Phosphorus-Containing Bis-allenes: Synthesis and Heterocyclization Reactions Mediated by Iodine or Copper Dibromide

I. Essid,^{†‡} C. Laborde,[†] F. Legros,[†] N. Sevrain,[†] S. Touil,[‡] M. Rolland,[§] T. Ayad,^{†,} J.-N. Volle,[†] J.-L. Pirat,^{*,†} and D. Virieux^{*,†}

Abstract: Bisphosphorylallenes are easily obtained in multigram scale from the Wittig-type rearrangement of bispropargyl alcohols. Unlike other conjugated bis-allenes, these reagents give a double cyclization mediated by iodine or copper dibromide leading to the formation of bis-1,2-oxaphospholenes.

- [†] Institut Charles Gerhardt, CNRS UMR 5253, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34 296 Montpellier, France
- [‡] Laboratoire de Chimie Organique des Hétéroéléments, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Tunisie
- [§] Institut Européen des Membranes CC047, Université de Montpellier, 34095 Montpellier, France
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 Rue Pierre et Marie Curie, 75 005 Paris, France

Table of contents

1.	General informations	3
2.	Bis alkynyl diols 1a-1h	3
	2.1. Typical procedure procedure	3
	2.2. 2,7-Dimethylocta-3,5-diyne-2,7-diol (1a)	4
	2.3. 3,8-Diethyldeca-4,6-diyne-3,8-diol (1b)	6
	2.4. 1,1'-(Buta-1,3-diyne-1,4-diyl)bis(cyclopropan-1-ol) (1c)	8
	2.5. 1,1'-(Buta-1,3-diyne-1,4-diyl)bis(cyclopentan-1-ol) (1d)	10
	2.6. 1,1'-(Buta-1,3-diyne-1,4-diyl)bis(cyclohexan-1-ol) (1e)	12
	2.7. 1,1,6,6-TetraphenyInexa-2,4-diyne-1,6-diol (1r)	14
	2.8. O-Welly I -1,1-ulpheny I -2,4-uly I -2,0-ulo (1g)	10
_		10
3.	Bis-(allenyl)phosphorus derivatives 2a-j	20
	3.1. General procedure	20
	3.2. Tetraethyl (2,7-dimethylocta-2,3,5,6-tetraene-4,5-diyl)bis(phosphonate) (2a)	21
	3.3. Tetraethyl (3,8-ulethylueta-3,4,6,7-tetraene-5,6-ulyljbis(phosphonate) (20)	25
	3.5. Tetraethyl (1,4-dicyclobeyylidenebuta-1,3-diene-2,3-diyl)bis(phosphonate) (20)	23
	3.6. Tetraethyl (1.1.6. tetranhenylhexa-1.2.4.5 tetraene-3.4 divl)bis(nhosphonate) (2f)	37
	3.7. Tetraethyl (6-methyl-1.1-diphenylhepta-1.2.4.5-tetraene-3.4-divl)bis(phosphonate) (2g)	41
	3.8. Tetraethyl (1.4-bis(5H-dibenzo[a,d][7]annulen-5-vlidene)-115.415-buta-1.3-diene-2.3-divl)bis(phosphonate) (2h)	43
	3.8. (2,7-Dimethyl-3λ5,6λ5-octa-2,3,5,6-tetraene-4,5-diyl)bis(diphenylphosphine oxide) (2i)	47
	3.9. (1,4-Dicyclohexylidene-1λ5,4λ5-buta-1,3-diene-2,3-diyl)bis(diphenylphosphine oxide) (2j)	51
4.	Bis-iodooxaphospholenes 3a, 3d, 3e spectra	55
	4.1. General procedure	55
	4.2. 4,4'-Diiodo-2,2'-diethoxy-5,5,5',5'-tetramethyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'-dioxide (3a)	56
	4.3. 4,4'-Diiodo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.4]nonane-3,3'-diene] 2,2'-dioxide (3d)	60
	4.4. 4,4'-Diiodo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.5]decane-3,3'-diene] 2,2'-dioxide (3e)	64
5.	Bis-bromooxaphospholenes 6a-b and 6d-g	68
	5.1. General procedure	68
	5.2. 4,4'-Dibromo-2,2'-diethoxy-5,5,5',5'-tetramethyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'-dioxide (6a)	69
	5.3. 4,4'-dibromo-2,2'-diethoxy-5,5,5',5'-tetraethyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'-dioxide (6b)	73
	5.4. 4,4'-dibromo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.4]nonane-3,3'-diene] 2,2'-dioxide (6d)	77
	5.5. 4,4'-Dibromo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.5]decane-3,3'-diene] 2,2'-dioxide (6e)	81
	5.6. 4,4'-Dibromo-2,2'-diethoxy-5,5,5',5'-tetraphenyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'-dioxide (6f)	84
	5.7. 4,4 -Dibromo-2,2 -dietnoxy-5,5-dimethyl-5',5 -diphenyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2 -dioxide (6g)	87
7.	(6-Isopropyl-2,2-dimethyl-2H-pyran-4,5-diyl)bis(diphenylphosphine oxide) 8	91
8.	Crystallographic information of dibromobisoxaphospholenes [6f-OH]	94

1. General informations

All reactions were carried out under a nitrogen atmosphere using standard Schlenk techniques otherwise stated. Solvents were carefully dried by conventional or were purified with an MBRAUN Solvent Purification System. ¹H, ¹³C and ³¹P NMR spectra were recorded with a bruker Avance 400 spectrometer. The resonances were calibrated relative to the residual deuterated solvent peaks and are reported with positive values downfield from TMS. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad signal. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. HRMS were obtained from dichloromethane solutions with a Xevo G2 Q TOF spectrometer by the electrospray method or with a LC-TOF spectrometer (Micromass).

2. Bis alkynyl diols 1a-1h

2.1. Typical procedure procedure

In a round bottom flask were introduced successively CuI (5 mol%), NiCl₂.6H₂O (5 mol%) and 2-Methyl-3-butyn-2-ol (1 eq) in THF (0.66 mol.l⁻¹) then TMEDA was added (20 mol%). The reaction mixture was stirred at room temperature under air atmosphere for 12 hours. After completion of the reaction, as indicated by TLC, THF was removed under reduced pressure. The reaction was diluted with ethyl acetate and washed with HCl 5%. The organic layer was filtered and washed with water, brine, and dried over magnesium sulfate. After concentration under vacuum, the product was purified by crystallization in the appropriate solvent or by a chromatography on silica gel.

Reactions were carried out using 5.00 to 10.00 g scale of alkyne. Larger quantities led to lower yields. If more diyne diols **1a-h** are needed, we recommend to use several flasks in parallel.

Scheme 1. Synthesis of bisphosphonylallenes 2a-j from diyne-diols 1a-h.

diyne diol	R^1	\mathbb{R}^2	yield (%) ^a	bis-allene	R ³	yield (%) ^a
1a	Me-	Me-	82	2a	OEt	82
1b	Et-	Et-	76	2b	OEt	92
1c	⊳	\triangleright	70	2c	OEt	-
1d	-(CH ₂) ₄ -	-(CH ₂) ₄ -	80	2d	OEt	44
1e	-(CH ₂) ₅ -	-(CH ₂) ₅ -	88	2e	OEt	99
1f	Ph-	Ph-	76	2f	OEt	83
1g	Ph-	Me-	62	2g	OEt	62

2.2. 2,7-Dimethylocta-3,5-diyne-2,7-diol (1a)

This product is also described in Lei, A.; Srivastava, M.; Zhang, X. J. Org. Chem. 2002, 67, 1969. Doi: 10.1021/jo011098i

Reaction was carried out using 2-methyl-3-butyn-2-ol (4.00 g, 47.6 mmol). The crude product was purified by recrystallization in toluene. The resulting solid is filtered off and dried under vacuum. White solid, 3.24 g, yield = 82%.

¹H NMR (CD₃OD, 400,13 MHZ) δ (ppm) = 1.50 (s, 12H, CH₃); ¹³C NMR (CD₃OD, 100,61 MHZ) δ (ppm) = 31.3 (s, CH₃), 65.7 (s, CC), 66.7 (s, CO), 85.0 (s, CC).

2.3. 3,8-Diethyldeca-4,6-diyne-3,8-diol (1b)

This product is also described in Wu, W.; Gao, Y.; Jiang, H.; Huang, Y. *J. Org. Chem.* **2013**, *78*, 4580. Doi: 10.1021/jo400276e

Reaction was carried out using 3-ethyl-3-pent-1-yn-3-ol (5.34 g, 47.6 mmol). The crude product was purified by recrystallization in toluene. The resulting solid is filtered off and dried under vacuum. White solid, 4.02 g, yield = 76%.

¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 1.03 (t, *J* = 7.5 Hz, 12H, 4 CH₃), 1.81–1.56 (m, 8H, 4 CH₂), 2.01 (s, 2 H, OH); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 8.6 (s, CH₃), 34.4 (s, *C*H₂), 68.6 (s, C), 72.8 (s, CO), 81.9 (s, C).

2.4. 1,1'-(Buta-1,3-diyne-1,4-diyl)bis(cyclopropan-1-ol) (1c)

Reaction was carried out using 1,1-dicylopropyl-prop-2-yn-2-ol (7.00 g, 51.4 mmol). The crude product was purified by recrystallization in heptane. The resulting precipitate is filtered off and dried under vacuum. White solid, 4.86 g, yield = 70%.

¹H NMR (CD₃OD, 400,13 MHz) δ(ppm) = 0.40-0.57 (m, 16H, 4 CH₂), 1.13-1.21 (m, 4H, 4 CH); ¹³C NMR (CD₃OD, 100,61 MHz) δ(ppm) = 1.7 (s, CH₂), 2.2 (s, CH₂), 21.7 (s, CH), 68. 7 (s, C), 74.3 (s, C), 79.7 (s, C).

2.5. 1,1'-(Buta-1,3-diyne-1,4-diyl)bis(cyclopentan-1-ol) (1d)

This product is also described in Lei, A.; Srivastava, M.; Zhang, X. J. Org. Chem. 2002, 67, 1969. Doi: 10.1021/jo011098i

Reaction was carried out using 1-ethynylcyclopentanol (5.00 g, 45.4 mmol). The crude product was purified by recrystallization in toluene. The resulting solid is filtered off and dried under vacuum. White solid, 3.95 g, yield = 80%.

¹H NMR (CD₃OD, 400,13 MHZ) δ (ppm) = 1.69–1.83 (m, 8H, CH₂), 1.89–1.92 (m, 8H, CH₂); ¹³C NMR (CD₃OD, 100,61 MHZ) δ (ppm) = 24.3 (s, *C*H₂), 43.0 (s, *C*H₂), 67.7 (s, C), 75.1 (s, CO), 84.3 (s, C).

2.6. 1,1'-(Buta-1,3-diyne-1,4-diyl)bis(cyclohexan-1-ol) (1e)

This product is also described in Lei, A.; Srivastava, M.; Zhang, X. J. Org. Chem. 2002, 67, 1969. Doi: 10.1021/jo011098i

The Reaction was carried out using 1-ethynylcyclohexan-1-ol (10.08 g, 81.24 mmol). **1e** was obtained by recrystallization in toluene. The resulting solid is filtered off and dried under vacuum. White solid, 8.81 g, yield = 88%.

¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 1.27-1.32 (m, 2H, CH₂), 1.48–1.60 (m, 10H, CH₂), 1.68–1.72 (m, 4H, CH₂), 1.83–1.89 (m, 4H, CH₂); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 24.1 (s, CH₂), 26.2 (s, CH₂), 40.6 (s, CH₂), 68.8 (s, C), 69.4, (S, C), 84.1 (s, C).

2.7. 1,1,6,6-Tetraphenylhexa-2,4-diyne-1,6-diol (1f)

This product is also described in Kuwatani, Y.; Yamamoto, G.; Oda, M.; Iyoda, M. *Bull. Chem. Soc. Jpn.* **2005**, 78, 2188. Doi: 10.1246/bcsj.78.2188

$$\begin{array}{c|c} \mathsf{Ph} & & \mathsf{Ph} \\ \mathsf{Ph} & & = & \swarrow \\ \mathsf{HO} & & \mathsf{OH} \end{array}$$

The Reaction was carried out using 1,1-diphenylprop-2-yn-1-ol (3.52 g, 16.9 mmol). **1f** was obtained by precipitation in heptane and recrystallization in toluene. The resulting solid is filtered off and dried under vacuum. White solid, 2.65 g, yield = 76%.

¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 2.8 (s, 2H, OH), 7.16-7.27 (m, 12H, Ph), 7.45-7.48 (m, 8H, Ph); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 71.3 (s, C), 75.1 (s, C), 82.8 (s, C), 126.2 (s, CH_{Ph}), 128.2 (s, CH_{Ph}), 128.5 (s, CH_{Ph}), 144.0 (s, C_{Ph}).

2.8. 6-Methyl-1,1-diphenylhepta-2,4-diyne-1,6-diol (1g)

The Reaction was carried out using 1,1-diphenylprop-2-yn-1-ol (2.08 g, 10.0 mmol) and 1-methylbut-2-yn-1ol (0.841 g, 10.0 mmol). **1g** was obtained by chromatography (silica gel, hexane/AcOEt (8:2). White solid, 1.80 g, yield = 62%.

¹H NMR (CDCl₃, 400.13 MHz): δ (ppm) = 1.56 (s, 2 *C*H₃), 2.15 (s, 1H, OH), 3.04 (s, 1H, OH), 7.28-7.60 (m, 10H, 2 Ph); ¹³C NMR (CDCl₃, 100.61 MHz): δ (ppm) = 31.0 (s, CH₃), 65.7 (s, C), 66.5 (s, C(CH₃)₂), 71.3 (s, C), 74.9 (s, C(Ph)₂), 81.5 (s, C), 85.2 (s, C), 126.1, 128.0, 128.4 (s, CH_{Ph}), 144.0 (s, C_{Ph}).

2.9. 5,5'-(Buta-1,3-diyne-1,4-diyl)bis(5H-dibenzo[a,d][7]annulen-5-ol) (1h)

The Reaction was carried out using alkyne alcohol (3.5 g, 15.1 mmol). **1h** was obtained by precipitation in $CHCl_3$. Pink solid, 2.98g, yield = 85%.

¹H NMR (DMSO-d₆, 400.13 MHz): δ (ppm) = 7.13 (s, 4 H, 4 CH=), 7.28-7.44 (m, 12H, CH_{Ph}), 7.85 (d, J = 7.9 Hz, 4H, CH_{Ph}); ¹³C NMR (DMSO-d₆, 400.13 MHz): δ (ppm) = 65.0 (s, C), 69.2 (s, C), 81.5 (s, C), 122.8 (s, CH), 127.0 (s, CH), 128.2 (s, CH), 128. 7 (s, CH), 131.3 (s, CH), 132.3 (s, C), 140.1 (s, C).

3. Bis-(allenyl)phosphorus derivatives 2a-j

3.1. General procedure

In a round bottom flask under nitrogen containing a solution of diyne-diol derivative **1** (24 mmol, 1 eq) and dry trietylamine (6.6 mL, 48 mmol, 2 eq) in anhydrous CH_2Cl_2 (50 mL) at -76 °C was added dropwise diethyl chlorophosphite (48 mmol, 2eq). After complete addition, the reaction mixture was gradually warmed and stirred at room temperature for 12 hours. After completion of the reaction (monitored by ³¹P NMR), the reaction was washed with 5% aqueous HCl (50 mL) and water. The organic phase was dried over MgSO₄ and the solvent was removed under reduced pressure. The residues were purified by chromatography (silica gel) or otherwise precised.

Scheme 1. Synthesis of bisphosphonylallenes 2a-j from diyne-diols 1a-h.

Гable 1.	Yields of	ⁱ diynes	1a-h and	bis-allen	es 2a-i.
----------	-----------	---------------------	----------	-----------	----------

diyne diol	\mathbf{R}^1	\mathbb{R}^2	yield (%) ^a bis-allene		R ³	yield (%) ^a
1a	Me-	Me-	82	2a	OEt	82
1b	Et-	Et-	76	2b	OEt	92
1c	\triangleright	⊳	70	2c	OEt	-
1d	-(CH ₂) ₄ -	-(CH ₂) ₄ -	80	2d	OEt	44
1e	-(CH ₂) ₅ -	-(CH ₂) ₅ -	88	2e	OEt	99
1f	Ph-	Ph-	76	2 f	OEt	83
1g	Ph-	Me-	62	2g	OEt	62
1h			85	2h	OEt	61
	Me-	Me-		2i	Ph	82
	-(CH ₂) ₅ -	-(CH ₂) ₅ -		2j	Ph	71

^a Isolated yields.

3.2. Tetraethyl (2,7-dimethylocta-2,3,5,6-tetraene-4,5-diyl)bis(phosphonate) (2a)

The reaction was carried out using divide diol **1a** (4.00 g, 24.0 mmol) and $CIP(OEt)_2$ (7.51 g, 48 mmol). The crude material is purified by chromatography (silica gel, EtOH/AcOEt/CH₂Cl₂ 0.4/50/49.6). Yellow oil, 8.00 g, yield =82%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 15.5 (s); ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 1.24 (t, *J* = 7.1 Hz, 12H, 4 CH₃), 1.75 (d, *J* = 4.4 Hz, 6 H, 2 CH₃), 1.76 (d, *J* = 4.4, 6 H, 2 CH₃), 3.93–4.05 (m, 8H, 4 CH₂O); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 16.3 (t, *J_{CP}* = 3.5 Hz, CH₃), 19.4 (t, *J_{CP}* = 5.4 Hz, CH₃), 62.1 (t, *J_{CP}* = 3.0 Hz, CH₂O), 87.7 (d, *J_{CP}* = 204.3 Hz, CP), 100.1 (t, *J_{CP}* = 7.4 Hz, C=C), 209.5 (t, *J_{CP}* = 3.9 Hz, Csp). HRMS (ESI) m/z calcd for [M+H]⁺, C₁₈H₃₃O₆P₂ 407.1752 found 407.1756.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Elemental Composition Report

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 212 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 1-3 SYNAPT G2-S#NotSet Bisallene-Me-P(OEt) Y-JLP14030523 50 (0.919)

05-Mar-2014
1: TOF MS ES+
3.80e+006

100	407.1756 406.5463.406.9883 407.3419 408.1792408.3396 409.1815 409.6819 410.1836 41												
0 1 1 1	405.00	406.00	ייי כ	407.0	0	408.00)	409.00	410.00	411.00			
Minimum: Maximum:		1000.0	1.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula					
407.1756	407.1752	0.4	1.0	3.5	1830.5	n/a	n/a	C18 H33 O	5 P2				

3.3. Tetraethyl (3,8-diethyldeca-3,4,6,7-tetraene-5,6-diyl)bis(phosphonate) (2b)

The reaction was carried out using divide diol **1b** (5.34 g, 24.0 mmol) and $CIP(OEt)_2$ (7.51 g, 48 mmol). The crude material is purified by chromatography (silica gel, EtOH/AcOEt/CH₂Cl₂ 0.4/50/49.6). Yellow oil, 10.21 g, yield =92%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 15.7 (s); ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 1.08 (t, *J* = 7.4 Hz, 6 H, 2 CH₃), 1.27 (t, *J* = 7.0 Hz, 6 H, 2 CH₃), 2.03-2.15 (m, 8H, 4 CH₂), 3.97-4.09 (m, 8H, 4 CH₂O); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 11.8 (s, *C*H₃), 16.4 (t, *J*_{PC} = 3.2 Hz, *C*H₃), 25.4 (t, *J*_{PC} = 2.3 Hz, CH₂), 62.0 (bt, CH₂O), 91.4 (d, *J*_{PC} = 205.3 Hz, CP), 112.3 (t, *J*_{PC} = 7.2 Hz, C=C), 208.70 (t, *J*_{PC} = 4.0 Hz, C); HRMS (EI): m/z calcd. For C₂₂H₄₁O₆P₂, [M+H]⁺: 463.2378 Found: 463.2375.

Elemental Composition Report

Single Mass Analysis Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 307 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-100 H: 0-100 O: 0-50 P: 0-2

SYNAPT G2-8 Y-JP15032004	5#UEB205 4 (0.175) Cm (4)			DE098					20-Mar-201: 1: TOF MS ES+ 1.08e+00			
100 <u>393.16</u>	407.18 41	17.20 430	0.25 435.21	449.2	2 457.19 463	3.24 	485.22	190.20 501.19	512.70	523.22 ^{527.21}	536.33	
390	400 410	420	430 4	40 4	450 460	470	480	490 500	510	520 530	540	
Minimum: Maximum:		30.0	2.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
463.2375	463.2378	-0.3	-0.6	3.5	1588.7	n/a	n/a	C22 H41 O6	P2			

3.4. Tetraethyl (1,4-dicyclopentylidenebuta-1,3-diene-2,3-diyl)bis(phosphonate) (2d)

The reaction was carried out using divide diol **1d** (5.24 g, 24.0 mmol) and $CIP(OEt)_2$ (7.51 g, 48 mmol). The crude material is purified by chromatography (silica gel, EtOH/AcOEt/CH₂Cl₂ 0.4/50/49.6). Brown solid, 4.84 g, yield = 44%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 16.0 (s); ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 1.18 (t, *J* = 7.1 Hz, 12H, 4 CH₃), 1.59–1.63 (m, 8H, 4 CH₂), 2.36-2.50 (m, 8H, 4 CH₂), 3.87-3.99 (m, 8H, 4 CH₂O); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 16.2 (t, J_{PC} = 3.3 Hz, CH₃), 27.2 (s, CH₂), 31.0 (t, J_{PC} = 2.4 Hz, CH₂), 62.1 (t, J_{PC} = 2.9 Hz, CH₂), 89.7 (t, J_{PC} = 205.6 Hz, CP), 108.3 (t, J_{PC} = 7.6 Hz, C=C), 205.05 (t apparent, J_{CP} = 3.9 Hz, C). HRMS (ESI) m/z calcd for [M+H]⁺, C₂₂H₃₇O₆P₂ 459.2065 found 459.2067.

Elemental Composition Report

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 3817 formula(e) evaluated with 4 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 N: 0-30 O: 0-30 P: 1-3 SYNAPT G2-S#NotSet Bisallene-cyclopent-P(OEt) Y-JLP14030529 41 (0.759)

05-Mar-2014 1: TOF MS ES+ 1.88e+006

100 45	6.8205.457.1906 4	459 58.8429	460.	2103 461.2	128 462.214	17 463.217	9 	465.2121466.1892 467.265	5 469.1295	469.5919 m/z
45	6.0 45	8.0	460.	0	462.0		464.0	466.0	468.0	470.0
Minimum: Maximum:		1000.0	1.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
459.2067	459.2065 459.2068 459.2067 459.2070	0.2 -0.1 0.0 -0.3	0.4 -0.2 0.0 -0.7	5.5 6.5 8.5 -1.5	1449.2 1452.2 1459.9 1460.8	0.049 3.051 10.829 11.641	95.26 4.73 0.00 0.00	C22 H37 O6 P2 C17 H34 N8 O P3 C10 H24 N18 O2 P C7 H33 N12 O7 P2		

3.5. Tetraethyl (1,4-dicyclohexylidenebuta-1,3-diene-2,3-diyl)bis(phosphonate) (2e)

The reaction was carried out using diyne diol **1e** (4.00 g, 16.2 mmol) and $CIP(OEt)_2$ (5.08 g, 32.5 mmol). The crude material was used without purification. Yellow solid, 7.82 g, yield = 99%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 15.5 (s). ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) =1.27 (t, J = 7.1 Hz, 12 H, 4 CH₃), 1.44-1.72 (m, 12H, 6 CH₂), 2.15-2.27 (m, 8H, 6 CH₂), 3.95-4.10 (m, 8H, 4 CH₂O); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 16.4 (t, $J_{CP} = 3.3 \text{ Hz}$, CH₃), 25.8 (s, CH₂), 26.5 (t, $J_{CP} = 1.6 \text{ Hz}$, CH₂), 30.4 (t, $J_{CP} = 2.4 \text{ Hz}$, CH₂), 62.3 (t, $J_{CP} = 2.9 \text{ Hz}$, CH₂O), 87.6 (d, $J_{CP} = 204.2 \text{ Hz}$, CP), 106.4 (t, $J_{CP} = 7.2 \text{ Hz}$, C=C), 206.2 (t, $J_{CP} = 3.9 \text{ Hz}$, Csp). HRMS (ESI) m/z calcd for [M+H]⁺, C₂₄H₄₁O₆P₂ 487.2378 found 487.2381.

Elemental Composition Report

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 298 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 1-3 SYNAPT G2-S#NotSet Bisallene-Cy-P(OEt) Y-JLP14030520 46 (0.843)

05-Mar-2014 1: TOF MS ES+ 9.31e+006

100	482.191	3	484.7396	485.2207	486.906	487.2381 74	88.2411	489.2438 49	0.2468 491.	2493 492 189	1 493.166	2493.4978	494.6358
	482.0	483.0	484.0	485.0	486.0	487.0 48	38.0 4	189.0 49	0.0 491.0	9 492.0	493.0	494.0	495.0
Minimum Maximum	::		1000.	0 1.0	-1.5 50.0								
Mass	Ca	alc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf (%	s) Formula	a			
487.238	1 4	87.2378	0.3	0.6	5.5	1767.5	n/a	n/a	C24 H4	1 O6 P2			
3.6. Tetraethyl (1,1,6,6-tetraphenylhexa-1,2,4,5-tetraene-3,4-diyl)bis(phosphonate) (2f)

The reaction was carried out using divide diol **1f** (9.95 g, 24.0 mmol) and $CIP(OEt)_2$ (7.51 g, 48 mmol). The crude material is purified by chromatography (silica gel, EtOH/AcOEt/CH₂Cl₂ 0.4/50/49.6). Red solid, 13.04 g, yield = 83%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 13.2 (s); ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 0.98 (t, *J* = 7.1 Hz, 12H, 4 CH₃), 3.81-3.97 (m, 8H, 4 OCH₂), 7.29-7.39 (m, 12H, CH_{Ph}), 7.50-7.52 (m, 8H, CH_{Ph}); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 16.1 (t, J_{PC} = 3.1 Hz, CH₃), 63.0 (t, J_{PC} = 3.0 Hz, CH₂O), 114.03 (t, J_{PC} = 7.2 Hz, C), 128.2, 128.7, 129.1 (s, CH_{Ph}), 134.9 (t, J_{PC} = 3.1 Hz, C_{Ph}), 213.4 (t, J_{PC} = 2.7 Hz, C). HRMS (ESI) m/z calcd for [M+H]⁺, C₃₈H₄₁O₆P₂ 655.2378 found 655.2373.

140 120 100 60 40 20 0 -10 -30 -50 f1 (ppm) -70 -90 -110 -140 -170 -200 -230 80

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 491 formula(e) evaluated with 2 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 1-3 SYNAPT G2-S#NotSet Bisallene-Ph-P(OEt) Y-JLP14030521 49 (0.902)

05-Mar-2014 1: TOF MS ES+ 4.71e+006

Page 1

100 <u>-</u>	645.1720647.1702 645.0 647.5	48.1727 65	50.1865 65 652.	4.2433 ⁶	55.2373656	.2407 658.24	455660.1899	9 665.16 562.5 6	525 666.22 565.0	42 ^{667.2234}	669.179467 	i.71e∓006 I.1783 m/z 672.5
Minimum: Maximum:		1000.0	1.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
655.2373	655.2378 655.2367	-0.5 0.6	-0.8 0.9	19.5 6.5	1383.9 1387.8	0.020 3.945	98.06 1.94	C38 H41 C27 H44	06 P2 016 P			

3.7. Tetraethyl (6-methyl-1,1-diphenylhepta-1,2,4,5-tetraene-3,4-diyl)bis(phosphonate) (2g)

The reaction was carried out using divide diol **1g** (6.97 g, 24.0 mmol) and $CIP(OEt)_2$ (7.51 g, 48 mmol). The crude material is purified by chromatography (silica gel, EtOH/AcOEt/CH₂Cl₂ 0.4/50/49.6). Yellow solid, 7.89 g, yield = 62%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 13.7 (d, *J* = 47.4 Hz), 14.8 (d, *J* = 47.3 Hz); ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 1.04 (t, *J* = 7.1 Hz, 6H, 2 CH₃), 1.22 (t, *J* = 7.1 Hz, 6H, 2 CH₃), 1.85 (s, CH₃), 1.86 (s, CH₃), 3.83-4.12 (m, 8H, 4 CH₂O), 7.28-7.36 (m, 6H, CH_{Ph}), 7.46-7.48 (m, 4H, CH_{Ph}). ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 16.1 (d, *J_{PC}* = 6.6 Hz, CH₃), 16.4 (d, *J* = 6.5 Hz, CH₃), 19.5 (s, CH₃), 19.6 (s, CH₃), 62.4 (d, *J* = 6.1 Hz, CH₂O), 62.7 (d, *J* = 6.1 Hz, CH₂O), 87.7 (dd, *J* = 193.6, 11.1 Hz, CP), 93.2 (dd, *J* = 185.9, 12.4 Hz, CP), 101.1 (d, *J* = 14.8 Hz, C=C), 113.52 (d, *J* = 16.2 Hz, C=C), 128.0, 128.1, 128.6, 128.6, 128.9, 129.0 (s, CH_{Ph}), 135.0 (d, *J* = 7.2 Hz, C=C), 210.5 (t, *J_{CP}* = 4.2 Hz, C_{sp}), 212.5 (dd, *J_{CP}* = 3.3, 0.8 Hz, Csp). HRMS (ESI): m/z calcd. For C₂₈H₃₇O₆P₂, [M+H]⁺: 531.2065 Found: 531.2065.

3.8. Tetraethyl (1,4-bis(5H-dibenzo[a,d][7]annulen-5-ylidene)-115,415-buta-1,3-diene-2,3diyl)bis(phosphonate) (2h)

The reaction was carried out using diyne diol **1h** (2.00 g, 4.31 mmol) and CIP(OEt)₂ (1.35 g, 8.62 mmol). The crude material is purified by chromatography (silica gel, gradient from $CH_2Cl_2 100 \%$ to CH_2Cl_2 /EtOH 98/2). White solid solid, 1.83 g, yield = 61%.

³¹P (CDCl₃, 161.97 MHz) δ(ppm) : 13.7 (s); ¹H (CDCl₃, 400,13 MHz) δ(ppm) : 0.84 (t, J = 7.1 Hz, 12H, 4 CH₃), 3.71-3.89 (m, 8H, 4 CH₂), 6.70 (s, CH=), 7.16-7.22 (m, 12H, CH_{Ar}), 7.54-7.58 (m, 4H, CH); ¹³C (CDCl₃, 100,61 MHz) δ(ppm) : 15.83 (t, J = 3.4 Hz, CH₃), 62.5 (t, J = 2.9 Hz, CH₂), 89.2 (dd, J = 198.8, 4.3 Hz, CP), 113.5 (t, J = 7.5 Hz, C), 128.0 (s, CH), 129.1 (s, CH), 129.4 (s, CH), 129.4 (s, CH), 131.0 (s, CH), 133.9 (t, J = 2.8 Hz, C), 134.6 (t, J = 1.3 Hz, C), 214.6 (t, J = 2.7 Hz, C); HRMS (ESI) m/z calcd for [M+H]⁺, C₄₂H₄₁O₆P₂ 703.2378 found 703.2377.

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 545 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 1-3 SYNAPT G2-S#NotSet Bisqllene dibenzoannulenylidene-P(OEt) Y-JLP14030517 13 (0.253)

SYNAPT G Y-JLP1403	2-S#NotSet 0517 13 (0.25	53)	00 1.		Bisqlle		05-Mar-2014 1: TOF MS ES+ 9.93e+006					
100- 8- 694.0 696.0 698.0				.0	700.0	702.7142 702.0	703.2377	704.2415 70 .0 70	06.2471 70 	07.2504 7 708.0	711.5565 712.2331 712.0 712.0	
Minimum Maximum	:		1000.0	1.0	-1.5 50.0							
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
703.237	7 703.2	378	-0.1	-0.1	23.5	1250.9	n/a	n/a	C42 H41	06 P2		

3.8. (2,7-Dimethyl-3λ5,6λ5-octa-2,3,5,6-tetraene-4,5-diyl)bis(diphenylphosphine oxide)
(2i)

Reaction was carried out using Ph_2PCI (10.60 g, 48.0 mmol) and divines diol **1a** (4.00 g, 24 mmol). The crude product was dissolved in the minimum quantity of dichloromethane and then added dropwise to a large volume of diethyl ether. The resulting precipitate is filtered off and dried under vacuum. White solid, 10.46 g, yield = 82%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 29.5 (s); ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 0.96 (d, J = 5.7 Hz, 12H, 4 CH₃), 7.35-7.43 and 7.69-7.74 (2 m, 20 H, 20 CH_{Ph}); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 18.3 (t, J_{CP} = 2.4 Hz, CH₃), 91.8-92.9 (m, PC), 101.8-102.3 (m, C), 127.9-128.3 (m, CH_{Ph}), 131.3 (bs, CH_{Ph}), 131.3-131.8 (m, CH_{Ph}), 132.2-133.3 (m, C), 210.9 (t, J_{CP} = 4.8 Hz, C). HRMS (ESI) m/z calcd for [M+H]⁺, C₃₄H₃₃O₂P₂ 535.1956 found 535.1958.

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 356 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 1-3 SYNAPT G2-S#NotSet Bisallene-Me-PPh Y-JLP14030522 50 (0.919)

SYNAPT G2-Sa Y-JLP14030522	#NotSet 2 50 (0.919)		U			05-Mar-2014 1: TOF MS ES+ 4.03e+006					
100- 8	530.0	532.0	5	535.1 34.6996 534.0	958 536. 536.0	1992 538.: 538.	2051 539.2 0 54	2075 542 	.1371 542.0	543.1198 544.0	545.2057 546.0049 546.0 m/z 546.0
Minimum: Maximum:		1000.0	1.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
535.1958	535.1956	0.2	0.4	19.5	1591.9	n/a	n/a	C34 H33	02 P	2	

3.9. (1,4-Dicyclohexylidene- 1λ 5,4 λ 5-buta-1,3-diene-2,3-diyl)bis(diphenylphosphine oxide) (2j)

Reaction was carried out using Ph_2PCI (10.60 g, 48.0 mmol) and divines diol **1e** (5.91 g, 24 mmol). The crude product was dissolved in the minimum quantity of dichloromethane and then added dropwise to a large volume of diethyl ether. The resulting precipitate is filtered off and dried under vacuum. White solid, 10.51 g, yield = 71%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 29.9 (s); ¹H NMR (CDCl₃, 400,13 MHZ) δ (ppm) = 0.69-0.80 (m, 4H, 2 CH2), 1.02-1.17 (m, 8H, 4 CH2), 1.32-1.49 (m, 8H, 4 CH2), 7.26-7.44 (m, 12H, 12 CH_{Ph}), 7.68-7.78 (m, 8H, 8 CH_{Ph}); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 25.2 (s, CH2), 25.6 (t, *J* = 1.2 Hz, CH2), 29.1 (t, *J* = 2.2 Hz, CH2), 92.0 (dd, *J* = 111.4, 2.4 Hz, CP), 128.0-128.4 (m, CH_{Ph}), 131.3 (t, *J* = 1.3 Hz, CH_{Ph}), 131.5-132.0 (m, CH_{Ph}), 133.0 (dd, *J* = 110.2, 3.6 Hz, C_{Ph}), 207.6 (t, *J* = 5.2 Hz, C). HRMS (ESI) m/z calcd for $[M+H]^+$, C₄₀H₄₁O₂P₂ 615.2582 found 615.2586.

Single Mass Analysis

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 6115 formula(e) evaluated with 6 results within limits (up to 20 closest results for each mass) Elements Used: C: 1-150 H: 1-200 N: 0-50 O: 0-50 P: 1-2 SYNAPT 62-S#UEB205 DE090 Y-JP15030912 3 (0.141) Cm (2:4)

615.26 583.14584.96 583.14584.96 580.585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695

Minimum: Maximum:		1.0	1.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
615.2586	615.2582 615.2584 615.2587 615.2589 615.2592 615.2578	0.4 0.2 -0.1 -0.3 -0.6 0.8	0.7 0.3 -0.2 -0.5 -1.0 1.3	21.5 13.5 14.5 6.5 7.5 2.5	1407.3 1418.7 1422.1 1425.9 1428.4 1428.7	0.000 11.395 14.763 18.598 21.084 21.378	100.00 0.00 0.00 0.00 0.00 0.00	C40 H41 02 P2 C30 H40 N4 08 P C25 H37 N12 03 P2 C15 H36 N16 09 P C10 H33 N24 04 P2 C9 H37 N20 08 P2

Page 1

09-Mar-2015 1: TOF MS ES+ 9.51e+005

4. Bis-iodooxaphospholenes 3a, 3d, 3e spectra

4.1. General procedure

To a solution of bisallenyl compounds **2a**, **2d** or **2e** in chloroform $(0.1 \text{ mol.}\text{I}^{-1})$ was added iodine (2 eq). Then, the reaction mixture was warmed and stirred at 120°C for 15 minutes. After completion of the reaction, as indicated by ³¹P NMR, the reaction was washed with aqueous Na₂S₂O₃ solution (10% w/w), water, brine and dried over magnesium sulfate. The solvent was removed under reduced pressure. The title compounds were purified by precipitation in diethyl ether.

Scheme 2. Cyclization of bis-allenylphosphonates **2** promoted by iodine, and C_2 -symmetric and meso representation of bisoxaphospholenes **3** ($R^1 = R^2$).

Compound	R^1	R^2	Х	Diastereomeric ratio ^a	Yield (%) ^b
3a	Me	Me	I	62/38	68
3d	(CH ₂) ₄	(CH ₂) ₄	I	53/47	37
3e	(CH ₂) ₅	(CH ₂) ₅	I	53/47	60

Table 2. Diiodo- and dibromobisoxaphospholenes 3.

^[a] Determined by ³¹P-NMR experiments, ^[b] Isolated yields.

4.2. 4,4'-Diiodo-2,2'-diethoxy-5,5,5',5'-tetramethyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'dioxide (3a)

Reaction was carried out using allene **2a** (500.0 mg, 1.23 mmol). The resulting crude is purified by precipitation in diethyl ether. Light yellow oil, 492 mg, 68% yield.

³¹P (CDCl₃, 161.97 MHz) δ (ppm): 25.5 (s, 62%, diastereomer 1), 25.8 (s, 38%, diastereomer 2); ¹H (CDCl₃, 400,13 MHz) δ (ppm) = 1.34 and 1.35 (2t, *J* = 7.0 Hz and *J* = 7.0 Hz, 6H, 2 CH₃), 1.59, 1.61, 1.65 and 1.67 (4 s, 12H, 4 CH₃), 4.03-4.28 (m, 4H, 2 CH₂). ¹³C (CDCl₃, 100,61 MHz) only the major diastereomer (2) is described. δ (ppm) : 16.3-16.4 (m, CH₃), 16.5 (d, *J* = 5.7 Hz, CH₃), 27.3, 27.6, 28.2, 28.6 (4 s, 4 CH₃), 64.0-64.1 (m, CH₂), 64.6-64.8 (m, CH₂), 88.3 (s, CO), 88.7 (s, CO), 129.9 (dd, *J* = 34.1, 7.7 Hz, C); HRMS (ESI) m/z calcd for [M+H]⁺, C₁₄H₂₃I₂O₆P₂ 602.9059 found 602.9063.

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 494 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 1-3 I: 1-3

SYNAPT G2-S Y-JLP1403052	#NotSet 8 33 (0.616)				I-oxa-I	MeP(OEt)		05-Mar-2014 1: TOF MS ES+ 2.30e+006			·2014 ES+ •+006	
100 600.00	600.5673 601.1 601.00	461 602.0	602.47 602.00	72 603	2.9063 	603.90 604	96	604.9113_605.1286 605.00	605.9137 606.00	606.2623	607.00	m/z
Minimum: Maximum:		1000.0	1.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
602.9063	602.9059	0.4	0.7	3.5	1152.3	n/a	n/a	C14 H23 O6 P2	I2			

Page 1

4.3. 4,4'-Diiodo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.4]nonane-3,3'diene] 2,2'-dioxide (3d)

Reaction was carried out using allene **2d** (500.0 mg, 1.09 mmol). The resulting crude is purified by precipitation in diethyl ether. Light yellow solid, 264 mg, 37% yield.

³¹P (CDCl₃, 161.97 MHz) δ(ppm) : 25.0 (s, 47%, diastereomer 1), 25.4 (s, 53%, diastereomer 2); ¹H (CDCl₃, 400,13 MHz) δ(ppm) = 1.21-1.33 (m, 6H, 2 CH₃), 1.84-2.19 (m, 16H, 8 CH₂), 4.02-4.22 (m, 4H, 2 CH₂). ¹³C (CDCl₃, 100,61 MHz) δ(ppm) : 16.3-16.4 (m, CH₃), 16.5-16.5 (m, CH₃), 24.6, 24.6, 24.7, 24.8 (4 s, 4 CH₃), 64.1-64.1 (m, CH₂), 64.8-64.9 (m, CH₂), 98.7 (s, CO); HRMS (ESI) m/z calcd for $[M+H]^+$, $C_{18}H_{27}I_2O_6P_2$ 654.9372 found 654.9377.

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 638 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 1-3 I: 1-3

SYNAPT G2-S Y-JLP1403051	#NotSet 4 48 (0.877)		I-oxa-cyclopent-P(OEt)								05-Mar-2014 1: TOF MS ES+ 1.56e+006		
100 648	.8863 650.291	7 654.23	654.9 74	9377 655.9409	9 657.943	35	662.5651 663	3.4609 ⁶⁶	64.8646	668.8307	669.7952	670.9254	
648.0	650.0 6	52.0 6	354.0	656.0	658.0	660.0	662.0	664.0	666.0	668.0	670.0	11/2	
Minimum: Maximum:		1000.0	1.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula					
654.9377	654.9372	0.5	0.8	5.5	1110.6	n/a	n/a	C18 H27	06 P2	I2			

4.4. 4,4'-Diiodo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.5]decane-3,3'diene] 2,2'-dioxide (3e)

Reaction was carried out using allene **2e** (500.0 mg, 1.03 mmol). The resulting crude is purified by precipitation in diethyl ether. Light yellow oil, 422 mg, 60% yield.

³¹P (CDCl₃, 161.97 MHz) δ(ppm) = 24.8 (s, 53%, dia 1), 25.2 (s, 47%, dia 2); ¹H (CDCl₃, 400,13 MHz) δ(ppm) = 1.19-1.37 (m, 8H, 2 CH₃ and 1 CH₂), 1.60-2.03 (m, 18H, 9 CH₂), 3.97-4.30 (m, 4H, 4 CH₂). ¹³C (CDCl₃, 100,61 MHz) δ(ppm) = 16.4 (bs, CH₃), 16.5-16.6 (m, CH₃), 21.4, 21.4, 21.4, 21.5 (4 s, ²CH₂), 24.4 (s, CH₂), 35.1-36.3 (m, CH₂), 64.0 (bs, OCH₂). HRMS (ESI) m/z calcd for [M+H]⁺, C₂₀H₃₁l₂O₆P₂ 682.9685 found 682.9686.

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1003 formula(e) evaluated with 2 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-150 O: 0-30 P: 0-3 I: 1-3

SYNAPT G2-S#NotSet Y-JLP14030504 47 (0.860)				I-oxa-Cy-P(Oet)				05-Mar-2014 1: TOF MS ES+ 6.29e+00€			
100	680.9402 681.40066 681.00	581.8962 	682.5322 2.00	682.968 683.0	86 <u>683.1487</u> 00	683.9722 684.00		34.9744 <u>685.1</u> 685.00	764685.9759_686.1998 686.00	686.7783 	
Minimum: Maximum:		1000.0	1.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
682.9686	682.9685 682.9686	0.1 0.0	0.1 0.0	5.5 21.5	1162.2 1168.7	0.002 6.475	99.85 0.15	C20 H31 C29 H16	06 P2 I2 012 I		

5. Bis-bromooxaphospholenes 6a-b and 6d-g

5.1. General procedure

In a round bottom flask, bis-allenylphosphonate **2** (1.0 mmol), CuBr₂ (4.4 mmol) were dissolved in ethanol (4 mL) and heated to 50 °C for 2 h. The reaction was monitored by TLC (silica gel). After completion of the reaction, ammonia solution (15 mL, 12%) was added, and the mixture was extracted with CH_2Cl_2 (2 × 10 mL). The organic layers were combined, dried over MgSO₄ and concentrated under vacuum. The residue was purified by chromatography (silica gel, $CH_2Cl_2/AcOEt$ 6:4).

Scheme 3. Cyclization of bis-allenylphosphonates 2 promoted by CuBr₂.

Compound	R ¹	R²	х	Diastereomeric ratio ^[a]	Yield (%) ^[b]	
6a	Me	Me	Br	64/36	78	
6b	Et	Et	Br	92/8	63	
6d	(CH ₂) ₄	(CH ₂) ₄	Br	64/36	53	
6e	(CH ₂) ₅	(CH ₂) ₅	Br	69/31	58	
6f	Ph	Ph	Br	100/0	49	
6g	Ph	Me	Br	93/7	42	

Table 2. Diiodo- and dibromobisoxaphospholenes 6.

^[a] Determined by ³¹P-NMR experiments, ^[b] Isolated yields.

5.2. 4,4'-Dibromo-2,2'-diethoxy-5,5,5',5'-tetramethyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'-dioxide (6a)

Bis-allenylphosphonate **2a** (406 mg, 1.0 mmol). The residue was purified by chromatography (silica gel, $CH_2Cl_2/AcOEt$ 6:4). Yellow solid, 396 mg, yield = 78%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 24.5 (s, 36%, diastereomer 1), 24.8 (s, 64%, diastereomer 2); ¹H (CDCl₃, 400,13 MHZ) δ (ppm) = 1.33 and 1.35 (2 t, diastereomer 2: *J* = 7.1 Hz, diastereomer 1: *J* = 7.1 Hz, 6H, 2 CH₃), 1.59 (diastereomer 2), 1.62 (diastereomer 1), 1.65 (diastereomer 2)and 1.66 (diastereomer 1) (4 s, 12H, 4 CH₃), 4.07-4.31 (m, 4H, 4 CH₂O); ¹³C NMR (CDCl₃, 100,61 MHZ) : diastereomer 1 δ (ppm) = 16.4-16.51 (m, CH₃), 26.7 (t, *J* = 2.0 Hz, CH₃), 28.0 (t, *J* = 1.8 Hz, CH₃), 64.3-64.4 (m, CH₂O), 87.8 (s, OC), 121.3 (dd, *J* = 163.7, 10.7 Hz, CP), 149.9 (dd, *J* = 42.8, 8.1 Hz, CBr), diastereomer 2 δ (ppm) = 16.5–16.6 (m, CH₃), 27.0 (t, *J* = 1.6 Hz, CH₃), 27.5 (t, *J* = 2.2 Hz, CH₃), 64.8-64.9 (m, CH₂O), 87.4 (s, OC), 122.3 (dd, *J* = 164.3, 10.5 Hz, CP), 148.7 (dd, *J* = 42.9, 8.3 Hz, CBr); HRMS (ESI⁺) m/z calcd for [M+H]⁺, C₁₄H₂₃O₆Br₂P₂ 506.9337 found 506.9337.

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 379 formula(e) evaluated with 2 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-100 O: 0-30 Br: 1-2 P: 1-3

SYNAPT G2-S# Y-JLP15020501	#UEB205 51 (0.219)			D.E077						05-Feb-2015 1: TOF MS ES+ 1.12e+006
100 <u>499</u> 8 <u>498</u> .0	9.45 50 500.0	2.23 50 502.0	2.89_503.4 504.0	5 506.51 506.	506.93 	508.93 	510.93 5 .0 512	511.93 512.9 2.0 514	3 515.40 517.58 518.92 519.3 .0 516.0 518.0 520	92 521.88.522.37 .0 522.0
Minimum: Maximum:		!	5.0 3	1.0	-1.5 50.0					
Mass	Calc. Ma	ass 1	nDa 1	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
506.9337	506.933 506.933	7 i 9 ·	0.0	0.0 -0.4	3.5 23.5	1315.4 1321.7	0.002 6.335	99.82 0.18	C14 H23 O6 Br2 P2 C27 H10 O2 Br P2	
5.3. 4,4'-dibromo-2,2'-diethoxy-5,5,5',5'-tetraethyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'dioxide (6b)

Bis-allenylphosphonate **2b** (462 mg, 1.0 mmol). The residue was purified by chromatography (silica gel, $CH_2Cl_2/AcOEt$ 6:4). With solid solid, 355 mg, yield = 63%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = 26.5 (s, 8%, diastereomer 1), 26.6 (s, 92%, diastereomer 2); ¹H NMR (CDCl₃, 400,13 MHZ) only the major diastereoisomer (2) was described δ (ppm) = 0.94 and 1.00 (2 t, *J* = 7.4 Hz and *J* = 7.4 Hz, 12H, 4 CH₃), 1.35 (t, *J* = 7.1 Hz, 6H, 2 CH₃-CH₂-O), 1.91 (q, *J* = 7.3 Hz, 8H, 4 CH₂), 4.13-4.24 and 4.27-4.39 (2 m, 4H, 2 CH₂O); ¹³C NMR (CDCl₃, 100,61 MHZ) δ (ppm) = 7.4 (s, CH₃), 7.5 (s, CH₃), 16.8-16.8 (m, CH₃), 31.1 (t, *J* = 1.8 Hz, CH₂), 31.4 (t, *J* = 1.6 Hz, CH₂), 64.4-64.5 (m, OCH₂), 93.5 (s, OC), 124.8 (dd, *J* = 166.4, 10.3 Hz, CP), 146.06 (dd, *J* = 44.4, 7.7 Hz, CBr); HRMS (ESI⁺) m/z calcd for [M+H]⁺, C₁₈H₃₁Br₂O₆P₂ 562.9969 found 562.9963.

Single Mass Analysis Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 548 formula(e) evaluated with 4 results within limits (up to 20 closest results for each mass) Elements Used: C: 0-100 H: 0-100 O: 0-50 Br: 1-2 P: 0-2

SYNAPT G2-S#UEB205 Y-JP15032003 4 (0.175) Cm (4)

DE099

20-Mar-2015 1: TOF MS ES+ 7.74e+007

100		560.60	562.41 ⁵⁶³	3.00 564.99	566.99 568	0.00 570.00	573.99 57	5.98 576.98	577.97 581.97	583.97 584.98 586.98	3587.54
0 1 1 1 1	555.0	560	.0	565.0		570.0	57	5.0	580.0	585.0	111/2
Minimum: Maximum:		30.0	2.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
562.9969	562.9963 562.9975 562.9965 562.9978	0.6 -0.6 0.4 -0.9	1.1 -1.1 0.7 -1.6	3.5 -0.5 23.5 19.5	1361.2 1367.2 1375.5 1376.9	0.003 5.961 14.249 15.658	99.74 0.26 0.00 0.00	C18 H31 C14 H29 C31 H18 C27 H16	06 Br2 P2 013 Br2 02 Br P2 09 Br		

5.4. 4,4'-dibromo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.4]nonane-3,3'diene] 2,2'-dioxide (6d)

Bis-allenylphosphonate **2d** (459 mg, 1.0 mmol). The residue was purified by chromatography (silica gel, $CH_2Cl_2/AcOEt$ 6:4). Yellow solid, 297 mg, yield = 53%.

³¹P NMR (CDCl₃, 161.99 MHz): δ (ppm) = 24.7 (s, 36%, diastereomer 1), 25.0 (s, 64%, diastereomer 2); ¹H NMR (CDCl₃, 400.13 MHz): δ (ppm) = 1.32 and 1.35 (2 t, diastereomer 2: *J* = 7.1 Hz, diastereomer 1: *J* = 6.9 Hz, 6H, 2 CH₃), 1.85-2.04 and 2.14-2.26 (2 m, 16H, 8 CH₂), 4.03-4.31 (m, 4H, 2 CH₂O); ¹³C NMR (CDCl₃, 100.61 MHz): diastereomer 1 δ (ppm) = 16.4 (d, *J* = 6.3 Hz, CH₃), 24.8 (s, CH₂), 24.9 (s, CH₂), 38.3 (t, *J* = 6.3 Hz, CH₂), 39.5 (t, *J* = 1.6 Hz, CH₂), 64.3 (d, *J* = 7.0 Hz, OCH₂), 97.6 (s, OC), 122.4 (dd, *J* = 163.4, 11.2 Hz, CP), 147.9 (dd, *J* = 42.5, 8.3 Hz, CBr), diastereomer 2 δ (ppm) = 16.5-16.6 (m, CH₃), 24.8 (s, CH₂), 38.6 (t, *J* = 1.4 Hz, CH₂), 39.0 (t, *J* = 4.1 Hz, CH₂), 64.7-64.8 (m, OCH₂), 97.1 (s, OC), 123.5 (dd, *J* = 164.1, 10.5 Hz, CP), 146.7 (dd, *J* = 42.6, 8.2 Hz, CBr); HRMS (ESI⁺): m/z calcd for [M+H]⁺, C₁₈H₂₇Br₂O₆P₂ 558.9650 Found: 558.9655.

Page 1

Single Mass Analysis Tolerance = 3.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 999 formula(e) evaluated with 5 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 Br: 1-2 P: 2-2

SYNAPT Y-JL1501	G2-S# 1622 4	UEB205 (0.175) Cm ((3:6)			DE065	i				1:	16-Jan-2015 TOF MS ES+
	534.93	541.08	543.07		E	558.97 560.9	6 562.96	565.97	572.94 575.99	577.99	582.95	587.00 m/z
535	5.0	540.0	545.0	550.0	555.0	560.0	565.	0 570	.0 575.0	580.0	5	85.0
Minimun Maximun	n: n:		1.0	3.0	-1.5 50.0							an shina Arabiya Arabiya
Mass		Calc. Mas	ss mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
558.965	55	558.9650 558.9663 558.9652 558.9644 558.9671	0.5 -0.8 0.3 1.1 -1.6	0.9 -1.4 0.5 2.0 -2.9	5.5 10.5 25.5 13.5 12.5	1183.1 1184.3 1188.4 1190.5 1190.6	0.291 1.394 5.591 7.612 7.758	74.73 24.80 0.37 0.05 0.04	C18 H27 C C19 H23 N C31 H14 C C15 H14 N C19 H18 N	06 Br2 P2 14 O2 Br2 02 Br P2 18 O7 Br 12 O9 Br	P2 P2 P2	

5.5. 4,4'-Dibromo-2,2'-diethoxy-1,1'-dioxa-2,2'-diphospha-[3,3'-bispiro[4.5]decane-3,3'diene] 2,2'-dioxide (6e)

Bis-allenylphosphonate **2e** (487 mg, 1.0 mmol). The residue was purified by chromatography (silica gel, $CH_2Cl_2/AcOEt$ 6:4). Yellow solid, 341 mg, yield = 58%.

³¹P NMR (CDCl₃, 161.99 MHz): δ (ppm) = 24.6 (s, 31%, diastereomer 1), 24.9 (s, 69%, diastereomer 2); ¹H NMR (CDCl₃, 400.13 MHz): δ (ppm) = 1.14-1.28 (m, 2H, CH₂), 1.32 and 1.34 (2 t, diastereomer 2: *J* = 7.1 Hz, diastereomer 1: *J* = 7.1 Hz, 6H, 2 CH₃), 1.63-1.80 and 1.90-2.01 (2 m, 18H, 9 CH₂), 4.04-4.13 and 4.15-4.29 (2 m, 4H, 2 CH₂O); ¹³C NMR (CDCl₃, 100.61 MHz): diastereomer 1 δ (ppm) = 16.4-16.5 (m, CH₃), 21.4 (s, CH₂), 21.5 (s, CH₂), 24.4 (s, CH₂), 34.4 (t, *J* = 1.5 Hz, CH₂), 35.6 (t, *J* = 1.4 Hz, CH₂), 64.1-64.2 (m, OCH₂), 89.6 (s, OC), 121.01 (dd, *J* = 163.6, 11.0 Hz, CP), 150.1 (m, *J* = 43.5, 7.9 Hz, CBr), diastereomer 2 δ (ppm) = 16.5-16.6 (m, CH₃), 21.4 (s, CH₂), 21.6 (s, CH₂), 24.4 (s, CH₂), 34.8 (t, *J* = 1.2 Hz, CH₂), 35.2 (t, *J* = 1.8 Hz, CH₂), 64.7-64.8 (m, OCH₂), 89.2 (s, OC), 122.3 (dd, *J* = 164.4, 10.4 Hz, CP), 148.67-149.18 (dd, *J* = 43.7, 8.2 Hz, CBr); HRMS (ESI⁺): m/z calcd for [M+H]⁺, C₂₀H₃₁Br₂O₆P₂, 586.9963 Found: 586.9967.

Single Mass Analysis

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 9577 formula(e) evaluated with 23 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-110 N: 0-30 O: 0-30 Br: 1-2 P: 0-2

SYNAPT G2-S#UEB205 Y-JP15011203 3 (0.141) Cm (3)				DE064							
100-	560.9	96562.96 571.10	587.00	88.99	9 606.02	610.98612	2.97 E	32.05634.05	636.05 648.05 660.09662.08664.08 678.89 m/z		
	000	570	500	590	600	010	620	630	640 650 660 670 660		
Minimum	1:				-1.5						
Maximum	n:		1.0	5.0	50.0						
Mass		Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
586.996	57	586.9963	0.4	0.7	5.5	875.1	0.033	96.79	C20 H31 O6 Br2 P2		
		586.9975	-0.8	-1.4	12.5	879.0	3.904	2.02	C14 H17 N14 O3 Br2		
		586.9976	-0.9	-1.5	10.5	879.9	4.871	0.77	C21 H27 N4 O2 Br2 P2		
		586.9975	-0.8	-1.4	1.5	880.8	5.709	0.33	C16 H29 O13 Br2		
		586.9961	0.6	1.0	7.5	882.7	7.608	0.05	C13 H21 N10 O7 Br2		
		586.9959	0.8	1.4	15.5	883.2	8.160	0.03	C23 H22 N6 O Br2 P		
		586.9970	-0.3	-0.5	19.5	883.9	8.859	0.01	C29 H21 N2 O2 Br2		
		586.9964	0.3	0.5	8.5	887.1	12.080	0.00	C8 H18 N18 O2 Br2 P		
		586.9973	-0.6	-1.0	-0.5	888.4	13.341	0.00	C10 H25 N2 O19 Br P		
		586.9967	0.0	0.0	17.5	888.6	13.507	0.00	C23 H17 N4 O8 Br P		
		586.9965	0.2	0.3	25.5	889.0	13.939	0.00	C33 H18 O2 Br P2		
		586.9968	-0.1	-0.2	-1.5	889.3	14.240	0.00	C5 H27 N12 O7 Br2 P2		
		586.9969	-0.2	-0.3	9.5	889.3	14.271	0.00	C13 H16 N8 O14 Br		
		586.9964	0.3	0.5	27.5	889.9	14.814	0.00	C26 H8 N10 O3 Br		
		586.9970	-0.3	-0.5	18.5	890.0	14.920	0.00	C18 H14 N12 O3 Br P2		
		586.9957	1.0	1.7	13.5	891.0	15.976	0.00	C17 H18 N8 O7 Br P2		
		586.9976	-0.9	-1.5	0.5	892.3	17.224	0.00	C5 H22 N10 O14 Br P2		
		586.9972	-0.5	-0.9	10.5	892.5	17.477	0.00	C8 H13 N16 O9 Br P		
		586.9969	-0.2	-0.3	20.5	892.9	17.814	0.00	C11 H4 N22 O4 Br		
		586.9959	0.8	1.4	5.5	893.0	17.918	0.00	C7 H17 N12 O13 Br P		

5.6. 4,4'-Dibromo-2,2'-diethoxy-5,5,5',5'-tetraphenyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'-dioxide (6f)

Bis-allenylphosphonate **2f** (654 mg, 1.0 mmol). The residue was purified by chromatography (silica gel, $CH_2Cl_2/AcOEt$ 6:4). Yellow solid, 371 mg, yield = 49%.

³¹P NMR (CDCl₃, 161.99 MHz): δ (ppm) = 24.9 (s); ¹H NMR (CDCl₃, 400.13 MHz): δ (ppm) = 1.26 (t, *J* = 7.1 Hz, 6H, 2 CH₃), 4.23-4.31 (m, 4H, 2 CH₂O), 7.38-7.43 (m, 12H, 12 CH_{Ph}), 7.52-7.56 (m, 8H, 8 CH_{Ph}); ¹³C NMR (CDCl₃, 100.61 MHz): δ (ppm) = 16.4-16.5 (m, CH₃), 65.2-65.3 (m, CH₂O), 93.25 (s, C), 124.9 (dd, *J* = 162.9, 10.1 Hz, CP), 128.3 (s, CH),128.4 (s, CH), 128.8 (s, CH), 129.2 (s, CH), 129.3 (s, CH_{Ph}), 138.6 (t, *J* = 2.2 Hz, C), 138.8 (t, *J* = 1.8 Hz, C), 146.2 (dd, *J* = 40.7, 8.2 Hz, CBr); HRMS (ESI⁺): m/z calcd for $[M+H]^+$, C₃₄H₃₁Br₂O₆P₂, 754.9963 Found: 754.9965.

-50 f1 (ppm) 140 120 100 80 60 20 0 -10 -30 -70 -140 -170 -200 -230 40 -90 -110

Single Mass Analysis Tolerance = 1.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 20541 formula(e) evaluated with 30 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-100 H: 0-110 N: 0-30 O: 0-30 P: 0-2 Br: 1-2

Page 1

5.7. 4,4'-Dibromo-2,2'-diethoxy-5,5-dimethyl-5',5'-diphenyl-5H,5'H-[3,3'-bi(1,2-oxaphosphole)] 2,2'-dioxide (6g)

Bis-allenylphosphonate **2g** (531 mg, 1.0 mmol). The residue was purified by chromatography (silica gel, $CH_2Cl_2/AcOEt$ 6:4). Yellow solid, 266 mg, yield = 42%.

³¹P (CDCl₃, 161.97 MHZ) δ (ppm) = (diastereomer 1 – 7%), 24.4 (d, *J* = 5.1 Hz), 24.8 (d, *J* = 4.5 Hz), (diastereomer 2 – 93%), δ (ppm) = 24.7 (d, *J* = 4.4 Hz), 24.9 (d, *J* = 4.4 Hz); Only the major diastereomer (2) will be described. ¹H NMR (CDCl₃, 400,13 MHZ): δ (ppm) = 1.27 (t, *J* = 7.1 Hz, 3H, CH₃), 1.27 (t, *J* = 6.9 Hz, 3H, CH₃), 1.61 (s, 3H, CH₃), 1.67 (s, 3H, CH₃), 4.19-4.30 (m, 4H, 2 CH₂O), 7.36-7.43 (m, 6H, CH_{Ph}), 7.46-7.53 (m, 4H, CH_{Ph}); ¹³C NMR (CDCl₃, 100,61 MHZ) : δ (ppm) = 16.5 (d, *J* = 5.6 Hz, CH₃), 16.6 (d, *J* = 5.8 Hz, CH₃), 27.1 (t, *J* = 1.4 Hz, CH₃), 27.5 (dd, *J* = 3.1, 1.2 Hz, CH₃), 64.9 (d, *J* = 6.6 Hz, OCH₂), 65.2 (d, *J* = 6.6 Hz, OCH₂), 87.5-87.5 (m, CO), 122.5 (dd, *J* = 164.0, 10.3 Hz, CP), 124.6 (dd, *J* = 163.4, 10.3 Hz, CP), 128.3, 128.4, 128.7, 128.7, 129.2 (s, CH_{Ph}), 138.6 (dd, *J* = 3.2, 0.9 Hz, C), 138.8 (dd, *J* = 2.2, 1.2 Hz, C), 146.3 (dd, *J* = 40.3, 9.0 Hz, CBr), 146.3 (dd, *J* = 40.3, 9.0 Hz, CBr), 149.07 (dd, *J* = 42.0, 8.8 Hz, CBr); HRMS (ESI⁺): m/z calcd for [M+H]⁺, C₂₄H₂₇Br₂O₆P₂, 630.9650 Found: 630.9658.

Single Mass Analysis Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 84 formula(e) evaluated with 1 results within limits (up to 20 closest results for each mass) Elements Used: C: 1-150 H: 1-200 O: 0-50 P: 2-2 Br: 2-2

SYNAPT G2-8 Y-JP15030913	S#UEB205 3 3 (0.141)	Cm (3:4)				D	E080				1	09-Mar-2015 : TOF MS ES+ 2.14e+006
100- 0	568.99 0 570	576.90 ⁵⁸ 580	1.09 599. 590	08 604.9	610 62	26.91 632.96 	635.976 640	650 660	675.82,679.01 670 680	691.0469 690	99.88 704.86 700 710	720.03.723.03 mmmmm 720
Minimum: Maximum:			1.0	1.0	-1.5 50.0							
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
630.9658	630.90	650	0.8	1.3	11.5	1626.2	n/a	n/a	C24 H27 O6	P2 Br2		

7. (6-Isopropyl-2,2-dimethyl-2H-pyran-4,5-diyl)bis(diphenylphosphine oxide) 8

To a solution of bisallenylphosphine oxide **2i** (535 mg, 1 mmol) in CH_2CI_2 (20 mL) and water (10 mL) was added para-toluenesulfonic acid monohydrate (380 mg, 2 mmol). The reaction mixture was stirred at 120°C for 22h. After extraction with CH_2CI_2 , the combined organic phases were washed with water with brine (10 mL) and dried over MgSO₄. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (silica gel, dichloromethane / isopropanol) giving **8** as a white solid, 287 mg, yield = 52 %.

Scheme 4. Proposed mechanism for the reaction of bisallene 2i with PTSA.

³¹P (CDCl₃, 161.97 MHz) δ(ppm) = -13.9 (d, *J* = 56.3 Hz, 1P), 25.3 (d, *J* = 56.3 Hz, 1P); ¹H (CDCl₃, 400,13 MHz) δ(ppm) = 0.73 (d, *J*_{HH} = 6.7 Hz, 6H, CH₃), 0.89 (s, 6H, CH₃), 2.93 (hep, *J*_{HH} = 6.5 Hz, 1H, CH), 5.63 (d, *J* = 60.7 Hz, 1H, CH=), 7.19-7.36 (m, 12H, 12 CH_{Ph}), 7.56-7.69 (m, 8H, 8 CH_{Ph}); ¹³C (CDCl₃, 100,61 MHz) δ(ppm) = 19.5 (s, CH₃), 28.7 (s, CH₃), 30.1 (s, CHMe₂), 79.2 (d, *J* = 6.1 Hz, C), 90.7 (dd, *J* = 127.1, 20.7 Hz, C), 125.4 (dd, *J* = 122.5, 12.1 Hz, C), 127.6 (d, *J* = 15.5 Hz, CH_{Ph}), 128.2 (d, *J* = 12.1 Hz, CH_{Ph}), 130.0 (d, *J* = 3.2 Hz, CH_{Ph}), 131.3 (d, *J* = 2.3 Hz, CH_{Ph}), 131.5 (d, *J* = 10.0 Hz, CH_{Ph}), 131.7 (d, *J* = 11.6 Hz, CH_{Ph}), 134.4 (d, *J* = 106.9 Hz, PC), 137.9 (d, *J* = 161.9 Hz, PC), 142.6 (d, *J* = 23.4 Hz, CH), 181.6 (dd, *J* = 17.1, 2.9 Hz, C-O).

8. Crystallographic information of dibromobisoxaphospholenes [6f-OH]

Crystal data for [**6f-OH**]: $C_{30}H_{22}Br_2O_6P_2$, M = 700.23, orthorhombic, space group Pcca (no. 54), a = 27.0189(6) Å, b = 14.0226(4) Å, c = 7.2637(2) Å, V = 2752.04(13) Å³, T = 100 K, Z = 4, $d_C = 1.690$ g cm⁻³, μ (Cu K α , $\lambda = 1.54184$ Å) = 5.217 mm⁻¹, 51749 reflections collected, 2514 unique [$R_{int} = 0.1683$], which were used in all calculations. Refinement on F², final R(F) = 0.0572, $R_W(F2) = 0.1519$. CCDC number 1530156.

Figure 3. X-ray representation of dibromo-bisoxaphospholene 6f-OH.

Molecular formula	$C_{30}H_{22}Br_2O_6P_2$
Formula weight	700.23
Temperature/K	100(2)
Crystal system	orthorhombic
Space group	Pcca
a/Å	27.0189(6)
b/Å	14.0226(4)
c/Å	7.2637(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2752.04(13)
Z	4
ρ _{calc} g/cm ³	1.690
µ/mm⁻¹	5.217
F(000)	1400.0
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	6.304 to 136.116
Index ranges	$-32 \le h \le 32, -15 \le k \le 16, -8 \le l \le 8$
Reflections collected	51749
Independent reflections	2514 [$R_{int} = 0.1683, R_{sigma} = 0.0505$]
Data/restraints/parameters	2514/0/181

Goodness-of-fit on F ²	1.022
Final R indexes [I>=2σ (I)]	$R_1 = 0.0572, wR_2 = 0.1519$
Final R indexes [all data]	$R_1 = 0.0753, wR_2 = 0.1731$
Largest diff. peak/hole / e Å ⁻³	1.91/-0.68