mathrm{Na}]^{+}$(ESI-HRMS).

Methyl (6aR,9R)-4,7-ditosyl-10-(trimethylsilyl)-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9carboxylate (8)

Aldehyde 20 ($43.3 \mathrm{mg}, 70.0 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.) and 2-methylbut-2-ene ($295 \mathrm{mg}, 444 \mu \mathrm{~L}, 4.20 \mathrm{mmol}$, 60.0 eq.) were dissolved in THF (1.5 mL) and $\mathrm{tBuOH}(1.5 \mathrm{~mL})$. A solution of $\mathrm{NaClO}_{2}(80 \%, 75.9 \mathrm{mg}$, $672 \mu \mathrm{~mol}, 9.6$ eq.) and $\mathrm{NaH}_{2} \mathrm{PO}_{4}\left(80.6 \mathrm{mg}, 672 \mu \mathrm{~mol}, 9.6\right.$ eq.) in $\mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{~mL})$ was added dropwise and the reaction mixture was stirred for 1.5 h at ambient temperature. Sat. aq. NaCl -solution was added and the aqueous layer was extracted three times with EtOAc. The combined organic phases were washed once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo.

The crude carboxylic acid was dissolved in $\mathrm{PhMe}(1.5 \mathrm{~mL})$ and $\mathrm{MeOH}(0.8 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ before $\mathrm{TMSCHN}_{2}(2.0 \mathrm{M}$ in hexane, $350 \mu \mathrm{~L}, 700 \mu \mathrm{~mol}, 10.0$ eq.) was added dropwise. After being stirred for 30 min at $0^{\circ} \mathrm{C}$, the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc = 5:1) afforded the desired product $8(40.7 \mathrm{mg}, 62.7 \mu \mathrm{~mol}, 90 \%, 99 \%$ ee) as light yellow solid.
$\mathbf{R}_{\mathrm{f}}: 0.34$ (n-hexane: $E t O A c=3: 1$).
m.p.: $84-86^{\circ} \mathrm{C}$.

Specific Rotation: $[a]_{D}^{21}=-33.3^{\circ}\left(c=16.6 \mathrm{mM}, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.05(\mathrm{~s}, 9 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.03$ (ddd, $J=14.8,11.8$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 ($\mathrm{dd}, J=14.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.34(\mathrm{dd}, J=13.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.39(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}$, 1 H), $3.41(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{dd}, J=13.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=1.4,21.5,21.6,29.0,40.7,44.6,52.0,55.3,113.5,117.7,120.4,120.7$, $124.6,126.8,127.4,129.3,129.5,129.9,131.6,132.3,133.1,135.4,137.5,143.3,144.6,144.9,172.0$. IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2952,1732,1597,1376,1248,1172,1153,1108,1088,1018$.

UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }(\lg \varepsilon)=291$ (4.17), 230 (4.51), 194 (4.92).
MS (ESI): $m / z=671.2[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}(648.87)$
calcd.: 671.1676
found: 671.1678, $[\mathrm{M}+\mathrm{Na}]^{+}$(ESI-HRMS).

Methyl (6aR,9R)-4,7-ditosyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxylate (21)

Ester 8 (53.5 mg , $82.5 \mu \mathrm{~mol}$, 1.00 eq.) was dissolved in $\mathrm{CHCl}_{3}\left(1.4 \mathrm{~mL}\right.$) and at $0^{\circ} \mathrm{C}$ TFA (1.4 mL) was added dropwise. The ice bath was removed and the reaction mixture was stirred for 4.5 h in an open flask at ambient temperature. The solution was treated with sat. aq. NaHCO_{3}-solution and the aqueous layer was extracted three times with EtOAc. The combined organic phases were washed once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc $=2: 1$) afforded the desired product 21 (45.4 mg , $78.7 \mu \mathrm{~mol}, 95 \%)$ as light yellow solid.
$\mathbf{R}_{\mathrm{f}}: 0.22$ (n-hexane: $\mathrm{EtOAc}=2: 1$).
m.p.: $119-121^{\circ} \mathrm{C}$.

Specific Rotation: $[a]_{D}^{22}=-129.4^{\circ}\left(c=21.9 \mathrm{mM}, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.35(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{ddd}, \mathrm{J}=14.8,12.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-$ 3.29 (m, 1 H), $3.35-3.41$ (m, 2 H), 3.48 (s, $3 H$), $4.30(d, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.69(\mathrm{~m}, 1 \mathrm{H}), 6.35$
(dd, J = 6.1, 1.8 Hz, 1 H), 7.19 (d, J = $1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.22-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.78$ (m, 2 H), 7.80 (dd, J = 7.5, 1.3 Hz, 1 H).
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=21.3,21.4,27.8,40.5,41.2,52.0,53.4,112.8,115.9,117.0,118.8$, $120.4,125.6,126.5,127.1,128.0,129.3,129.7,129.7,133.1,134.9,135.1,137.5,143.1,144.7,170.8$.

IR (ATR) $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 2953,1733,1597,1434,1357,1341,1153,1110,1088$.
UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }}(\lg \varepsilon)=285(4.16), 230(4.52), 193$ (4.84).
MS (ESI): $m / z=599.1[\mathrm{M}+\mathrm{Na}]^{+}$.
$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}(576.68)$
calcd.: 599.1281
found: 599.1280, [M+Na] ${ }^{+}$(ESI-HRMS).

((6aR,9R)-4,7-Ditosyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinolin-9-yl)methanol (22)

Ester 21 ($10.5 \mathrm{mg}, 18.2 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$.$) was dissolved in THF (0.5 \mathrm{~mL}$) and at $-78{ }^{\circ} \mathrm{C}$ DIBAL-H (1.0 M , $54.6 \mu \mathrm{~L}, 54.6 \mu \mathrm{~mol}, 3.00 \mathrm{eq}$.) was added dropwise. The reaction mixture was stirred for 1 h and 20 min before being warmed up to $0^{\circ} \mathrm{C}$. Stirring continued for 30 min at $0^{\circ} \mathrm{C}$ and for 45 min at ambient temperature. Further DIBAL-H ($1.0 \mathrm{~m}, 54.6 \mu \mathrm{~L}$, $54.6 \mu \mathrm{~mol}, 3.00 \mathrm{eq}$.) was added and after 1.5 h sat. aq. Rochelle salt solution was used to terminate the reaction. The solution was stirred for 15 min and afterwards the aqueous layer was extracted three times with EtOAc. The combined organic phases were washed once with sat. aq. NaCl -solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Silica gel column chromatography (n-pentane:EtOAc $=1: 1$) afforded the desired product 22 ($9.0 \mathrm{mg}, 16.4 \mu \mathrm{~mol}, 90 \%$) as light yellow solid.

All analytical data were in agreement with those previously reported. ${ }^{4}$

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra of all New Compounds

Compound 16

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 14

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 10

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 20

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\bullet}{\stackrel{\circ}{*}}$

科 1 辛翌

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 8

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 21

${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Compound 22

HPLC Chromatograms

Chromatogram of compound 9 (rac)

Chromatogram of compound 9

Chromatogram of compound 8 (rac)

Chromatogram of compound 8

Column: Chiralpak IG
Mobile Phase: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}=60: 40$

Detection: 254 nm
Flow Rate: $\quad 1.0$ ml/min

Crystallographic Data

The toluol solvate of 18 crystallizes in space group $P 2_{1}$ with $a=6.04388(8), b=22.18157(15)$, $c=13.72525(15) \AA, \beta=92.9646(12)^{\circ}, V=1837.58 \AA^{3}, Z=2$. Data were registered to $2 \theta_{\max } 152^{\circ}$ at 100 K using $\mathrm{Cu} K \alpha$ radiation on an Oxford Diffraction Nova A diffractometer. The structure was refined on F^{2} using the program SHELXL-97 (G. M. Sheldrick, University of Göttingen, Germany) to $w R 20.0964$ (all 7682 unique reflections), $R 10.0365(F>4 \sigma(F))$. The toluol molecule was severely disordered and its effects were mathematically subtracted from the observed data using the routine SQUEEZE (part of the PLATON suite; A. L. Spek, University of Utrecht, Netherlands). The Flack parameter refined to $-0.011(12)$.

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1535010 (18). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.

Table 1: Crystallographic data.

Compound	18
Formula	$\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{BrNO}_{6} \mathrm{SSi}$
M_{r}	762.81
Cryst. size (mm)	$0.25 \times 0.10 \times 0.03$
Crystal system	monoclinic
Space group	P2 ${ }_{1}$
Temperature (K)	100(2)
Cell constants:	
$a(\AA ̊)$	6.04388(8)
$b(A)$	22.18157(15)
$c(A)$	13.72525(15)
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	92.9646(12)
$\gamma\left({ }^{\circ}\right)$	90
$V\left(\AA^{3}\right)$	1837.58(3)
Z	2
$D_{\text {x }}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.379
$\lambda(\mathrm{A})$	1.54184
$\mu\left(\mathrm{mm}^{-1}\right)$	2.751
Transmissions	0.6768-1.0000
F(000)	796
$2 \theta_{\text {max }}$	152
Refl. measured	105118
Refl. indep.	7682
$R_{\text {int }}$	0.0626
Parameters	386
Restraints	1
$w R\left(F^{2}\right.$, all refl.)	0.096
$R(F,>4 \sigma(F))$	0.037
S	1.02
max. $\Delta \rho\left(\mathrm{e} \AA^{-3}\right)$	0.86

The structure of compound 18 in the crystal. Ellipsoids correspond to 50\% probability levels.
Table 2: Bond lengths [\AA] and angles [${ }^{\circ}$] for 18.

$\mathrm{C}(1)-\mathrm{C}(6)$	$1.406(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.370(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.409(4)$	$\mathrm{C}(7)-\mathrm{C}(12)$	$1.395(4)$
$\mathrm{C}(1)-\mathrm{C}(15)$	$1.451(4)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.390(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.377(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.390(4)$
$\mathrm{C}(2)-\mathrm{Br}(1)$	$1.897(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.396(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.382(5)$	$\mathrm{C}(10)-\mathrm{C}(13)$	$1.513(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.396(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.392(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.391(4)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.352(4)$
$\mathrm{C}(6)-\mathrm{N}(1)$	$1.418(4)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.491(4)$
$\mathrm{N}(1)-\mathrm{C}(14)$	$1.398(4)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.533(4)$
$\mathrm{N}(1)-\mathrm{S}(1)$	$1.664(2)$	$\mathrm{C}(17)-\mathrm{O}(4)$	$1.454(4)$
$\mathrm{S}(1)-\mathrm{O}(1)$	$1.427(3)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.461(3)$
$\mathrm{S}(1)-\mathrm{O}(2)$	$1.429(3)$	$\mathrm{C}(19)-\mathrm{Si}(1)$	$1.218(4)$
$\mathrm{S}(1)-\mathrm{C}(7)$	$1.762(3)$	$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	$1.843(3)$
$\mathrm{Si}(1)-\mathrm{C}(20)$	$1.837(4)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$105.22(13)$
$\mathrm{Si}(1)-\mathrm{C}(22)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{S}(1)$	$121.5(3)$	
$\mathrm{Si}(1)-\mathrm{C}(21)$	$1.846(5)$	$119.3(2)$	

$\mathrm{C}(23)-\mathrm{O}(3)$	1.197(3)	$C(12)-C(7)-S(1)$	119.2(2)
$\mathrm{C}(23)-\mathrm{O}(4)$	1.346(3)	$C(7)-C(8)-C(9)$	119.2(3)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.502(3)	$C(8)-C(9)-C(10)$	121.2(3)
$\mathrm{C}(24)-\mathrm{O}(6)$	1.457(3)	C(9)-C(10)-C(11)	118.7(3)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.529(3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(13)$	120.8(3)
C(24)-C(30)	1.559(3)	$C(11)-C(10)-C(13)$	120.5(3)
C(25)-C(26)	1.543(4)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	120.8(3)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.552(4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	118.7(3)
C(27)-C(28)	1.510(4)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{N}(1)$	110.6(2)
C(27)-C(29)	1.521(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(1)$	106.7(2)
$\mathrm{C}(27)-\mathrm{C}(30)$	1.558(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	123.7(2)
$\mathrm{C}(29)-\mathrm{O}(5)$	1.197(4)	$C(1)-C(15)-C(16)$	129.6(3)
C(29)-O(6)	1.370(3)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	112.4(2)
$\mathrm{C}(30)-\mathrm{C}(32)$	1.516(4)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{O}(4)$	109.1(2)
C(30)-C(31)	1.535(4)	$C(18)-C(17)-C(16)$	113.5(2)
		$\mathrm{O}(4)-\mathrm{C}(17)-\mathrm{C}(16)$	104.5(2)
$C(6)-C(1)-C(2)$	116.9(2)	C(19)-C(18)-C(17)	177.7(3)
$C(6)-C(1)-C(15)$	108.2(2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{Si}(1)$	176.9(3)
$C(2)-C(1)-C(15)$	134.8(3)	$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(19)$	107.55(16)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.0(3)	$C(20)-\mathrm{Si}(1)-\mathrm{C}(22)$	110.3(3)
$C(3)-C(2)-B r(1)$	117.5(2)	$\mathrm{C}(19)-\mathrm{Si}(1)-\mathrm{C}(22)$	108.63(17)
$C(1)-C(2)-B r(1)$	121.5(2)	$\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{C}(21)$	111.5(3)
$C(2)-C(3)-C(4)$	119.9(3)	$\mathrm{C}(19)-\mathrm{Si}(1)-\mathrm{C}(21)$	109.0(2)
$C(3)-C(4)-C(5)$	122.0(3)	$\mathrm{C}(22)-\mathrm{Si}(1)-\mathrm{C}(21)$	109.7(3)
$C(6)-C(5)-C(4)$	116.8(3)	$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{O}(4)$	125.4(2)
$C(5)-C(6)-C(1)$	123.2(3)	$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(24)$	126.3(2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	130.4(3)	$\mathrm{O}(4)-\mathrm{C}(23)-\mathrm{C}(24)$	108.3(2)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	106.4(2)	$C(23)-O(4)-C(17)$	116.35(19)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(6)$	108.1(2)	$\mathrm{O}(6)-\mathrm{C}(24)-\mathrm{C}(23)$	108.24(19)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{S}(1)$	121.57(19)	$\mathrm{O}(6)-\mathrm{C}(24)-\mathrm{C}(25)$	105.70(19)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)$	128.4(2)	$C(23)-C(24)-C(25)$	118.1(2)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	121.03(17)	O(6)-C(24)-C(30)	103.06(18)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{N}(1)$	106.09(15)	$C(23)-C(24)-C(30)$	115.9(2)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{N}(1)$	106.06(14)	C(25)-C(24)-C(30)	104.4(2)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	108.84(15)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	101.3(2)
$\mathrm{O}(2)-S(1)-C(7)$	108.48(15)	C(25)-C(26)-C(27)	103.9(2)
$C(28)-C(27)-C(29)$	114.4(2)	O(6)-C(29)-C(27)	107.0(2)
$C(28)-C(27)-C(26)$	116.2(2)	$\mathrm{C}(32)-\mathrm{C}(30)-\mathrm{C}(31)$	110.0(2)
$C(29)-C(27)-C(26)$	102.6(2)	$C(32)-C(30)-C(27)$	115.3(2)

$C(28)-C(27)-C(30)$	$118.6(2)$	$C(31)-C(30)-C(27)$	$113.1(2)$
$C(29)-C(27)-C(30)$	$99.7(2)$	$C(32)-C(30)-C(24)$	$114.6(2)$
$C(26)-C(27)-C(30)$	$102.82(19)$	$C(31)-C(30)-C(24)$	$112.3(2)$
$O(5)-C(29)-O(6)$	$121.9(3)$	$C(27)-C(30)-C(24)$	$90.58(18)$
$O(5)-C(29)-C(27)$	$131.1(3)$	$C(29)-O(6)-C(24)$	$105.9(2)$

Table 2: Torsion angles [${ }^{\circ}$] for compound 18.

$C(6)-C(1)-C(2)-C(3)$	-2.3(4)
$C(15)-C(1)-C(2)-C(3)$	176.4(3)
$C(6)-C(1)-C(2)-B r(1)$	176.73(18)
$C(15)-C(1)-C(2)-B r(1)$	-4.6(4)
$C(1)-C(2)-C(3)-C(4)$	1.9(4)
$\mathrm{Br}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-177.1(2)
$C(2)-C(3)-C(4)-C(5)$	0.7(4)
$C(3)-C(4)-C(5)-C(6)$	-2.6(4)
$C(4)-C(5)-C(6)-C(1)$	2.2(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)$	-177.4(3)
$C(2)-C(1)-C(6)-C(5)$	0.2(4)
$C(15)-C(1)-C(6)-C(5)$	-178.8(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	179.9(2)
$\mathrm{C}(15)-\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)$	0.9(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(14)$	177.6(3)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(14)$	-2.1(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)$	13.7(4)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)$	-166.03(19)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	168.8(2)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(1)$	-29.1(3)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	39.0(2)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{O}(2)$	-159.0(2)
$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	-75.9(2)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(7)$	86.1(2)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	55.4(3)
$\mathrm{O}(2)-S(1)-C(7)-C(8)$	-171.1(2)
$N(1)-S(1)-C(7)-C(8)$	-57.9(3)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	-123.3(2)
$\mathrm{O}(2)-\mathrm{S}(1)-\mathrm{C}(7)-\mathrm{C}(12)$	10.2(3)
$N(1)-S(1)-C(7)-C(12)$	123.3(2)
$C(12)-C(7)-C(8)-C(9)$	0.1(5)
$S(1)-C(7)-C(8)-C(9)$	-178.7(3)
$C(7)-C(8)-C(9)-C(10)$	0.1(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-0.1(5)
$C(8)-C(9)-C(10)-C(13)$	-177.4(3)
$C(9)-C(10)-C(11)-C(12)$	-0.2(4)
$\mathrm{C}(13)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	177.2(3)

$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	0.4(4)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)-\mathrm{C}(11)$	-0.3(4)
$S(1)-C(7)-C(12)-C(11)$	178.4(2)
$\mathrm{C}(6)-\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	2.6(3)
$\mathrm{S}(1)-\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	167.86(19)
$N(1)-C(14)-\mathrm{C}(15)-\mathrm{C}(1)$	-2.0(3)
$N(1)-C(14)-C(15)-C(16)$	179.5(2)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	0.7(3)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(14)$	-178.1(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	179.0(2)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	0.2(5)
$C(14)-C(15)-C(16)-C(17)$	102.5(3)
$C(1)-C(15)-C(16)-C(17)$	-75.6(3)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	175.4(2)
$C(15)-C(16)-C(17)-O(4)$	-65.8(3)
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{O}(4)-\mathrm{C}(17)$	-2.7(3)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{O}(4)-\mathrm{C}(17)$	174.77(18)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{O}(4)-\mathrm{C}(23)$	-75.4(3)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{O}(4)-\mathrm{C}(23)$	162.90(
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{O}(6)$	-15.9(3)
$\mathrm{O}(4)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{O}(6)$	166.58(18
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	-135.9(3)
$\mathrm{O}(4)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	46.6(3)
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(30)$	99.2(3)
$\mathrm{O}(4)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(30)$	-78.3(2)
O(6)-C(24)-C(25)-C(26)	69.9(2)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	-168.9(2)
$\mathrm{C}(30)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	-38.5(2)
$C(24)-C(25)-C(26)-C(27)$	2.0(3)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	165.9(2)
$C(25)-C(26)-C(27)-C(29)$	-68.5(2)
$C(25)-C(26)-C(27)-C(30)$	34.7(3)
$C(28)-C(27)-C(29)-O(5)$	19.5(5)
$C(26)-C(27)-C(29)-O(5)$	-107.2(4)
$C(30)-C(27)-C(29)-O(5)$	147.2(4)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(29)-\mathrm{O}(6)$	-163.4(2)
$C(26)-C(27)-C(29)-O(6)$	69.9(3)
$C(30)-C(27)-C(29)-O(6)$	-35.7(3)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(30)-\mathrm{C}(32)$	-66.3(3)

$C(29)-C(27)-C(30)-C(32)$	$168.8(2)$
$C(26)-C(27)-C(30)-C(32)$	$63.4(3)$
$C(28)-C(27)-C(30)-C(31)$	$61.4(3)$
$C(29)-C(27)-C(30)-C(31)$	$-63.5(3)$
$C(26)-C(27)-C(30)-C(31)$	$-168.9(2)$
$C(28)-C(27)-C(30)-C(24)$	$176.0(2)$
$C(29)-C(27)-C(30)-C(24)$	$51.1(2)$
$C(26)-C(27)-C(30)-C(24)$	$-54.3(2)$
$O(6)-C(24)-C(30)-C(32)$	$-171.3(2)$
$C(23)-C(24)-C(30)-C(32)$	$70.7(3)$
$C(25)-C(24)-C(30)-C(32)$	$-61.1(3)$
$O(6)-C(24)-C(30)-C(31)$	$62.3(3)$
$C(23)-C(24)-C(30)-C(31)$	$-55.7(3)$
$C(25)-C(24)-C(30)-C(31)$	$172.6(2)$
$O(6)-C(24)-C(30)-C(27)$	$-53.0(2)$
$C(23)-C(24)-C(30)-C(27)$	$-171.1(2)$
$C(25)-C(24)-C(30)-C(27)$	$57.2(2)$
$O(5)-C(29)-O(6)-C(24)$	$178.1(3)$
$C(27)-C(29)-O(6)-C(24)$	$0.7(3)$
$C(23)-C(24)-O(6)-C(29)$	$158.3(2)$
$C(25)-C(24)-O(6)-C(29)$	$-74.2(2)$
$C(30)-C(24)-O(6)-C(29)$	$35.0(3)$

References

(1) Inuki, I.; Iwata, A.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2011, 76, 2072-2083.
(2) Haack, K.-J.; Hashiguchi, S.; Fujii, A.; Ikariya T.; Noyori, R. Angew. Chem. Int. Ed. Engl. 1997, 36, 285-288.
(3) Combettes, L. E.; Schuler, M.; Patel, R.; Bonillo, B.; Odell, B.; Thompson, A. L.; Claridge, T. D. W.; Gouverneur, V. Chem. Eur. J. 2012, 18, 13126-13132.
(4) Yuan, H.; Guo, Z.; Luo, T. Org. Lett. 2017, 19, 624-627.

