Rh₂(II)-Catalyzed Ring Expansion of Cyclobutanol-substituted Aryl Azides to Access Medium-Sized *N*-Heterocycles

Wrickban Mazumdar,¹ Navendu Jana,¹ Bryant T. Thurman,¹ Donald J. Wink,¹ and Tom G. Driver^{1,2}*

¹Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois, USA, 60607-7061

² Institute of Next Generation Matter Transformation, College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd. Xiamen, Fujian, 361021, P. R. China

Supporting Information

Contents:

I.	Synthesis of ortho-Cyclobutanol Anilines	s-2
II.	Synthesis of o-Cyclobutanol Aryl Azides	s-15
III.	Rh ₂ (II)-Catalyzed Benzazepine-2-one Formation	s-23
IV.	Mechanistic Experiments	s-30
V.	References	s-33
VI.	Spectral Data	s-35

General. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature using 500 MHz or 300 MHz spectrometers. The data are reported as follows: chemical shift in ppm from internal tetramethylsilane on the d scale, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. High-resolution mass spectra were obtained by peak matching. Melting points are reported uncorrected. Analytical thin layer chromatography was performed on 0.25 mm silica gel plates with UV254 fluorescent indicator. Liquid chromatography was performed using forced flow (flash chromatography) of the indicated solvent system on 60Å (40 – 60 µm) mesh silica gel (SiO₂). Medium pressure liquid chromatography (MPLC) was performed using pumps to force flow the indicated solvent system down columns that had been packed with 60Å (40 – 60 µm) mesh silica gel (SiO₂). All reactions were carried out under an atmosphere of nitrogen in glassware that was oven-dried. Unless otherwise noted, all reagents were commercially obtained and, where appropriate, purified prior to use. Acetonitrile, methanol, toluene, THF, Et₂O, and CH₂Cl₂ were dried by filtration through alumina according to the procedure of Grubbs.¹ Metal salts were stored in a nitrogen atmosphere dry box.

I. Synthesis of ortho-Cyclobutanol Anilines

The *ortho*-cyclobutanol anilines for our method development were constructed from either 2-bromoformamide **s1** or *N*-Boc aniline (Scheme s1).

1. Origin 2-bromoformamide

Scheme s1. Strategies to construct the ortho-cyclobutanol aniline precursors

A. General Procedure for Formamide Synthesis

The formamides were prepared following the protocol reported by Takemoto and co-workers.²

To a mixture of formic acid (3.49 equiv) and acetic anhydride (1.25 equiv) was added a solution of 2-bromoaniline (1.0 equiv) in CH_2Cl_2 and the mixture was stirred at room temperature. After 2 h, the mixture was concentrated under reduced pressure to afford the formamide product as a solid. No additional purification was performed.

B. Characterization Data of Formamides.

N-(2-Bromophenyl)formamide s1a.³ The general procedure was followed by using 2.00 g of 2-bromoaniline (11.6 mmol), 1.52 mL of formic acid and 1.36 mL of Ac₂O to give the product, a white solid, as a 2:1 mixture of rotamers (2.03 g, 88%). The spectral data of s1a matched that reported by Sarvari and Sharghi:³ ¹H NMR (500 MHz, CDCl₃) δ 8.70 (d, *J* = 6.0 Hz, 0.47H), 8.49 (s, 1H), 8.38 (d, *J* = 8.0 Hz, 1H), 7.70 (br s, 1H), 7.60 (d, *J* = 8.0 Hz, 0.52H), 7.55 (dd, *J* = 8.0 Hz, 1.5 Hz, 1H), 7.34 – 7.30 (m, 1.54H), 7.27 – 7.25 (m, 0.69H), 7.07 (t, *J* = 8.0 Hz, 0.5H), 7.02 – 6.99 (m, 1H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 161.5 (CH), 158.6 (CH), 134.8 (C), 133.5 (CH), 132.4 (CH), 128.7 (CH), 128.5 (CH), 126.4 (CH), 125.7 (CH), 122.3 (CH), 119.0 (CH), 114.5 (C), 113.0 (C), only visible signals; ATR-FTIR (thin film): 3259, 3106, 2906, 1702, 1665, 1577, 1595, 1521, 1466, 1401, 1293, 1158, 1045, 908, 739 cm⁻¹.

N-(2-Bromo-4-methoxyphenyl)formamide s1b. The general procedure was followed by using 2.00 g of 2-bromo-4-methoxy aniline (9.9 mmol), 1.30 mL of formic acid and 1.16 mL of Ac₂O to give the product, a brown solid, as a 2:1 mixture of rotamers (2.03 g, 94%): mp = 115 – 117 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.49 (d, *J* = 11.5 Hz, 0.46H), 8.43 (s, 1H), 8.22 (d, *J* = 9.0 Hz, 1H), 7.44 (br s, 1H), 7.27 – 7.26 (m, 0.67H), 7.17 – 7.16 (m, 1H), 7.11 – 7.10 (m, 1H), 6.87 (dd, *J* = 9.0 Hz, 2.5 Hz, 1.51H), 3.80 (s, 1.47H), 3.79 (s, 3H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 162.1 (C), 159.0 (CH), 156.7 (C), 128.1 (C), 123.5 (CH), 121.8 (CH), 118.5 (CH), 117.7 (CH), 114.5 (CH), 113.9 (CH), 55.8 (CH₃) 55.7 (CH₃), only visible signals; ATR-FTIR (thin film): 3247, 2891, 1697, 1662, 1581, 1538, 1488, 1403, 1393, 1294, 1223, 1032, 872, 837, 724 cm⁻¹. HRMS (ESI) m/z calcd for C₈H₉NO₂Br [M + H]⁺: 229.9816, found 229.9817.

N-(2-Bromo-4-methylphenyl)formamide s1c.⁴ The general procedure was followed by using 1.00 g of 2-bromo-4-methyl aniline (5.4 mmol), 0.71 mL of formic acid and 0.63 mL of Ac₂O to give the product, a brown solid, as a 2:1 mixture of rotamers (1.2 g, quantitative). The spectral data of s1c matched that reported by Heinicke and co-workers:⁴ ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, *J* = 11.5 Hz, 0.49H), 8.46 (s, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 7.59 (br s, 1H), 7.42 (s, 0.49H), 7.37 (s, 1H), 7.13 (t, *J* = 10.0 Hz, 2H), 2.32 (s, 1.65H), 2.30 (s, 3H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 161.8 (CH), 158.8 (CH), 136.8 (C), 135.8 (C), 133.8 (CH), 132.6 (CH), 132.5 (C), 132.3 (C), 129.3 (CH), 129.1 (CH), 122.2 (CH), 119.4 (CH), 114.7 (C), 113.0 (C), 20.6 (CH₃), 20.5 (CH₃), only visible signals; ATR-FTIR (thin film): 3242, 2905, 1694, 1666, 1574, 1505, 1399, 1224, 1038, 863, 816, 732, 672 cm⁻¹.

N-(2-Bromo-4-trifluoromethylphenyl)formamide s1d. The general procedure was followed by using 0.894 g of 2bromo-4-trifluoromethyl aniline (5.40 mmol), 0.49 mL of formic acid and 0.43 mL of Ac₂O to give the product, a white solid, as a mixture of rotamers (0.972 g, 97%): mp = 101 – 103 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.83 (d, *J* = 10.0 Hz, 0.24H), 8.58 (d, *J* = 8.5 Hz, 1H), 8.55 (s, 1H), 7.87 (s, 0.41H), 7.82 (s, 2H), 7.59 (d, *J* = 8.5 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 0.22H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 160.7 (CH), 158.9 (CH), 137.8 (C), 130.8 (C), 129.5 (CH), 127.5 (C), 127.3 (C), 125.9 (CH), 125.8 (CH), 123.0 (q, *J*_{CF} = 278.4 Hz, C), 121.7 (CH), 117.5 (C), 112.2 (C), only visible signals; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.8; ATR-FTIR (thin film): 3278, 1705, 1609, 1525, 1397, 1321, 1265, 1120, 1077, 894, 821, 734, 677 cm⁻¹. HRMS (ESI) m/z calcd for C₈H₆NOF₃Br [M + H]⁺: 267.9587, found 267.9585.

N-(2-Bromo-4-trifluoromethoxyphenyl)formamide s1e. The general procedure was followed by using 1.00 g of 2bromo-4-trifluoromethoxy aniline (3.91 mmol), 0.51 mL of formic acid and 0.46 mL of Ac₂O to give the product, a white solid, as a mixture of rotamers (1.12 g, quantitative): mp = 110 – 112 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.67 (d, *J* = 10.5 Hz, 0.26 H), 8.50 (d, *J* = 1.0 Hz, 1H), 8.45 (d, *J* = 9.5 Hz, 1H), 7.69 (br s, 1H), 7.51 (s, 0.26H), 7.45 (d, *J* = 2.0 Hz, 1H), 7.29 (d, *J* = 9.0 Hz, 0.26H), 7.21 (d, *J* = 7.5 Hz, 1.3H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 161.3 (CH), 158.8 (CH), 145.1 (C), 133.8 (C), 126.4 (CH), 125.2 (CH), 122.7 (CH), 122.4 (q, *J*_{CF} = 256.5 Hz, C), 121.5 (CH), 121.2 (CH), 119.6 (CH), 114.7 (C), 112.9 (C), only visible signals; ¹⁹F NMR (282 MHz, CDCl₃) δ –58.7; ATR-FTIR (thin film): 3190, 3034, 2894, 1659, 1541, 1482, 1396, 1294, 1197, 1163, 1040, 942, 888, 849, 709 cm⁻¹. HRMS (ESI) m/z calcd for C₈H₆NO₂BrF3 [M + H]⁺: 285.9535, found 285.9534.

N-(2-Bromo-5-methylphenyl)formamide s1g. The general procedure was followed by using 1.00 g of 2-bromo 5-methyl aniline (5.37 mmol), 0.71 mL of formic acid and 0.63 mL of Ac₂O to give the product, a brown solid, as a 2:1 mixture of rotamers (1.24 g, quantitative): mp = 97 – 99 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.69 (d, *J* = 11.0 Hz, 0.51H), 8.47 (s, 1H), 8.22 (s, 1H), 7.63 (br s, 1.33H), 7.45 (d, *J* = 8.0 Hz, 0.53H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.07 (s, 0.49H), 6.88 (d, *J* = 8.0 Hz, 0.53H), 6.62 (d, *J* = 8.0 Hz, 1H), 2.33 (s, 1.62H), 2.32 (s, 3.34 H) only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 161.5 (CH), 158.8 (CH), 138.8 (C), 134.4 (C), 133.1 (CH), 131.9 (CH), 127.3 (CH), 126.6 (CH), 122.8 (CH), 119.7 (CH), 109.7 (C), 21.3 (CH₃), 21.1 (CH₃), only visible signals; ATR-FTIR (thin film): 3239, 2922, 1652, 1581, 1526, 1411, 1291, 1195, 1030, 815, 718, 701 cm⁻¹. HRMS (ESI) m/z calcd for C₈H₉NOBr [M + H]⁺: 213.9870, found 213.9868.

N-(2-Bromo-5-fluorophenyl)formamide s1h. The general procedure was followed by using 1.00 g of 2-bromo-5-fluoro aniline (5.30 mmol), 0.70 mL of formic acid and 0.62 mL of Ac₂O to give the product, a white solid, as a 4:1 mixture of rotamers (1.05 g, 88%): mp = 133 – 135 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.72 (d, *J* = 11.0 Hz, 0.25H), 8.50 (s, 1H), 8.28 (dd, *J* = 10.5 Hz, 2.5 Hz, 1H), 7.70 (br s, 1H), 7.57 – 7.54 (m, 0.29H), 7.50 (dd, *J* = 8.5 Hz, 5.5 Hz, 1H), 7.01 (d, *J* = 9.0 Hz, 0.25H), 6.81 (t, *J* = 8.5 Hz, 0.28H), 6.76 (ddd, *J* = 11.0 Hz, 8.5 Hz, 3.0 Hz, 1H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 163.1 (C), 161.1 (d, *J*_{CF} = 31.4 Hz, C), 158.8 (CH), 137.0 (C), 136.0 (d, *J*_{CF} = 11.4 Hz, C), 134.4 (d, *J*_{CF} = 9.4 Hz, C), 133.0 (d, *J*_{CF} = 9.0 Hz, CH), 113.2 (d, *J*_{CF} = 23.3 HZ, C), 112.6 (d, *J*_{CF} = 23.4 Hz, CH), 109.7 (d, *J*_{CF} = 28.3 Hz, CH), 106.7 (d, *J*_{CF} = 3.6 Hz, C), 106.0 (d, *J*_{CF} = 27.3 Hz, C), only visible signals; ¹⁹F NMR (282 MHz, CDCl₃) δ -111.2; ATR-FTIR (thin film): 3261, 3107, 2907, 1668, 1608, 1541, 1427, 1398, 1280, 1133, 1101, 1032, 866, 795, 612 cm⁻¹. HRMS (ESI) m/z calcd for C₇H₆NOFBr [M + H]⁺: 217.9615, 217.9617 found.

N-(2-Bromo-5-trifluoromethylphenyl)formamide s1i. The general procedure was followed by using 1.00 g of 2-bromo-5-trifluoromethyl aniline (4.20 mmol), 0.56 mL of formic acid and 0.50 mL of Ac₂O to give the product, a white solid, as a mixture of rotamers (0.916 g, 91%): mp = 96 – 98 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 0.15H), 8.74 (s, 1H), 8.54 (s, 1H), 7.85 (br s, 1H), 7.74 (d, *J* = 7.5 Hz, 0.29H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.50 (s, 0.23H), 7.32 (d, *J* = 8.0 Hz, 0.24H), 7.25 (d, *J* = 6.0 Hz, 0.85H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 161.0 (CH), 158.9 (CH), 135.4 (C), 134.2 (CH), 132.9 (CH), 131.0 (q, *J*_{CF} = 32.6 Hz, C), 123.4 (q, *J*_{CF} = 269.9 Hz, C), 122.7 (CH), 122.0 (q, *J*_{CF} = 4.1 Hz, CH), 118.8 (q, *J*_{CF} = 4.5 Hz, CH), 116.3 (C), 115.1 (CH), only visible signals; ¹⁹F NMR (282 MHz, CDCl₃) δ –63.3; ATR-FTIR (thin film): 3289, 2894, 1677, 1586, 1524, 1427, 1325, 1236, 1169, 1119, 1078, 1029, 894, 819, 737 cm⁻¹. HRMS (ESI) m/z calcd for C₈H₆NOF₃Br [M + H]⁺: 267.9586, found 267.9585.

N-(2-Bromo-5-fluoro-4-methylphenyl)formamide s1j. The general procedure was followed by using 0.900 g of 2bromo 5-fluoro 4-methyl aniline (4.20 mmol), 0.58 mL of formic acid and 0.52 mL of Ac₂O to give the product, a brown solid, as a mixture of rotamers (1.02 g, quantitative): mp = 108 – 110 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 11.0 Hz, 0.29H), 8.45 (d, *J* = 1.0 Hz, 1H), 8.16 (d, *J* = 11.5 Hz, 1H), 7.69 (br s, 1H), 7.41 (d, *J* = 7.5 Hz, 0.28H), 7.34 (d, *J* = 7.5 Hz, 1H), 6.95 (d, *J* = 10.0 Hz, 0.28H), 2.23 (s, 1H), 2.21 (d, *J* = 1.5 Hz, 3.4H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 161.3 (CH), 160.2 (d, *J_{CF}* = 243.1 Hz, C), 158.8 (CH), 135.3 (d, *J_{CF}* = 6.4 Hz, CH), 133.9 (d, *J_{CF}* = 6.0 Hz, CH), 133.4 (d, *J_{CF}* = 11.4 Hz, C), 122.6 (d, *J_{CF}* = 19.1 Hz, C), 109.4 (d, *J_{CF}* = 30.1 Hz, CH), 106.4 (d, *J_{CF}* = 3.4 Hz, C), 106.3 (CH), 106.1 (CH), 14.0 (CH₃), 13.9 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ –118.7, –115.2; ATR-FTIR (thin film): 3241, 2906, 1697, 1668, 1619, 1514, 1502, 1405, 1294, 1197, 1170, 1120, 877, 772, 749, 602 cm⁻¹. HRMS (ESI) m/z calcd for C₈H₈NOFBr [M + H]⁺: 231.9776, found 231.9773.

N-(2-Bromo-6-methoxyphenyl)formamide s1k: The general procedure was followed by using 1.00 g of 2-bromo 6-methoxy aniline (4.50 mmol), 0.65 mL of formic acid and 0.58 mL of Ac₂O to give the product, a brown solid, as a mixture of rotamers (1.13 g, quantitative): mp = 110 – 112 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.57 (d, *J* = 11.0 Hz, 0.39H), 8.40 (br s, 0.12H), 7.27 – 7.25 (m, 0.15H), 7.22 (d, *J* = 8.0 Hz, 0.56H), 7.14 (br s, 0.19H), 7.07 (t, *J* = 9.0 Hz, 0.65H), 7.03 (d, *J* = 8.5 Hz, 0.50H), 6.92 (d, *J* = 8.0 Hz, 0.65H), 6.72 (d, *J* = 8.5 Hz, 0.39H), 6.60 – 6.57 (m, 0.38H), 4.20 (s, 0.67H), 3.85 (d, *J* = 5.5Hz, 2.96H), only visible signals; ¹³C NMR (125 MHz, CDCl₃) δ 164.5 (C), 164.0 (C), 150.0 (C), 127.4 (CH), 125.2 (CH), 124.3 (CH), 118.1 (CH), 111.0 (CH), 109.0 (CH), 108.6 (C), 56.2 (CH₃), 55.9 (CH₃); ATR-FTIR (thin film): 3247, 2891, 1697, 1662, 1581, 1538, 1488, 1403, 1393, 1294, 1223, 1032, 872, 837, 724 cm⁻¹. HRMS (ESI) m/z calcd for C₈H₉NO₂Br [M + H]⁺: 229.9819, found 229.9817.

C. General Procedure for Synthesis of o-Cyclobutanol Anilines from 2-Bromoformamides

The *o*-cyclobutanol formamides were prepared following the protocol reported by Curtin and co-workers.⁵ The formyl group was removed through a base-mediated hydrolysis reaction to provide the *o*-cyclobutanol aniline.

To a slurry of NaH (60% dispersion in mineral oil, 1.83 equiv) in THF (6 mL was added dropwise a solution of *N*-(2bromophenyl) formamide (1.0 equiv) in 4 mL of tetrahydrofuran. The mixture was stirred at room temperature for 20 minutes, then chilled to -78 °C. To the cold suspension was added dropwise a 2.5 M solution of *n*-butyllithium in hexanes (1.25 equiv). The mixture was stirred at -78 °C. After 30 minutes, cyclobutanone (1.1 equiv) was added dropwise. The mixture was stirred at -78 °C. After 2 hours, the reactives were quenched by adding 20 mL of a saturated aqueous solution of NH₄Cl. The resulting mixture was warmed to room temperature. The mixture was extracted with 3 × 30 mL of ethyl acetate, and the combined organic layers were dried over Na₂SO₄, filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was purified by medium pressure liquid chromatography (MPLC) to give the title compounds as a mixture of rotational isomers, which were submitted to the next step without characterization.

The mixture of *o*-cyclobutanol formamide rotamers was dissolved in dioxane and treated with a 5% aq soln of KOH. The resulting mixture was heated to reflux, and the reaction progress was monitored using thin layer chromatography until the starting material was completely consumed. After the reaction mixture was cooled to room temperature, it was diluted with water. The resulting mixture was extracted with 3×10 mL of EtOAc. The combined organic extracts were washed with brine, dried over MgSO₄ and the filtrate was concentrated under reduced pressure. The resulting residue was purified by MPLC to afford the product.

D. Characterization Data of o-Cyclobutanol Formamides

N-(2-(1-Hydroxycyclobutyl)phenyl)formamide s2a. The general procedure was followed by using 0.653 g (17.0 mmol) of NaH, 2.00 g (9.30 mmol) of s1a, 4.65 mL (11.6 mmol) of *n*-BuLi and 0.760 mL (10.2 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) provided s2a as a thick yellow oil (0.50 g, 26%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl)phenyl)aniline s3a.⁵ The general procedure was followed by using 0.200 g (1.23 mmol) of s2a. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded the product as a brown solid (0.083 g, 50%): s3a was previously reported by Curtin and co-workers:⁵ $R_f = 0.28$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃ with 1% (v/v) TMS) δ 7.23 (dd, J = 7.5 Hz, 1.0 Hz, 1H), 7.12 – 7.09 (m, 1H), 6.74 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 6.69 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 4.19 (br s, 2H), 2.70 – 2.65 (m, 2H), 2.39 – 2.33 (m, 2H), 2.04 – 1.96 (m, 1H), 1.69 – 1.60 (m, 1H); ¹³C NMR (125 MHz, CDCl₃ with 1% (v/v) TMS) δ 145.6 (C), 128.8 (CH), 128.1 (C), 125.3 (CH), 117.7 (CH), 116.8 (CH), 77.6 (C), 35.1 (CH₂), 13.7 (CH₂); ATR-FTIR (thin film): 3341, 2925, 2853, 1608, 1494, 1456, 1303, 1122, 746 cm⁻¹.

N-(2-(1-Hydroxycyclobutyl)-4-methoxyphenyl)formamide s2b. The general procedure was followed by using 0.303 g (7.90 mmol) of NaH, 1.00 g (4.30 mmol) of s1b, 2.20 mL (5.40 mmol) of *n*-BuLi and 0.350 mL (4.70 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick yellow oil (0.20 g, 21%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl)-4-methoxyphenyl)aniline s3b. The general procedure was followed by using 0.300 g (1.30 mmol) of s2b. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded the product as a brown solid (0.280 g, 78%): $R_f = 0.13$ (5:1 hexanes:EtOAc); mp = 121 – 123 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.84 – 6.83 (m, 1H), 6.70 – 6.67 (m, 1H), 6.64 – 6.62 (m, 1H), 3.85 – 3.75 (m, 5H), 2.64 – 2.59 (m, 2H), 2.38 – 2.31 (m, 2H), 2.02 – 1.95 (m, 1H), 1.69 – 1.60 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 152.3 (C), 138.9 (C), 130.5 (C), 118.0 (CH), 113.1 (CH), 112.3 (CH), 77.3 (C), 55.9 (CH₃), 35.1 (CH₂), 13.6 (CH₂); ATR-FTIR (thin film): 3400, 3363, 2935, 1766, 1498, 1428, 1286, 1217, 1128, 1048, 815 cm⁻¹. HRMS (EI) m/z calcd for C₁₁H₁₅NO₂: 193.1103, found 193.1094.

N-(2-(1-Hydroxycyclobutyl)-4-methylphenyl)formamide s2c. The general procedure was followed by using 0.164 g (4.30 mmol) of NaH, 0.500 g (2.34 mmol) of s1c, 1.20 mL (2.93 mmol) of *n*-BuLi and 0.200 mL (4.70 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick brown oil (0.10 g, 20%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl)-4-methylphenyl)aniline s3c. The general procedure was followed by using 0.250 g (1.22 mmol) of s2c. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded the product as a brown solid (0.130 g, 60%): $R_f = 0.18$ (5:1 hexanes:EtOAc); mp = 104 – 106 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.02 (s, 1H), 6.93 (d, J = 7.5 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 3.98 (br s, 2H), 2.67 – 2.62 (m, 2H), 2.36 – 2.31 (m, 2H), 2.27 (s, 3H), 2.02 – 1.97 (m, 1H), 1.68 – 1.60 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 142. 9 (C), 129.1 (CH), 128.6 (C), 127.0 (C), 125.9 (CH), 117.1 (CH), 77.5 (C), 35.1 (CH₂), 20.7 (CH₃), 13.8 (CH₂); ATR-FTIR (thin film): 3367, 2983, 2945, 2860, 1502, 1319, 1290, 1130, 909, 815, 760 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₄NO [M – H]⁺: 176.1073, found 176.1075.

N-(2-(1-Hydroxycyclobutyl)-4-trifluoromethylphenyl)formamide s2d. The general procedure was followed by using 0.211 g (5.50 mmol) of NaH, 0.800 g (3.00 mmol) of s1d, 1.50 mL (3.80 mmol) of *n*-BuLi and 0.250 mL (3.30 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick brown oil (0.20 g, 26%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl)-4-trifluoromethylphenyl)aniline s3d. The general procedure was followed by using 0.260 g (1.00 mmol) of s2d. Purification by MPLC (5:1 hexanes:EtOAc) afforded the product as a yellow solid (0.160 g, 70%): $R_f = 0.33$ (5:1 hexanes:EtOAc), mp = 107 – 109 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.42 (s, 1H), 7.33 (d, J = 8.5 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 4.16 (br s, 2H), 2.65 – 2.60 (m, 2H), 2.37 – 2.31 (m, 2H), 2.04 – 1.96 (m, 1H), 1.68 – 1.59 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 148.7 (C), 127.3 (C), 126.0 (q, $J_{CF} = 4.0$ Hz, CH), 124.8 (q, $J_{CF} = 268.5$ Hz, C), 122.6 (q, $J_{CF} = 3.3$ Hz, CH), 118.9 (q, $J_{CF} = 32.0$ Hz, C), 115.9 (CH), 77.3 (C), 34.9 (CH₂), 13.6 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ –61.4 ; ATR-FTIR (thin film): 3374, 3203, 2992, 2954, 1622, 1331, 1263, 1176, 1110, 1082, 904 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₁NOF₃ [M – H]⁺: 230.0799, found 230.0793.

N-(2-(1-Hydroxycyclobutyl)-4-trifluoromethoxyphenyl)formamide s2e. The general procedure was followed by using 0.246 g (6.40 mmol) of NaH, 1.00 g (3.50 mmol) of **s1e**, 1.80 mL (3.80 mmol) of *n*-BuLi and 0.290 mL (3.30 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick brown oil (0.29 g, 30%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl)-4-trifluoromethoxyphenyl)aniline s3e. The general procedure was followed by using 0.300 g (1.09 mmol) of s2e. Purification by MPLC (5:1 hexanes:EtOAc) afforded the product as a yellow solid (0.180 g, 65%): $R_f = 0.25$ (5:1 hexanes:EtOAc); mp = 116 - 118 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.06 (d, J = 2.0 Hz, 1H), 6.98 –

6.96 (m, 1H), 6.61 (d, J = 9.0 Hz, 1H), 4.26 (br s, 2H), 2.62 – 2.57 (m, 2H), 2.37 – 2.31 (m, 2H), 2.03 – 1.95 (m, 1H), 1.67 – 1.58 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 144.4 (C), 140.6 (C), 129.0 (C), 121.6 (CH), 120.7 (q, $J_{CF} = 253.6$ Hz, C), 118.8 (CH), 117.0 (CH), 77.1 (C), 35.0 (CH₂), 13.5 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ –58.8; ATR-FTIR (thin film): 3375, 2990, 1625, 1498, 1249, 1215, 1154, 885, 822 cm⁻¹. HRMS (EI) m/z calcd for C₁₁H₁₂NO₂F₃: 247.0813, found 247.0820.

N-(2-(1-Hydroxycyclobutyl))-5-methylphenyl)formamide s2g. The general procedure was followed by using 0.329 g (8.55 mmol) of NaH, 1.00 g (4.67 mmol) of s1g, 2.30 mL (5.84 mmol) of *n*-BuLi and 0.390 mL (5.14 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick brown oil (0.20 g, 21%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl)-5-methylphenyl)aniline s3g. The general procedure was followed by using 0.180 g (1.02 mmol) of s2g. Purification by MPLC (5:1 hexanes:EtOAc) afforded the product as a brown solid (0.16 g, 75%): $R_f = 0.28$ (5:1 hexanes:EtOAc); mp = 96 – 98 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 8.0 Hz, 1H), 6.51 (s, 1H), 4.12 (br s, 2H), 2.66 – 2.61 (m, 2H), 2.34 (q, *J* = 9.0 Hz, 2H), 2.27 (s, 3H), 2.01 – 1.93 (m, 1H), 1.62 (quin, *J* = 8.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 145.5 (C), 138.6 (C), 125.7 (C), 125.3 (CH), 118.5 (CH), 117.6 (CH), 77.2 (C), 35.1 (CH₂) 21.1 (CH₃), 13.7 (CH₂); ATR-FTIR (thin film): 3418, 3320, 2976, 2934, 2858, 1615, 1510, 1428, 1115, 819, 792 cm⁻¹. HRMS (EI) m/z calcd for C₁₁H₁₅NO: 177.11541, found 177.11537.

N-(5-Fluoro-2-(1-hydroxycyclobutyl)phenyl)formamide s2h. The general procedure was followed by using 0.288 g (7.50 mmol) of NaH, 0.900 g (4.10 mmol) of s1h, 2.00 mL (5.10 mmol) of *n*-BuLi and 0.340 mL (4.50 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick brown oil (0.15 g, 18%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(**5-Fluoro-2**-(**1-hydroxycyclobutyl**)**phenyl**)**aniline s3h.** The general procedure was followed by using 0.215 g (1.03 mmol) of s2h. Purification by MPLC (5:1 hexanes:EtOAc) afforded the product as a brown solid (0.130 g, 68%): $R_f = 0.25$ (5:1 hexanes:EtOAc); mp = 139 − 141 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.11 (dd, *J* = 8.0 Hz, 6.0 Hz, 1H), 6.38 (dt, *J* = 8.5 Hz, 2.5 Hz, 1H), 6.33 (dd, *J* = 11.0 Hz, 2.5 Hz, 1H), 4.30 (br s, 2H), 2.60 − 2.55 (m, 2H), 2.32 − 2.27 (m, 2H), 2.00 − 1.92 (m, 1H), 1.64 − 1.55 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 163.0 (d, *J*_{CF} = 240.8, C), 147.5 (d, *J*_{CF} = 9.4 Hz, C), 126.7 (d, *J*_{CF} = 11.0 Hz, CH), 124.0 (C), 103.7 (d, *J*_{CF} = 20.3 Hz, CH), 103.2 (d, *J*_{CF} = 24.0 Hz, CH), 77.1 (C), 35.2 (CH₂), 13.7 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ −115.2; ATR-FTIR (thin film): 3418, 3326, 3230, 2923, 2852, 1622, 1434, 1332, 1162, 1126, 1104, 870, 804, 740 cm⁻¹. HRMS (ESI) m/z calcd for C₁₀H₁₁NOF [M − H]⁺: 180.0827, found 180.0825.

N-(2-(1-Hydroxycyclobutyl)-5-trifluoromethylphenyl)formamide s2i. The general procedure was followed by using 0.209 g (5.45 mmol) of NaH, 0.800 g (2.98 mmol) of **s1i**, 1.50 mL (3.73 mmol) of *n*-BuLi and 0.250 mL (3.30 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick brown oil (0.18 g, 23%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl)-5-trifluoromethylphenyl)aniline s3i. The general procedure was followed by using 0.263 g (1.02 mmol) of s2i. Purification by MPLC (5:1 hexanes:EtOAc) afforded the product as a yellow solid (0.170 g, 70%): $R_f = 0.28$ (5:1 hexanes:EtOAc); mp = 102 – 104 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.86 (s, 1H), 4.40 (s, 2H), 2.64 – 2.59 (m, 2H), 2.37 – 2.31 (m, 2H), 2.02 – 1.96 (m, 1H), 1.65 – 1.58 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 146.0 (C), 130.9 (q, *J*_{CF} = 31.9 Hz, C), 127.4 (C), 125.7 (CH), 124.1 (q, *J*_{CF} = 270.5 Hz, C), 114.0 (q, *J*_{CF} = 4.0 Hz, CH), 112.9 (q, *J*_{CF} = 3.6 Hz, CH), 77.2 (C), 35.0 (CH₂), 13.6 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ –63.3; ATR-FTIR (thin film): 3418, 3326, 3230, 2923, 2852, 1622, 1434, 1332, 1162, 1126, 1104, 870, 804, 740 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₁NOF₃ [M – H]⁺: 230.0783, found 230.0793.

N-(5-Fluoro-2-(1-hydroxycyclobutyl)-3-methylphenyl)formamide s2j. The general procedure was followed by using 0.174 g (7.10 mmol) of NaH, 0.900 g (3.90 mmol) of s1j, 1.90 mL (4.88 mmol) of *n*-BuLi and 0.320 mL (4.30 mmol) of cyclobutanone to give the crude material. Purification by MPLC (hexanes:EtOAc 3:1-1:1) gave the product as a thick brown oil (0.18 g, 21%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(**5-Fluoro-2**-(**1-hydroxycyclobuty**)-**4-methylpheny**)**aniline s3j.** The general procedure was followed by using 0.260 g (1.17 mmol) of s2j. Purification by MPLC (5:1 hexanes:EtOAc) afforded the product as a red solid (0.14 g, 60%) as a mixture of rotamers: $R_f = 0.33$ (5:1 hexanes:EtOAc); mp = 114 – 116 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.97 (d, *J* = 8.5 Hz, 1H), 6.84 (t, *J* = 8.0 Hz, 0.26H), 6.35 (d, *J* = 11.0 Hz, 1.21H), 4.13 (s, 2H), 2.82 – 2.76 (m, 0.58H), 2.63 – 2.60 (m, 2H), 2.44 – 2.40 (m, 0.70H), 2.35 – 2.29 (m, 3H), 2.16 (s, 3H), 2.12 (s, 0.90 H), 2.00 – 1.96 (m, 1H), 1.88 – 1.85 (m, 0.37H), 1.66 – 1.57 (m, 1H), 1.27 – 1.24 (m, 0.19H); ¹³C NMR (125 MHz, CDCl₃) δ 161.2 (d, *J*_{CF} = 241.3 Hz, C), 145.0 (d, *J*_{CF} = 10.0 Hz, C), 130.3 (d, *J*_{CF} = 8.1 Hz, CH), 128.1 (d, *J*_{CF} = 6.9 Hz, CH), 124.0 (C), 112.6 (d, *J*_{CF} = 17.3 Hz, C), 111.8 (CH), 103.4 (d, *J*_{CF} = 25.0 Hz, CH), 77.1 (C), 37.1 (d, *J*_{CF} = 5.6 Hz, CH₂), 35.3 (CH₂), 17.0 (CH₂), 13.8 (CH₃), 13.7 (CH₂), only visible signals; ¹⁹F NMR (282 MHz, CDCl₃) δ –120.0, –119.2; ATR-FTIR (thin film): 3346, 2948, 2867, 1632, 1587, 1509, 1419, 1310, 1141, 1110, 1044, 1023, 882, 782 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₃NOF [M – H]⁺: 194.0979, found 194.0981.

N-(2-(1-Hydroxycyclobutyl-6-methoxy)phenyl)formamide s2k. The general procedure was followed by using 0.303 g (7.90 mmol) of NaH, 1 g (4.30 mmol) of s1k, 2.20 mL (5.40 mmol) of *n*-BuLi and 0.350 mL (4.70 mmol) of

cyclobutanone to give the crude material. Purification by MPLC (hexanes: EtOAc 3:1-1:1) gave the product as a thick yellow oil (0.14 g, 13%), which was submitted to the KOH-mediated hydrolysis step without additional characterization.

N-(2-(1-Hydroxycyclobutyl-6-methoxy)phenyl)aniline s3k. The general procedure was followed by using 0.225 g (1.02 mmol) of s2k. Purification by MPLC (5:1 hexane:EtOAc) afforded the product as a red solid (0.14 g, 70%): $R_f = 0.25$ (5:1 hexanes:EtOAc); mp = 116 – 118 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.90 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 6.79 (dd, *J* = 8.0 Hz, 1.0 Hz, 1H), 6.70 (t, *J* = 8.0 Hz, 1H), 4.36 (s, 2H), 3.86 (s, 3H), 3.85 (s, 1H), 2.70 – 2.65 (m, 2H), 2.40 – 2.31 (m, 2H), 2.02 – 1.95 (m, 1H), 1.68 – 1.59 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 147.8 (C), 135.0 (C), 128.4 (C), 117.6 (CH), 116.7 (CH), 109.9 (CH), 77.6 (C), 55.7 (CH₃), 35.2 (CH₂), 13.8 (CH₂); ATR-FTIR (thin film): 3478, 3389, 3267, 2985, 2942, 2835, 1615, 1568, 1463, 1439, 1284, 1219, 1122, 1048, 954, 837, 734 cm⁻¹. HRMS (EI) m/z calcd for C₁₁H₁₅NO₂: 193.10965, found 193.11028.

E. General Procedure for Synthesis of Cyclobutanones

(1*R*,8*S*)-10,10 dichlorobicyclo[6.2.0]decan-9-one s6.⁶ The compound was prepared using the procedure developed by Deprés and co-workers.⁶ To a stirred mixture of 0.500 g (4.50 mmol) of commercially available cis-cyclooctene and 0.589 g (9.00 mmol) of Zn-Cu couple under argon was added over 1h a solution of 0.64 mL (6.80 mmol) of POCl₃ and 0.76 mL (6.80 mmol) of CCl₃COCl in 10 mL dry ether. After the reaction was stirred for 14 h, the ether solution was separated from the excess couple and added to hexane, and the resulting mixture was partially concentrated under reduced pressure in order to precipitate the zinc chloride. The supernatant was decanted and washed successively with cold water, cold aqueous sodium bicarbonate solution, water, and brine, and then dried over anhydrous MgSO₄. Evaporation of the solvent under reduced pressure afforded s6 as a clear oil (0.460 g, 45%) which was submitted in the next step without further characterization.

(**15**,**85**)-[**6.2.0**]**decan-9-one s7.**⁷ Dechlorination was accomplished following the procedure developed by Montaigne and Ghosez.⁷ Under an inert atmosphere of argon, 1.60 mL (5.80 mmol) of freshly distilled Bu₃SnH was heated at reflux. To this solution was added, 0.010 g (0.06 mmol) of AIBN and 0.460 g (2.00 mmol) of s6 in cyclohexane quickly in one portion and refluxed for 1h. The solution was cooled, concentrated *in vacuo* and purified using MPLC (25:1 hexanes:EtOAc) to give the product as a colorless oil (0.128 g, 42%): $R_f = 0.47$ (10:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 3.29 – 3.21 (m, 1H), 3.14 – 3.08 (m, 1H), 2.53 – 2.43 (m, 2H), 1.81 – 1.62 (m, 5H), 1.59 – 1.53 (m, 3H), 1.40 – 1.23 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 213.2 (C), 62.4 (CH), 52.4 (CH₂), 30.3 (CH₂), 29.8 (CH), 29.7 (CH₂), 28.6 (CH₂), 26.1 (CH₂), 25.4 (CH₂), 22.0 (CH₂); ATR-FTIR (thin film): 2916, 2850, 1773, 1464, 1445, 1208, 1083 cm⁻¹. HRMS (EI) m/z calcd for $C_{10}H_{15}O$: 151.11177, found 151.11230.

Benzyl 2-(*2R*,*3R*)-*2*,*3*-dipropylcyclobutylidene)acetate s8.⁸ The compound was prepared using the procedure developed by Snider and Spindell.⁸ 0.50 mL (3.20 mmol) of commercially available cis-4 octene was added dropwise to a solution of 0.507 g (2.91 mmol) of benzyl buta-2,3 dienoate and 2.65 mL (2.65 mmol) of EtAlCl₂ in 6 mL of CH₂Cl₂. The reaction mixture was stirred for 24 h at 25 °C, diluted with ether, and quenched by slow addition of saturated NaH₂PO₄ solution. A 10% aq soln of hydrochloric acid was added to dissolve the precipitated alumina. The two layers were separated and the aqueous layer was washed with three portions of ether. The combined organic layers were dried over MgSO₄ and

S-11

concentrated *in vacuo* and purified using MPLC (20:1 hexanes:EtOAc) to give **s8**, a yellow oil, as 12.5:1 (E:Z) mixture of diastereomers (0.641 g, 77%): $R_f = 0.81$ (10:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.29 (m, 5.66H), 5.70 – 5.59 (m, 1H), 5.63 – 5.62 (m, 0.08H), 5.14 (s, 2.06H), 5.13 (s, 0.20H), 3.16 – 3.10 (m, 1.08H), 3.07 – 3.01 (m, 1.09H), 2.73 – 2.68 (m, 1.14H), 2.45 – 2.38 (m, 1.15H), 1.50 – 1.43 (m, 3.27H), 1.39 – 1.18 (m, 6.07H), 0.93 – 0.88 (m, 6.71H), 0.87 (t, J = 7.5 Hz, 0.43H); ¹³C NMR (125 MHz, CDCl₃) δ 171.6 (C), 166.5 (C), 136.5 (C), 128.5 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 111.5 (CH), 111.0 (CH), 65.5 (CH₂), 48.4 (CH), 47.3 (CH), 37.8 (CH₂), 37.6 (CH₂), 34.4 (CH), 34.2 (CH), 32.6 (CH₂), 32.1 (CH2), 30.9 (CH₂), 30.0 (CH₂), 22.0 (CH₂), 21.3 (CH₂), 20.7 (CH₂), 14.4 (CH₃), 14.2 (CH₃), 14.2 (CH₃); ATR-FTIR (thin film): 2956, 2927, 2871, 1714, 1670, 1456, 1377, 1336, 1260, 1176, 1004 cm⁻¹. HRMS (EI) m/z calcd for C₁₉H₂₆O₂: 286.19366, found 286.19328.

(2*R*,3*R*)-2,3-dipropylcyclobutan-1-one s9.⁹ The compound was prepared using the procedure developed by Nicolaou and co-workers.⁹ To a solution of 0.250 g of cyclobutante s8 (0.87 mmol) in 10:1 acetone:water (0.1 M) were added 0.20 mL of 2,6-lutidine (1.74 mmol), 0.153 g of 4-methylmorpholine *N*-oxide (1.31 mmol) and 0.11 mL of osmium tetroxide (4% in H₂O, 0.02 mmol). The reaction progress was monitored using TLC. When the starting material had been consumed, 0.420 g of PhI(OAc)₂ (1.31 mmol) was added. After stirring for 2 h, the reaction was quenched with saturated aqueous sodium thiosulfate (10 mL). The mixture was extracted with ethyl acetate (3 × 10 mL), washed with saturated aqueous copper sulfate (2 × 20 mL), dried over MgSO₄, and concentrated in vacuo. The crude residue was purified by MPLC (49:1 hexanes:EtOAc) to give s9 as a clear oil (0.097 g, 72%): $R_f = 0.78$ (10:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 3.28 – 3.22 (m, 1H), 3.14 – 3.08 (m, 1H), 2.51 – 2.39 (m, 2H), 1.61 – 1.54 (m, 1H), 1.46 – 1.19 (m, 7H), 0.94 (t, *J* = 7.5 Hz, 3H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 212.0 (C), 61.7 (CH), 50.2 (CH₂), 32.3 (CH₂), 27.4 (CH), 26.4 (CH₂), 21.4 (CH₂), 21.2 (CH₂), 14.1 (CH₃), 14.1 (CH₃); ATR-FTIR (thin film): 2957 , 2928, 2873, 1775, 1465 cm⁻¹. HRMS (ESI) m/z calcd for C₁₀H₁₉O [M + H]⁺: 155.14398, found 155.14360.

F. General Procedure for Synthesis of o-Cyclobutanol Carbamates

o-Cyclobutanol carbamates were prepared following the protocol reported by Fensome and co-workers.¹⁰

To a cooled (0 °C) 3 M solution of commercially available *N*-Boc aniline (1.0 equiv) in dry Et₂O under an inert atmosphere of argon was dropwise added *t*-butyl lithium (1.9 M in pentane, 2.5 equiv) using a syringe pump. After 3 h, a solution of the cycloalkanone (1.5 equiv) in dry Et₂O was added dropwise. The resulting mixture was allowed to warm to rt. The reactives were quenched through the addition of a saturated aq soln of NH₄Cl. The resulting mixture was diluted with EtOAc. The two layers were separated, and the aqueous layer was extracted 3 additional times with EtOAc (3 × 5 mL). The combined organic extracts were washed with brine, dried over MgSO₄ and the filtrate concentrated under reduced pressure. The resulting residue was purified by MPLC to afford the product.

G. Characterization data for o-Cyclobutanol Carbamates

tert-Butyl (2-(1-hydroxycyclobutyl)-5-methoxyphenylcarbamate s1'f. The general procedure was followed at -78 °C using 1.000 g of commercially available *tert*-butyl (2-bromo-5-methoxyphenyl) carbamate (3.31 mmol), 4.36 mL of *t*-

butyl lithium (8.28 mmol) and 0.370 mL of cyclobutanone (4.97 mmol). Purification using MPLC (5:1 hexanes:EtOAc) gave the product as a white sticky solid (0.296 g, 24%): $R_f = 0.48$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (br s, 1H), 7.60 (d, J = 3.0 Hz, 1H), 7.18 (d, J = 8.5 Hz, 1H), 6.53 (dd, J = 8.5 Hz, 3.0 Hz, 1H), 3.80 (s, 3H), 2.59 – 2.53 (m, 2H), 2.40 (s, 1H), 2.39 – 2.31 (m, 2H), 2.05 – 1.97 (m, 1H), 1.67 – 1.59 (m, 1H), 1.50 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 159.8 (C), 153.1 (C), 138.6 (C), 125.8 (CH), 124.9 (C), 108.3 (CH), 107.0 (CH), 80.2 (C), 77.1 (C), 55.4 (CH₃), 35.6 (CH₂), 28.4 (CH₃), 13.8 (CH₂); ATR-FTIR (thin film): 3346, 2978, 2360, 1727, 1703, 1616, 1528, 1239, 876 cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₂₃NO₄Na [M + Na]⁺: 316.1517, found 316.1515.

tert-Butyl (2-(1-hydroxyoxetane)phenylcarbamate s5a. The general procedure was followed by using 0.800 g of *N*-Boc aniline (4.14 mmol), 5.50 ml of *t*-butyl lithium (10.4 mmol) and 0.360 mL of commercially available 3-oxetanone (6.20 mmol). Purification by MPLC (5:1 hexanes:EtOAc) gave the product as a yellow solid (0.420 g, 38%): $R_f = 0.53$ (1:1 hexanes:EtOAc); mp = 102 - 104 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 1H), 7.29 - 7.25 (m, 1H), 7.18 (s, 1H), 7.14 - 7.08 (m, 2H), 4.96 (d, *J* = 7.0 Hz, 2H), 4.74 (d, *J* = 7.0 Hz, 3H), 1.47 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 154.1 (C), 135.6 (C), 133.1 (C), 129.2 (CH), 126.1 (CH), 126.1 (CH), 124.7 (CH), 124.1 (CH), 82.8 (CH₂), 81.1 (C), 75.9 (C), 28.3 (CH₃); ATR-FTIR (thin film): 3360, 2978, 2875, 1698, 1587, 1514, 1450, 1367, 1236, 1155, 1052, 1025, 976, 729 cm⁻¹. HRMS (ESI) m/z calcd for C₁₄H₁₉NO₄Na [M + Na]⁺: 288.1213, found 288.1212.

tert-Butyl (2-(1-Hydroxy-3-*tert*-butylcyclobutyl)phenylcarbamate s5c. The general procedure was followed by using 0.300 g of *N*-Boc aniline (1.56 mmol), 2.0 mL of *t*-butyl lithium (5.18 mmol) and 0.290 g of 3-*tert*-butylcyclobutanone (2.39 mmol).¹¹ Purification by MPLC (15:1 hexanes:EtOAc) gave the product as a yellow sticky solid, as a 2:1 mixture of atropisomers (0.17 g, 33%): $R_f = 0.78$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 0.93H), 7.99 (d, J = 8.0 Hz, 1H), 7.81 (d, J = 8.0 Hz, 0.41H), 7.53 (s, 0.42H), 7.37 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.29 (dt, J = 8.0 Hz, 2.0 Hz, 0.39 H), 7.18 (dd, J = 7.5 Hz, 1.5 Hz, 0.44H), 7.04 – 7.00 (m, 1.43H), 2.56 – 2.47 (m, 2H), 2.26 (d, J = 9.0 Hz, 2H), 2.11 – 2.02 (m, 2H), 1.64 – 1.57 (m, 1H), 1.51 (s, 13.6H), 0.84 (s, 9H), 0.81 (s, 4.51H) ; ¹³C NMR (125 MHz, CDCl₃) δ 153.5 (C), 153.2 (C), 138.0 (C), 136.6 (C), 135.0 (C), 131.8 (C), 128.6 (CH), 128.4 (CH), 125.3 (CH), 124.8 (CH), 123.1 (CH), 122.4 (CH), 122.3 (CH), 121.9 (CH), 80.3 (C), 80.1 (C), 74.1 (C), 71.8 (C), 40.4 (CH), 36.8 (CH₂), 35.5 (CH₂), 30.9 (C), 30.8 (C), 28.4 (CH₃), 26.6 (CH₃), 26.3 (CH₃) (only visible peaks); ATR-FTIR (thin film): 3356, 2956, 2866, 1729, 1704, 1587, 1520, 1450, 1366, 1304, 1236, 1161, 1025, 755 cm⁻¹. HRMS (ESI) m/z calcd for C₁₉H₂₉NO₃Na [M + Na]⁺: 342.2040, found 342.2045.

tert-Butyl (2-(1-Hydroxy-3-phenylcyclobutyl)phenylcarbamate s5d. The general procedure was followed by using 0.300 g of *N*-Boc aniline (1.56 mmol), 2.30 mL of *t*-butyl lithium (3.89 mmol) and 0.338 g of 3-phenylcyclobutanone (2.33 mmol).¹¹ Purification by MPLC (15:1 hexanes:EtOAc) gave the product as a white sticky solid, as a 3:1 mixture of atropisomers (0.15 g, 28%): $R_f = 0.68$ (5:1 hexanes:EtOAc); mp = 153 – 155 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (s,

1.30H), 7.99 (s, 0.45H), 7.76 (d, J = 8.5 Hz, 0.38H), 0.33 (s, 0.43H), 7.49 (dd, J = 8.5 Hz, 1.5 Hz, 1.01H), 7.35 – 7.27 (m, 5.81H), 7.24 – 7.18 (m, 2.57H), 7.12 – 7.06 (m, 1.36H), 3.97 (quin, J = 8.5 H, 0.40 H), 3.13 – 3.07 (m, 1.82H), 3.04 – 2.97 (m, 1.31H), 2.88 – 2.81 (m, 1.66H), 2.69 – 2.63 (m, 0.86H), 2.57 – 2.51 (m, 1.82H), 1.53 (s, 3.24H), 1.52 (s, 9H) ; ¹³C NMR (125 MHz, CDCl₃) δ 153.7 (C), 153.3 (C), 144.7 (C), 144.1 (C), 137.9 (C), 136.3 (C), 135.4 (C), 131.6 (C), 128.9 (CH), 128.6 (CH), 128.4 (CH), 128.4 (CH), 126.7 (CH), 126.5 (CH), 126.3 (CH), 126.2 (CH), 125.6 (CH), 124.8 (CH), 123.6 (CH), 122.8 (CH), 122.7 (CH), 122.4 (CH), 80.5 (C), 80.3 (C), 75.0 (C), 72.7 (C), 43.2 (CH2), 42.2 (CH2), 34.2 (CH), 30.7 (CH₃), 28.4 (CH₃) only visible peaks; ATR-FTIR (thin film): 3362, 2977, 2930, 1726, 1703, 1586, 1519, 1450, 1367, 1246, 1155, 1048, 1025, 750, 698 cm⁻¹. HRMS (ESI) m/z calcd for C₂₁H₂₅NO₃Na [M + Na]⁺: 362.1726, found 362.1732.

tert-Butyl (2-(1-hydroxycyclobutyl)phenylcarbamate s5e. The general procedure was followed by using 0.495 g of *N*-Boc aniline (2.56 mmol), 3.40 mL of *t*-butyl lithium (6.40 mmol) and 0.560 g of 2-phenylcyclobutanone (3.84 mmol).¹² Purification by MPLC (15:1 hexanes:EtOAc) gave the product as a white sticky solid (0.370 g, 43%): $R_f = 0.78$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.93 (s, 1H), 7.47 – 7.45 (m, 3H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.05 (dt, *J* = 7.5 Hz, 1.0 Hz, 1H), 4.20 (m, 1H), 2.56 – 2.45 (m, 3H), 2.29 – 2.22 (m, 1H), 2.07 (d, *J* = 1.0 Hz, 1H), 1.52 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 153.1 (C), 138.4 (C), 137.5 (C), 133.3 (C), 128.8 (CH), 128.8 (CH), 128.5 (CH), 127.2 (CH), 125.2 (CH), 122.5 (CH), 121.8 (CH), 80.2 (C), 80.0 (C), 47.8 (CH), 33.6 (CH₂), 28.4 (CH₃), 21.7 (CH₂); ATR-FTIR (thin film): 3374, 2977, 2360, 2341, 1726, 1585, 1522, 1449, 1392, 1305, 1239, 1161, 1048, 753 cm⁻¹. HRMS (ESI) m/z calcd for C₂₁H₂₅NO₃Na [M + Na]⁺: 362.1722, found 362.1732.

tert-Butyl (2-(1-hydroxycyclobutyl)phenylcarbamate s5f. The general procedure was followed by using 0.200 g of *N*-Boc aniline (1.04 mmol), 1.40 mL of *t*-butyl lithium (2.60 mmol) and 0.356 g of 2-(2-bromophenyl)cyclobutanone (1.56 mmol).¹³ Purification by MPLC (12:1 hexanes:EtOAc) gave the product as a brown solid (0.200 g, 46%): $R_f = 0.53$ (5:1 hexanes:EtOAc); mp = 196 – 198 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.67 (s, 1H), 7.60 (t, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.28 (t, *J* = 8.0 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 4.56 (t, *J* = 7.5 Hz, 1H), 2.60 – 2.53 (m, 1H), 2.48 – 2.39 (m, 2H), 2.29 – 2.23 (m, 2H), 1.45 (s, 9H); ¹³C NMR (125 MHz, CDCl₃ δ 153.1 (C), 138.5 (C), 137.3 (C), 133.1 (CH), 132.8 (C), 130.4 (CH), 128.7 (CH), 128.5 (CH), 127.5 (CH), 125.9 (C), 125.7 (CH), 122.6 (CH), 121.7 (CH), 80.8 (C), 80.0 (C), 46.9 (CH), 33.7 (CH₂), 28.3 (CH₃), 22.6 (CH₂); ATR-FTIR (thin film): 3368, 2977, 1704, 1586, 1521, 1448, 1241, 1157, 1048, 1023, 752, 736 cm⁻¹. HRMS (ESI) m/z calcd for C₂₁H₂₄NO₃NaBr [M + Na]⁺: 440.0829, found 440.0837.

tert-Butyl (2-(1-hydroxycyclobutyl)phenylcarbamate s5g. The general procedure was followed by using 0.250 g of *N*-Boc aniline (1.30 mmol), 1.50 mL of *t*-butyl lithium (3.30 mmol) and 0.210 mL of commercially available bicyclo[3.2.0]hept-2-en-6 one (1.95 mmol). Purification by MPLC (12:1 hexanes:EtOAc) gave the product, a brown sticky solid, as a mixture of diastereomers (0.17 g, 43%): $R_f = 0.58$ (7:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 8.93 (s, 0.10H), 8.27 (d, *J* = 8.0 Hz, 0.11H), 7.85 (d, *J* = 8.0 Hz, 0.86H), 7.49 – 7.48 (m, 0.83H), 7.47 – 7.45 (m, 0.22H), 7.38 – 7.34 (m, 0.27H), 7.32 – 7.25 (m, 2.23H), 7.06 – 7.02 (m, 1H), 7.00 (dd, *J* = 8.0 Hz, 1.5 Hz, 0.10H), 5.99 – 5.95 (m, 1.93H), 5.89 (s, 0.22H), 3.45 – 3.42 (m, 1H), 3.16 – 3.08 (m, 2H), 2.90 (d, *J* = 8.0 Hz, 1H), 2.66 – 2.60 (m, 1H), 2.48 (s, 1H), 2.14 – 2.11 (m, 1H), 1.51 (s, 9H), 1.50 (s, 1.55H); ¹³C NMR (125 MHz, CDCl₃) δ 153.1 (C), 150.9 (C), 139.2 (C), 136.9 (C), 135.6 (CH), 134.4 (CH), 132.7 (CH), 132.4 (CH), 131.9 (CH), 128.4 (CH), 125.3 (CH), 122.9 (CH), 122.7 (CH), 121.0 (CH), 120.4 (CH), 117.1 (CH), 115.8 (CH), 80.5 (C), 80.0 (C), 77.4 (C), 45.7 (CH), 41.9 (CH₂), 39.8 (CH), 33.4 (CH₂), 28.4 (CH₃), 28.3 (CH₃) only visible peaks; ATR-FTIR (thin film): 3371, 2977, 2928, 1727, 1704, 1585, 1515, 1448, 1238, 1153, 1048, 1024, 748, 726 cm⁻¹. HRMS (ESI) m/z calcd for C₁₈H₂₃NO₃Na [M + Na]⁺: 324.1571, found 324.1576.

Spiro(2-(1-hydroxycyclobutyl)phenylbenzoxazine s5'h. The general procedure was followed by using 0.200 g of *N*-Boc aniline (1.04 mmol), 1.32 mL of *t*-butyl lithium (2.50 mmol) and 0.170 g of bicyclo[3.2.0]heptan-6-one (1.50 mmol).¹⁴ Purification by MPLC (5:1 hexanes:EtOAc) gave the product as a orange solid (0.07 g, 30%): $R_f = 0.30$ (3:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 9.19 (s, 1H), 7.36 (d, *J* = 7.5 Hz, 1H), 7.22 (dt, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.10 (dt, *J* = 7.5 Hz, 1.0 Hz, 1H), 6.87 (d, *J* = 7.5 Hz, 1H), 2.90 – 2.86 (m, 1H), 2.77 – 2.72 (m, 1H), 2.65 (quin, *J* = 7.0 Hz, 1H), 2.21 – 2.06 (m, 3H), 1.91 – 1.86 (m, 1H), 1.70 (dd, *J* = 11.5 Hz, 6.0 Hz, 1H), 1.59 – 1.46 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 153.0 (C), 133.9 (C), 128.5 (CH), 126.4 (C), 123.6 (CH), 122.6 (CH), 114.3 (CH), 80.5 (C), 52.6 (CH), 37.9 (CH₂), 32.6 (CH₂), 31.4 (CH), 26.9 (CH₂), 25.6 (CH₂); ATR-FTIR (thin film): 3245, 2950, 1708, 1597, 1501, 1353, 1250, 1157, 1073, 1019, 751 cm⁻¹. HRMS (ESI) m/z calcd for C₁₄H₁₆NO₂ [M + H]⁺: 230.1176, found 230.1181.

N-(2-(1-Hydroxycyclobutyl)phenyl)carbamate s5i. The general procedure was followed by using 0.200 g of *N*-Boc aniline (1.04 mmol), 1.32 mL of *t*-butyl lithium (2.50 mmol) and 0.237 g of bicyclo[6.2.0]decan-9-one (1.50 mmol). Purification by MPLC (15:1 hexanes:EtOAc) gave the product as a white sticky solid (0.12 g, 33%): $R_f = 0.54$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.0 Hz, 1H), 7.79 (br s, 1H), 7.35 – 7.33 (m, 1H), 7.30 – 7.26 (m, 1H), 7.05 – 7.01 (m, 1H), 2.88 – 2.83 (m, 1H), 2.57 – 2.52 (m, 1H), 2.14 (br s, 1H), 1.99 – 1.83 (m, 4H), 1.82 – 1.71 (m, 2H), 1.59 – 1.42 (m, 13H), 1.32 – 1.17 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 153.1 (C), 137.6 (C), 134.0 (C), 128.3 (CH), 124.4 (CH), 122.6 (CH), 122.4 (CH), 79.9 (C), 75.2 (C), 49.2 (CH), 40.2 (CH₂), 31.5 (CH), 30.2 (CH₂), 29.2 (CH₂), 28.6 (CH₂), 28.4 (CH₃), 25.8 (CH₂), 25.2 (CH₂), 22.6 (CH₂); ATR-FTIR (thin film): 3365, 2975, 2919, 2850, 1729, 1704,

1586, 1519, 1449, 1367, 1245, 1160, 1048, 747 cm⁻¹. HRMS (ESI) m/z calcd for $C_{21}H_{31}NO_3Na [M + Na]^+$: 368.2192, found 368.2202.

N-(2-(1-Hydroxycyclobutyl)phenyl)carbamate s5j. The general procedure was followed by using 0.200 g of *N*-Boc aniline (1.04 mmol), 1.32 mL of *t*-butyl lithium (2.50 mmol) and 0.240 g of (2*S*,3*S*)-2,3-dipropylcyclobutan-1-one (1.50 mmol). Purification by MPLC (15:1 hexanes:EtOAc) gave the product as a white sticky solid (0.14 g, 40%): $R_f = 0.78$ (10:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 1H), 7.93 (s, 1H), 7.31 (dd, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.00 (dt, *J* = 7.5 Hz, 1.0 Hz, 1H), 2.72 – 2.64 (m, 2H), 2.25 (br s, 1H), 2.03 – 1.93 (m, 2H), 1.71 – 1.54 (m, 2H), 1.51 (s, 9H), 1.48 – 1.40 (m, 4H), 1.34 – 1.25 (m, 1H), 1.22 – 1.12 (m, 1H), 1.00 (t, *J* = 7.0 Hz, 3H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 153.1 (C), 137.6 (C), 133.6 (C), 128.3 (CH), 124.7 (CH), 122.4 (CH), 121.9 (CH), 79.9 (C), 75.9 (C), 46.2 (CH), 39.4 (CH₂), 32.6 (CH₂), 30.4 (CH), 28.4 (CH₃), 27.4 (CH₂), 23.4 (CH₂), 20.8 (CH₂), 14.8 (CH₃), 14.3 (CH₃); ATR-FTIR (thin film): 3365, 2975, 2919, 2850, 1729, 1704, 1586, 1519, 1449, 1367, 1245, 1160, 1048, 747 cm⁻¹. HRMS (EI) m/z calcd for C₂₁H₃₃NO₃: 347.24507, found 347.24605.

II. Synthesis of o-Cyclobutanol Aryl Azides

A. General Procedure

The o-cyclobutanol aryl azides were prepared following the protocol reported by Moses and co-workers.¹⁵

To a cooled solution (0 °C) of o-cyclobutanol aniline **s3** in MeCN (0.2 M), was added dropwise *t*-BuONO (4.0 equiv), Me_3SiN_3 (3.0 equiv). The resulting solution was warmed to room temperature. After 1.5 h, the reaction mixture was concentrated in vacuo. The residue was purified by MPLC (10:1 – 7:1 hexanes:EtOAc) to afford the *ortho*-cyclobutanol aryl azide.

B. Characterization Data for o-Cyclobutanol Azides

o-Cyclobutanol aryl azide 8a. The general procedure was followed by using 0.155 g of aniline s3a (0.950 mmol), 0.450 mL of *t*-BuONO (3.80 mmol), 0.37 mL Me₃SiN₃ (2.85 mmol) in 4.8 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a brown oil (0.150 g, 82%): $R_f = 0.52$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.31 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.17 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 7.12 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 3.24 (s, 1H), 2.58 – 2.52 (m, 2H), 2.40 – 2.34 (m, 2H), 2.15 – 2.08 (m, 1H), 1.70 – 1.64 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.4 (C), 136.2 (C), 128.8 (CH), 126.4 (CH), 124.7 (CH), 118.8 (CH), 76.8 (C), 35.2 (CH₂), 14.5 (CH₂); ATR-FTIR (thin film): 3397, 2946, 2125, 2087, 1486, 1444, 1293, 1131, 751 cm⁻¹. HRMS (ESI) m/z calcd for C₁₀H₁₂NO [M + H – N₂]⁺: 162.0923, found 162.0919.

o-Cyclobutanol aryl azide 8b. The general procedure was followed by using 0.152 g of aniline s3b (0.790 mmol), 0.380 mL of *t*-BuONO (3.16 mmol), 0.310 mL of Me₃SiN₃ (2.37 mmol) in 3.9 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a brown oil (0.160 g, 94%): $R_f = 0.40$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, J = 8.5 Hz, 1H), 6.91 (d, J = 1.0 Hz, 1H), 6.84 (dd, J = 8.5 Hz, 1.0 Hz, 1H), 3.81 (s, 3H), 3.16 (br s, 1H), 2.55 – 2.50 (m, 2H), 2.39 – 2.34 (m, 2H), 2.14 – 2.07 (m, 1H), 1.72 – 1.64 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8 (C), 137.6 (C), 129.6 (C), 119.8 (CH), 113.1 (CH), 113.0 (CH), 76.7 (C), 55.7 (CH₃), 35.2 (CH₂), 14.3 (CH₂); ATR-FTIR (thin film): 3513, 2941, 2836, 2108, 1579, 1485, 1312, 1237, 1038, 803 cm⁻¹. HRMS (ESI) m/z calcd for $C_{11}H_{13}N_3O_2Na$ [M + Na]⁺: 242.0899, found 242.0905.

o-Cyclobutanol aryl azide 8c. The general procedure was followed by using 0.150 g of aniline s3c (0.84 mmol), 0.40 mL of *t*-BuONO (3.16 mmol), 0.33 mL of Me₃SiN₃ (2.37 mmol) in 3.5 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a brown oil (0.122 g, 72%): $R_f = 0.55$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.14 (s, 1H), 7.12 (s, 1H), 7.07 (d, J = 8.0 Hz, 1H), 3.09 (s, 1H), 2.57 – 2.52 (m, 2H), 2.39 – 2.36 (m, 2H), 2.35 (s, 3H), 2.15 – 2.08 (m, 1H), 1.72 – 1.64 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 135.9 (C), 134.5 (C), 134.4 (C), 129.2 (CH), 127.1 (CH), 118.7 (CH), 76.8 (C), 35.2 (CH₂), 21.0 (CH₃), 14.5 (CH₂); ATR-FTIR (thin film): 3417, 2947, 2114, 1492, 1300, 1157, 1137, 910, 807 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₄NO [M + H – N₂]⁺: 176.1077, found 176.1075.

o-Cyclobutanol aryl azide 8d. The general procedure was followed by using 0.232 g of aniline s3d (1.00 mmol), 0.480 mL of *t*-BuONO (3.16 mmol), 0.400 mL of Me₃SiN₃ (2.37 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a brown oil (0.210 g, 80%): $R_f = 0.55$ (5:1 hexanes:EtOAc; ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 7.5 Hz, 2H), 7.26 (d, J = 8.0 Hz, 1H), 3.06 (s, 1H), 2.59 – 2.54 (m, 2H), 2.42 – 2.37 (m, 2H), 2.21 – 2.12 (m, 1H), 1.76 – 1.68 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 141.1 (C), 136.8 (C), 126.8 (q, $J_{CF} = 32.5$ Hz, C), 125.8 (q, $J_{CF} = 3.8$ Hz, CH), 123.9 (q, $J_{CF} = 269.9$ Hz, C), 123.6 (q, $J_{CF} = 3.9$ Hz, CH), 119.0 (CH), 76.5 (C), 35.0 (CH₂), 14.5 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ –62.3; ATR-FTIR (thin film): 3383, 2952, 2109, 1614, 1496, 1293, 1272, 1119, 1081, 903, 822 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₁NOF₃ [M + H – N₂]⁺: 230.0790, found 230.0792.

o-Cyclobutanol aryl azide 8e. The general procedure was followed by using 0.114 g of aniline s3e (0.460 mmol), 0.220 mL of *t*-BuONO (1.84 mmol), 0.180 mL of Me₃SiN₃ (1.38 mmol) in 2.31 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a brown oil (0.090 g, 70%): $R_f = 0.54$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz,

CDCl₃) δ 7.19 – 7.16 (m, 3H), 3.14 (s, 1H), 2.55 – 2.49 (m, 2H), 2.40 – 2.35 (m, 2H), 2.17 – 2.09 (m, 1H), 1.74 – 1.65 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 145.8 (C), 138.1 (C), 136.1 (C), 121.2 (CH), 120.5 (q, J_{CF} = 255.4 Hz, C), 119.8 (CH), 119.7 (CH), 76.4 (C), 35.1 (CH₂), 14.3 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ –58.5 ; ATR-FTIR (thin film): 3390, 2953, 2118, 1483, 1249, 1208, 1158, 890, 817 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₁NO₂F₃ [M + H – N₂]⁺: 246.0742, found 246.0742.

N-(2-(1-Hydroxy-3-tert-butylcyclobutyl)phenyl)aniline s3f. *o*-Cyclobutanol carbamate s3f (0.500 g, 1.34 mmol) was dissolved in 1 mL of dioxane. To the stirred solution was added dropwise 4 mL of a 4 M solution of HCl in dioxane. The reaction progress was monitored by TLC. When the starting material was consumed, the mixture was neutralized by adding a saturated solution of NaHCO₃ (until effervescence stopped). The solution was extracted 3 × 10 mL of EtOAc. The organic layer was dried over Na₂SO₄, filtered, and the filtrate was concentrated *in vacuo* to afford s3f as a yellow solid, which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 8f. The general procedure was followed by using 0.280 g of aniline s3'f (1.03 mmol), 0.490 mL of *t*-BuONO (4.12 mmol), 0.410 mL of Me₃SiN₃ (3.09 mmol) in 5.2 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a brown oil (0.243 g, 79%): $R_f = 0.52$ (3:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 8.5 Hz, 1H), 6.72 (d, J = 2.5 Hz, 1H), 6.66 (dd, J = 8.5 Hz, 2.5 Hz, 1H), 3.83 (s, 3H), 2.96 (s, 1H), 2.55 – 2.50 (m, 2H), 2.38 – 2.33 (m, 2H), 2.13 – 2.04 (m, 1H), 1.69 – 1.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.9 (C), 138.5 (C), 128.9 (C), 127.3 (CH), 109.4 (CH), 105.2 (CH), 76.4 (C), 55.5 (CH₃), 35.4 (CH₂), 14.4 (CH₂); ATR-FTIR (thin film): 3400, 2915, 2110, 2107, 1608, 1502, 1315, 1229, 1123, 830 cm⁻¹. HRMS (ESI) m/z calcd for $C_{11}H_{13}N_3O_2Na$ [M + Na]⁺: 242.0898, found 242.0904.

o-Cyclobutanol aryl azide 8g. The general procedure was followed by using 0.178 g of aniline s3g (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.00 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a brown oil (0.170 g, 80%): $R_f = 0.55$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 7.5 Hz, 1H), 6.99 (s, 1H), 6.95 – 6.93 (m, 1H), 3.06 (s, 1H), 2.39 – 2.34 (m, 5H), 2.13 – 2.05 (m, 1H), 1.70 – 1.62 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.9 (C), 137.1 (C), 133.4 (C), 126.2 (CH), 125.5 (CH), 119.4 (CH), 76.6 (C), 35.3 (CH₂), 21.1 (CH₃), 14.4 (CH₂); ATR-FTIR (thin film): 3417, 2947, 2114, 1492, 1300, 1157, 1137, 910, 807 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₄NO [M + H – N₂]⁺: 176.1074, found 176.1075.

o-Cyclobutanol aryl azide 8h. The general procedure was followed by using 0.183 g of aniline s3h (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a yellow oil (0.180 g, 85%): $R_f = 0.53$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.28 (dd, J = 8.5 Hz, 6.5 Hz, 1H), 6.88 (dd, J = 9.0 Hz, 2.0 Hz, 1H), 6.81 (dt, J = 8.5 Hz, 2.5 Hz, 1H), 3.03 (s, 1H), 2.54 - 2.48 (m, 2H), 2.38 - 2.33 (m, 2H), 2.15 - 2.07 (m, 1H), 1.70 - 1.62 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ

162.5 (d, J_{CF} = 247.6 Hz, C), 139.1 (d, J_{CF} = 9.1 Hz, C), 132.3 (d, J_{CF} = 3.3 Hz, C), 127.8 (d, J_{CF} = 9.0 Hz, CH), 111.3 (d, J_{CF} = 20.3 Hz, CH), 106.3 (d, J_{CF} = 24.1 Hz, CH), 76.4 (C), 35.3 (CH₂), 14.5 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -112.9; ATR-FTIR (thin film): 3394, 2950, 2109, 1593, 1498, 1412, 1292, 1230, 1140, 959, 842, 666 cm⁻¹. HRMS (CI) m/z calcd for C₁₀H₁₁N₃OF [M + H]⁺: 208.0884, found 208.0886.

o-Cyclobutanol aryl azide 8i. The general procedure was followed by using 0.233 g of aniline s3i (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a yellow oil (0.210 g, 80%): $R_f = 0.55$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 1H), 7.38 (d, J = 3.5 Hz, 2H), 3.2 (s, 1H), 2.58 – 2.52 (m, 2H), 2.42 – 2.36 (m, 2H), 2.19 – 2.10 (m, 1H), 1.74 – 1.65 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 139.7 (C), 138.5 (C), 131.2 (q, $J_{CF} = 33.1$ Hz, C), 127.0 (CH), 123.5 (q, $J_{CF} = 270.3$ Hz, C), 121.5 (q, $J_{CF} = 3.9$ Hz, CH), 115.6 (q, $J_{CF} = 3.9$ Hz, CH), 76. 5 (C), 35.1 (CH₂), 14.4 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -63.2; ATR-FTIR (thin film): 3490, 2924, 2107, 1417, 1328, 1274, 1123, 1086, 902, 871, 834, 656 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₁NOF₃ [M + H – N₂]⁺: 230.0791, found 230.0793.

o-Cyclobutanol aryl azide 8j. The general procedure was followed by using 0.197 g of aniline s3j (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a yellow oil (0.190 g, 85%) as a mixture of rotamers: $R_f = 0.56$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, J = 8.5 Hz, 1H), 7.1 (t, J = 8.0 Hz, 0.19H), 6.84 (d, J = 9.5 Hz, 1H), 6.84 (s, 0.11H), 2.97 (s, 1H), 2.69 – 2.65 (m, 0.39H), 2.54 – 2.48 (m, 2H), 2.47 – 2.43 (m, 0.38H), 2.38 – 2.32 (m, 2H), 2.24 (d, J = 1.5 Hz, 3H), 2.21 (d, J = 2.5 Hz, 0.56H), 2.15 – 2.08 (m, 1H), 1.88 – 1.81 (m, 0.20H), 1.71 – 1.63 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6 (d, $J_{CF} = 244.1$ Hz, C), 159.6 (d, $J_{CF} = 246.1$ Hz, C), 136.2 (d, $J_{CF} = 7.3$ Hz, C), 131.9 (d, $J_{CF} = 2.9$ Hz, C), 130.4 (d, $J_{CF} = 5.9$ Hz, CH), 129.3 (d, $J_{CF} = 5.6$ Hz, CH), 120.9 (d, $J_{CF} = 18.1$ Hz, C), 113.9 (d, $J_{CF} = 3.5$ Hz, CH), 106.0 (d, $J_{CF} = 25.8$ Hz, CH), 76.4 (C), 37.3 (d, $J_{CF} = 4.1$ Hz, CH₂), 35.4 (CH₂), 29.7 (C), 17.6 (CH₂), 14.5 (CH₂), 14.4 (d, $J_{CF} = 5.4$ Hz, CH₂), 14.1 (d, $J_{CF} = 3.6$ Hz, CH₃), only visible signals; ¹⁹F NMR (282 MHz, CDCl₃) δ -117.4, -116.7 ; ATR-FTIR (thin film): 3353, 2949, 2106, 1588, 1504, 1313, 1239, 1164, 1134, 1091, 889, 839 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₃NOF [M + H – N₂]⁺: 194.0980, found 194.0981.

o-Cyclobutanol aryl azide 8k. The general procedure was followed by using 0.195 g of aniline s3k (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a orange oil (0.180 g, 80%): $R_f = 0.53$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.10 – 7.06 (m, 1H), 6.94 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 6.84 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 3.90 (s, 3H), 3.31 (s, 1H), 2.57 – 2.51 (m, 2H), 2.41 – 2.35 (m, 2H), 2.15 – 2.07 (m, 1H), 1.71 – 1.64 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 154.5 (C), 138.1 (C), 125.3 (C), 125.2 (CH), 118.1 (CH), 111.3 (CH), 77.1 (C), 56.1 (CH₃), 35.4 (CH₂), 14.5 (CH₂); ATR-

FTIR (thin film): 3543, 2941, 2146, 2118, 2096, 1579, 1455, 1439, 1310, 1261, 1033, 734 cm⁻¹. HRMS (ESI) m/z calcd for $C_{11}H_{13}N_3O_2Na$ [M + Na]⁺: 242.0899, found 242.0905.

o-Cyclopropanol aryl azide 10a. The general procedure was followed by using 0.0400 g of aniline s3l (0.270 mmol),¹⁶ 0.130 mL of *t*-BuONO (1.08 mmol), 0.110 mL of Me₃SiN₃ (0.810 mmol) in 2.0 mL of MeCN. Purification by MPLC (5:1 hexanes:EtOAc) gave the product as a yellow oil (0.03 g, 65%): $R_f = 0.56$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.30 (m, 2H), 7.20 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.11 – 7.07 (m, 1H), 3.18 (s, 1H), 1.16 – 1.13 (m, 2H), 0.94 – 0.91 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 139.5 (C), 133.2 (C), 129.1 (CH), 128.8 (CH), 124.8 (CH), 118.3 (CH), 55.2 (C), 13.9 (CH₂); ATR-FTIR (thin film): 3391, 2926, 2853, 2360, 2127, 2093, 1491, 1445, 1293, 1225, 753 cm⁻¹. HRMS (ESI) m/z calcd for C₉H₉N₃ONa [M + Na]⁺: 198.0644, found 198.0646.

C. General Procedure for Synthesis of o-Cyclobutanol Azides from o-Cyclobutanol Carbamates

Deprotection of the *N*-Boc carbamate was accomplished following two different strategies reported by Hruby and coworkers and Harigaya and co-workers.¹⁷

Method A.^{17a} The original procedure described by Hruby and co-workers was slightly modified. The *o*-cyclobutanol carbamate was dissolved in 1 mL of dioxane. To the stirred solution was added dropwise a 4 M solution of HCl in dioxane. The reaction progress was monitored by TLC. When the starting material was consumed, the mixture was neutralized by adding a saturated solution of NaHCO₃ (until effervescence stopped). The solution was extracted 3×10 mL of EtOAc. The organic layer was dried over Na₂SO₄, filtered, and the filtrate was concentrated *in vacuo*. The resulting aniline was submitted to the next step without further characterization or purification.

Method B.^{17b} The original procedure developed by Harigaya and co-workers was slightly modified. The *o*-cyclobutanol carbamate was dissolved in a 3:1 v:v solution of MeOH and H₂O (1 mL / mmol). To the resulting solution was added K_2CO_3 (3.0 equiv), and the mixture was heated to reflux. The reaction progress was monitored using TLC. Once starting material was consumed, the reaction mixture was cooled to room temperature and was concentrated *iin vacuo*. The resulting mixture was diluted with EtOAc. The organic layer was separated, dried over Na₂SO₄, filtered and the filtrate was concentrated *in vacuo* and submitted to the next step without further characterization or purification.

N-(2-(1-Hydroxyoxetane)phenyl)aniline s3m. Method B was followed using 0.460 g of s5b (1.74 mmol), 0.721 g of K₂CO₃ (5.22 mmol) to give s3m as a yellow solid (0.167 g, 58%) which was submitted to the next step without further characterization or purification.

o-Oxetane aryl azide 10b. The general procedure was followed by using 0.167 g of aniline s3m (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (5:1 hexanes:EtOAc) gave the product as a yellow oil (0.120 g, 62%): $R_f = 0.47$ (1:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.37 (dt, J = 8.0 Hz, 1.5 Hz, 1H), 7.22 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.18 – 7.14 (m, 2H), 5.05 (d, J = 7.5 Hz, 2H), 4.81 (d, J = 7.5 Hz, 2H), 3.62 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.4 (C), 132.4 (C), 129.9 (CH), 127.0 (CH), 125.1 (CH), 118.7 (CH), 82.8 (CH₂), 75.7 (C); ATR-FTIR (thin film): 3352, 2947, 2875, 2121, 2089, 1489, 1287, 972 752 cm⁻¹. HRMS (ESI) m/z calcd for C₉H₉N₃O₂Na [M + Na]⁺: 214.0593, found 214.0595.

N-(2-(1-Hydroxy-3-tert-butylcyclobutyl)phenyl)aniline s3n. Method A was followed using 0.500 g of s5c (1.56 mmol), 4 mL of HCl (4 M in dioxane) to give s3n as a yellow solid (0.220 g, 64%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10c. The general procedure was followed by using 0.220 g of aniline s3n (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product, a yellow oil, as a mixture of atropisomers (0.160 g, 63%): $R_f = 0.57$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, J = 7.5 Hz, 1.5 Hz, 0.76H), 7.36 (dt, J = 7.5 Hz, 1.5 Hz, 0.78H), 7.31 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 7.26 – 7.21 (m, 1.88H), 7.18 – 7.15 (m, 1.75H), 7.12 (dt, J = 7.5 Hz, 1.0 Hz, 1H), 3.45 (s, 0.70H), 2.76 (s, 0.88H), 2.64 – 2.57 (m, 0.94H), 2.52 – 2.47 (m, 1.56H), 2.32 – 2.27 (m, 2H), 2.22 – 2.17 (m, 2H), 2.16 – 2.10 (m, 1.64H), 1.63 – 1.55 (m, 0.88H), 0.85 (s, 7.05H), 0.82 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 137.9 (C), 137.1 (C), 135.7 (C), 128.8 (CH), 128.7 (CH), 126.5 (CH), 126.2 (CH), 124.8 (CH), 124.7 (CH), 119.0 (CH), 118.6 (CH), 73.0 (C), 70.8 (C), 40.7 (CH), 36.8 (CH), 36.5 (CH₂), 35.9 (CH₂), 30.9 (C), 30.9 (CH), 26.6 (CH₃), 26.3 (CH₃); ATR-FTIR (thin film): 3393, 2953, 2865, 2125, 2088, 1486, 1293, 1235, 750 cm⁻¹. HRMS (ESI) m/z calcd for C₁₄H₂₀NO [M + H – N₂]⁺: 218.1540, found 218.1545.

N-(2-(1-Hydroxy-3-phenylcyclobutyl)phenyl)aniline s30. Method A was followed using 0.500 g of s5d (1.47 mmol), 4 mL of HCl (4 M in dioxane) to give s30 as a yellow solid (0.230 g, 68%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10d. The general procedure was followed by using 0.230 g of aniline s3o (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product, a yellow oil, as a mixture of atopisomers (0.220 g, 86%): $R_f = 0.30$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 8.0 Hz, 0.58H), 7.42 (t, J = 7.5 Hz, 0.60H), 7.36 – 7.27 (m, 6.77H), 7.26 – 7.19 (m, 4.84H), 7.15 (t, J = 7.5 Hz, 1H), 4.00 (quin, J = 9.0 Hz, 0.93H), 3.61 (s, 0.54H), 3.11 – 3.04 (m, 1.71H), 3.00 (s, 1H), 2.92 – 2.87 (m, 1.94H), 2.66 – 2.57 (m, 3.15H); ¹³C NMR (125 MHz, CDCl₃) δ 145.1 (C), 144.5 (C), 138.0 (C), 137.2 (C), 136.6 (C), 135.1 (C), 129.1 (CH), 129.0 (CH), 128.4 (CH), 128.4 (CH), 126.8 (CH), 126.6 (CH), 126.5 (CH), 126.3 (CH), 126.0 (CH), 124.9 (CH), 124.9 (CH), 119.1 (CH), 118.7 (CH), 74.1 (C), 71.9 (C), 43.1 (CH₂), 42.4 (CH₂), 34.4 (CH), 30.8 (CH); ATR-FTIR (thin film): 3393, 3025, 2981, 2933, 2122, 2092, 1579, 1486, 1445, 1279, 747, 697 cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₁₆NO [M + H – N₂]⁺: 238.1229, found 238.1232.

N-(2-(1-Hydroxy-2-phenylcyclobutyl)phenyl)aniline s3p. Method A was followed using 0.500 g of s5e (1.47 mmol), 4 mL of HCl (4 M in dioxane) to give s3p as a yellow solid (0.242 g, 72%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10e. The general procedure was followed by using 0.242 g of aniline s3p (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a yellow oil, (0.180 g, 71%): $R_f = 0.61$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.41 − 7.36 (m, 4H), 7.34 − 7.31 (m, 1H), 7.29 − 7.25 (m, 1H), 7.17 − 7.13 (m, 2H), 3.95 (t, *J* = 9.0 Hz, 1H), 2.80 (d, *J* = 1.0 Hz, 1H), 2.72 − 2.66 (m, 1H), 2.62 − 2.54 (m, 1H), 2.38 − 2.33 (m, 1H), 2.29 − 2.23 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 139.4 (C), 137.1 (C), 136.8 (C), 128.9 (CH), 128.7 (CH), 128.3 (CH), 126.8 (CH), 126.8 (CH), 124.8 (CH), 119.0 (CH), 79.6 (C), 49.5 (CH), 32.3 (CH₂), 22.5 (CH₂); ATR-FTIR (thin film): 3542, 2948, 2123, 2089, 1577, 1484, 1444, 1290, 1021, 901, 751, 699 cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₁₆NO [M + H − N₂]⁺: 238.1242, found 238.1232.

N-(2-(1-Hydroxy-2-arylcyclobutyl)phenyl)aniline s3q. Method A was followed using 0.500 g of s5f (1.20 mmol), 4 mL of HCl (4 M in dioxane) to give s3q as a brown solid (0.229 g, 60%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10f. The general procedure was followed by using 0.321 g of aniline s3q (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product, a yellow oil, as a mixture of atropisomers (0.240 g, 68%): $R_f = 0.56$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.67 (dd, *J* = 7.5 Hz, 1.5 Hz, 0.23H), 7.59 (dd, *J* = 8.0 Hz, 1.5 Hz, 1.19H), 7.54 – 7.50 (m, 0.53H), 7.44 – 7.41 (m, 1.23H), 7.40 – 7.35 (m, 1.27H), 7.31 (dt, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.24 – 7.18 (m, 1H), 7.15 – 7.09 (m, 3H), 6.32 – 6.29 (m, 0.22H), 4.32 – 4.28 (m, 1H), 3.18 (t, *J* = 7.5 Hz, 0.46H), 3.10 (d, *J* = 2.0 Hz, 0.92H), 2.85 – 2.79 (m, 1H), 2.56 (quin, *J* = 10.0 Hz, 1H), 2.37 – 2.29 (m, 0.49H), 2.27 – 2.19 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 139.0 (C), 137.2 (C), 136.3 (C), 133.2 (CH), 132.6 (CH), 131.0 (C), 130.8 (CH), 130.4 (CH), 130.2 (CH), 128.8 (CH), 128.2 (CH), 128.1 (CH), 127.2 (CH), 126.8 (CH), 126.6 (CH), 125.9 (CH), 124.9 (CH), 124.8 (CH), 119.2 (C), 119.1 (CH), 118.7 (CH), 82.9 (C), 80.6 (C), 49.0 (CH), 38.7 (CH₂), 30.4 (CH₂), 28.4 (CH₂), 22.9 (CH₂) only visible peaks; ATR-FTIR (thin film): 3459, 2956, 2924, 2854, 2125, 2093, 1637, 1485, 1281, 751 cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₁₅NOBr [M + H – N₂]⁺: 316.0346, found 316.0337.

N-(2-(1-Hydroxycyclobutyl)phenyl)aniline s3r. Method A was followed using 0.500 g of s5g (1.66 mmol), 4 mL of HCl (4 M in dioxane) to give s3r as a brown solid (0.233 g, 70%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10g. The general procedure was followed by using 0.297 g of aniline s3r (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 hexanes:EtOAc) gave the product as a yellow oil, (0.120 g, 38%): $R_f = 0.54$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.39 (m, 1H), 7.35 – 7.30 (m, 1H), 7.20 – 7.13 (m, 2H), 5.95 – 5.92 (m, 2H), 3.38 – 3.34 (m, 1H), 3.12 – 3.06 (m, 2H), 3.00 – 2.95 (m, 1H), 2.68 (s, 1H), 2.64 – 2.57 (m, 1H), 2.15 – 2.11 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3 (C), 137.1 (C), 134.8 (CH), 132.9 (CH), 128.7 (CH), 127.0 (CH), 124.7 (CH), 119.0 (CH), 76.0 (C), 46.6 (CH), 41.3 (CH₂), 39.8 (CH), 33.5 (CH₂); ATR-FTIR (thin film): 3459, 3050, 2923, 2123.4, 2089, 1668, 1485, 1292, 1078, 750 cm⁻¹. HRMS (ESI) m/z calcd for C₁₃H₁₄NO [M + H – N₂]⁺: 200.1082, found 200.1075.

N-(2-(1-Hydroxycyclobutyl)phenyl)aniline s3s: The compound was prepared by using the procedure developed by Bali and co-workers.¹⁸ To a solution of 0.500 g of s5'h (2.12 mmol) in 8 mL of EtOH was added 4 mL of a 10% aq soln of NaOH. The resulting mixture was heated to reflux, and the reaction progress was monitored using TLC. Once the starting material was consumed, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The resulting mixture was diluted with water and extracted with 3×10 mL of EtOAc. The combined organic phases were washed with saturated brine, dried over MgSO₄, filtered and the filtrate was concentrated *in vacuo* to give s3s as a yellow solid (0.301 g, 70%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10h. The general procedure was followed by using 0.205 g of aniline s3s (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (10:1 Hex:EtOAc) gave the product as a yellow oil, (0.150 g, 65%): $R_f = 0.52$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.32 (dt, *J* = 7.5 Hz, 1.5 Hz, 1H), 7.23 (dd, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.18 (dd, *J* = 8.0 Hz, 1.5 Hz, 1H), 7.12 (dt, *J* = 7.5 Hz, 1.0 Hz, 1H), 3.15 (s, 1H), 3.06 – 3.01 (m, 1H), 2.99 – 2.95 (m, 1H), 2.32 – 2.27 (m, 1H), 2.22 (dd, *J* = 13.0 Hz, 6.5 Hz, 1H), 1.60 – 1.41 (m, 4H), 1.38 – 1.27 (m, 1H), 1.11 (dd, *J* = 12.5 Hz, 6.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.4 (C), 133.4 (C), 128.8 (CH), 127.4 (CH), 124.8 (CH), 118.4 (CH), 77.1 (C), 53.1 (CH), 34.2 (CH₂), 32.8 (CH), 32.4 (CH₂), 28.6 (CH₂), 24.8 (CH₂); ATR-FTIR (thin film): 3400, 2944, 2853, 2123, 2085, 1484, 1446, 1277, 1022, 752 cm⁻¹. HRMS (ESI) m/z calcd for C₁₃H₁₆NO [M + H – N₂]⁺: 202.1229, found 202.1232.

N-(2-(1-Hydroxycyclobutyl)phenyl)aniline s3t. Method A was followed using 0.150 g of s5i (0.43 mmol), 2 mL of HCl (4 M in dioxane) to give s3t as a brown solid (0.063 g, 60%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10i. The general procedure was followed using 0.248 g of aniline s3t (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (20:1 Hex:EtOAc) gave the product as a yellow oil, (0.164 g, 60%): $R_f = 0.54$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.32 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 7.20 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.14 (dt, J = 7.5 Hz, 1.0 Hz, 1H), 3.07 (s, 1H), 2.82 – 2.77 (m, 1H), 2.49 – 2.44 (m, 1H), 2.01 – 1.74 (m, 6H), 1.56 – 1.46 (m, 4H), 1.39 – 1.19 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3 (C), 134.0 (C), 128.7 (CH), 127.6 (CH), 125.0 (CH), 118.1 (CH), 79.1 (C), 54.0 (CH), 35.3 (CH₂), 32.9 (CH), 31.1 (CH₂), 28.9 (CH₂), 27.7 (CH₂), 26.1 (CH₂), 25.9 (CH₂), 25.2

(CH₂); ATR-FTIR (thin film): 2918, 2849, 2124, 1623, 1485, 1464, 1445, 1277, 1156, 1051, cm⁻¹. HRMS (ESI) m/z calcd for $C_{16}H_{20}NO [M - H - N_2]^+$: 242.1536, found 242.1545.

N-(2-(1-Hydroxycyclobutyl)phenyl)aniline s3u. Method A was followed using 0.150 g of s5i (0.43 mmol), 2 mL of HCl (4 M in dioxane) to give s3u as a yellow solid (0.074 g, 70%) which was submitted to the next step without further characterization or purification.

o-Cyclobutanol aryl azide 10j. The general procedure was followed using 0.250 g of aniline s3u (1.01 mmol), 0.480 mL of *t*-BuONO (4.04 mmol), 0.400 mL of Me₃SiN₃ (3.03 mmol) in 5.0 mL of MeCN. Purification by MPLC (20:1 Hex:EtOAc) gave the product as a yellow oil, (0.182 g, 66%): $R_f = 0.55$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.31 (dt, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.19 (dd, *J* = 8.0 Hz, 1.5 Hz, 1H), 7.16 – 7.11 (m, 2H), 3.38 (br s, 1H), 2.89 – 2.80 (m, 1H), 2.56 – 2.51 (m, 1H), 2.28 – 2.18 (m, 2H), 1.47 – 1.40 (m, 1H), 1.33 – 1.19 (m, 4H), 1.14 – 1.05 (m, 2H), 0.92 (t, *J* = 7.0 Hz, 3H), 0.87 – 0.81 (m, 1H), 0.78 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 137.4 (C), 134.2 (C), 128.7 (CH), 127.6 (CH), 124.9 (CH), 118.1 (CH), 78.2 (C), 51.0 (CH), 35.2 (CH₂), 32.8 (CH₂), 32.7 (CH), 29.6 (CH₂), 21.7 (CH₂), 20.6 (CH₂), 14.4 (CH₃), 14.3 (CH₃); ATR-FTIR (thin film): cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₂₂N [M – H – N₂O]⁺: 228.1744, found 228.1752.

III. Rh₂(II)-Catalyzed Benzazepine-2-one Formation

A. General Procedure for the Screening of Reaction Conditions

To a 10 mL Schlenk tube, under a nitrogen atmosphere, was added 0.10 mmol of azide followed by the metal salt (1 - 5 mol %) in 1.0 mL of solvent. The Schlenk tube was sealed and heated for 16 h. The reaction mixture was then cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and the crude mixture was analyzed using ¹H NMR spectroscopy using CH₂Br₂ as an internal standard.

Entry	catalyst	mol %	solvent	T (°C)	9a yield, % ^a
1			PhMe	130	trace
2	Rh ₂ (O ₂ CCH ₃) ₄	5	PhMe	100	24
3	$Rh_{2}(O_{2}CC_{7}H_{15})_{4}$	5	PhMe	100	15
4	Rh ₂ (O ₂ CCF ₃) ₄	5	PhMe	100	47
5	$Rh_2(O_2CC_3F_7)_4$	5	PhMe	100	66
6	Rh ₂ (esp) ₂	5	PhMe	100	80
7	Rh ₂ (esp) ₂	5	PhMe	120	71
8	Rh ₂ (esp) ₂	1	PhMe	120	82
9	RuBr ₃ • <i>n</i> H ₂ O	1	PhMe	120	23
10	Co(TPP)	5	PhMe	120	trace
11	[lr(COD)(OMe)] ₂	5	PhMe	120	23
12	FeBr ₂	20	PhMe	120	
13	FeBr ₂	30	CH ₂ Cl ₂	40	
14	FeBr ₃	20	PhMe	120	
15	FeBr ₃	30	CH ₂ Cl ₂	40	

Table s1. Screen of catalyst, catalyst loading, solvent and reaction temperature.

^a As determined using ¹H NMR spectroscopy using CH₂Br₂ as the internal standard.

B. Optimized Procedure

To a 10 mL Schlenk tube, under a nitrogen atmosphere, was added 0.10 mmol of azide followed by 0.001 mmol of $Rh_2(esp)_2$ (1 mol %) in 1.0 mL of toluene. The Schlenk tube was sealed and heated at 120 °C for 16 h. The reaction mixture was then cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and the crude mixture was purified by MPLC (7:1 – 3:1 hexanes:EtOAc) to afford the benzazepinone product.

C. Characterization Data for Benzazepine-2-one

Benzazepine-2-one 9a.¹⁹ The optimized procedure was followed using 0.019 g of azide **8a** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded the product as a brown solid (0.0129 g, 80%). The spectral data of **9a** matched that reported by Chen and Gilman:¹⁹ ¹H NMR (500 MHz, CDCl₃) δ 7.55 (s, 1H), 7.26 – 7.22 (m, 2H), 7.14 (td, *J* = 7.5 Hz, 1.0 Hz, 1H), 6.97 (d, *J* = 7.5 Hz, 1H), 2.81 (t, *J* = 7.5 Hz, 2H), 2.36 (t, *J* = 7.5 Hz, 2H), 2.24 (quin, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0 (C), 137.7 (C), 134.4 (C), 129.9 (CH), 127.5 (CH), 125.8 (CH), 121.8 (CH), 32.7 (CH₂), 30.4 (CH₂), 28.4 (CH₂); ATR-FTIR (thin film): 3184, 3061,

2934, 1656, 1490, 1383, 1155, 787 cm⁻¹. The diastereomeric identity of the product was confirmed using X-Ray crystallography.²⁰

Benzazepine-2-one 9b.²¹ The optimized procedure was followed using 0.030 g of azide **s8b** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded product as an orange solid (0.0205 g, 80%). The spectral data of **9b** matched that reported by Crosby and co-workers:²¹ ¹H NMR (500 MHz, CDCl₃) δ 7.95 (s, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.76 – 6.74 (m, 1H), 6.52 (d, *J* = 2.0 Hz, 1H), 3.79 (s, 3H), 2.76 (t, *J* = 7.0 Hz, 2H), 2.32 (t, *J* = 7.0 Hz, 2H), 2.21 (quin, *J* = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0 (C), 159.0 (C), 138.5 (C), 130.6 (CH), 126.5 (C), 111.0 (CH), 107.8 (CH), 55.5 (CH₃), 32.8 (CH₂), 29.5 (CH₂), 28.6 (CH₂); ATR-FTIR (thin film): 3172, 2935, 1661, 1621, 1498, 1381, 1282, 1164, 1050, 890, 737 cm⁻¹.

Benzazepine-2-one 9c.²² The optimized procedure was followed using 0.029 g of azide **8c** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded the product as a white solid (0.016 g, 91%). Benzazepinone **9c** was previously reported by Huanming and co-workers:²² ¹H NMR (500 MHz, CDCl₃) δ 7.50 (br s, 1H), 7.0 (d, J = 5.5 Hz, 2H), 6.86 – 6.85 (m, 1H), 2.76 (t, J = 7.0 Hz, 2H), 2.36 – 2.33 (m, 5H), 2.21 (quin, J = 7.0 Hz, 2H) ; ¹³C NMR (125 MHz, CDCl₃) δ 175.0 (C), 136.0 (C), 135.1 (C), 134.2 (C), 130.5 (CH), 128.0 (CH), 121.7 (CH), 32.7 (CH₂), 30.3 (CH₂), 28.4 (CH₂), 20.9 (CH₃); ATR-FTIR (thin film): 3178, 3041, 2933, 1656, 1504, 1386, 1160, 825 cm⁻¹.

Benzazepine-2-one 9d.²³ The optimized procedure was followed using 0.026 g of azide **8d** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded the product as a white solid (0.0169 g, 74%). Benzazepinone **9d** was previously reported by Hoyt and co-workers:²³ ¹H NMR (500 MHz, CDCl₃) δ 8.37 (s, 1H), 7.50 (d, *J* = 7.5 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 1H), 2.86 (t, *J* = 7.0 Hz, 2H), 2.40 (t, *J* = 7.5 Hz, 2H), 2.28 (quin, *J* = 8.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1 (C), 141.1 (C), 134.7 (C), 127.6 (q, *J*_{CF} = 32.1 Hz, C), 127.1 (q, *J*_{CF} = 4.5 Hz, CH), 126.1 (q, *J*_{CF} = 269.4 Hz, C), 124.7 (q, *J*_{CF} = 3.6 Hz, CH), 121.8 (CH), 32.9 (CH₂), 30.5 (CH₂), 28.2 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ –62.6; ATR-FTIR (thin film): 3186, 2949, 1670, 1348, 1259, 1158, 1124, 1078, 932, 846 cm⁻¹.

Benzazepine-2-one 9e.²³ The optimized procedure was followed using 0.027 g of azide **8e** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded the product as a brown solid (0.0174 g, 71%). Benzazepinone **9e** was previously reported by Hoyt and co-workers:²³ ¹H NMR (500 MHz,

CDCl₃) δ 8.35 (s, 1H), 7.10 – 7.09 (m, 2H), 7.03 – 7.01 (m, 1H), 2.81 (t, *J* = 7.5 Hz, 2H), 2.37 (t, *J* = 7.5 Hz, 2H), 2.25 (quin, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1 (C), 146.4 (C), 136.5 (C), 136.2 (C), 123.0 (CH), 122.5 (CH), 120.5 (q, *J_{CF}* = 255.2 Hz, C), 120.0 (CH), 32.7 (CH₂), 30.5 (CH₂), 28.1 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ –58.4; ATR-FTIR (thin film): 3170, 3074, 2943, 1683, 1496, 1380, 1283, 1231, 1205, 1165, 894, 814, 738 cm⁻¹.

Benzazepine-2-one 9f.²⁴ The optimized procedure was followed using 0.030 g of azide **8f** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded product as a brown solid (0.0229 g, 85%). Benzazepinone **9f** was previously reported by Takashi and co-workers:²⁴ ¹H NMR (500 MHz, CDCl₃) δ 7.37 (s, 1H), 7.11 (d, *J* = 8.5 Hz, 1H), 6.69 (dd, *J* = 8.0 Hz, 2.5 Hz, 1H), 6.52 (d, *J* = 2.0 Hz, 1H), 3.79 (s, 3H), 2.74 (t, *J* = 7.5 Hz, 2H), 2.36 (t, *J* = 7.5 Hz, 2H), 2.19 (quin, *J* = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.3 (C), 157.4 (C), 135.9 (C), 130.8 (C), 123.1 (CH), 115.2 (CH), 112.2 (CH), 55.5 (CH₃), 32.5 (CH₂), 30.5 (CH₂), 28.2 (CH₂); ATR-FTIR (thin film): 3209, 2935, 1667, 1615, 1509, 1378, 1279, 1162, 1038, 858 cm⁻¹.

Benzazepine-2-one 9g.²⁵ The optimized procedure was followed using 0.020 g of azide **8g** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded product as a light orange solid (0.0136 g, 80%). Benzazepinone **9g** was previously reported by Huisgen.²⁵ R_f = 0.56 (1:1 hexanes:EtOAc); mp = 152 – 154 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (s, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 6.94 (d, *J* = 7.0 Hz, 1H), 6.80 (s, 1H), 2.76 (t, *J* = 7.5 Hz, 2H), 2.35 (t, *J* = 7.5 Hz, 2H), 2.33 (s, 3H), 2.21 (quin, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.3 (C), 137.6 (C), 137.4 (C), 131.2 (C), 129.7 (CH), 126.4 (CH), 122.4 (CH), 32.8 (CH₂), 29.9 (CH₂), 28.5 (CH₂), 21.0 (CH₃); ATR-FTIR (thin film): 3172, 3077, 2940, 1684, 1662, 1512, 1383, 1159, 799 cm⁻¹.

Benzazepine-2-one 9h.²⁶ The optimized procedure was followed using 0.021 g of azide **8h** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded the product as a brown solid (0.0136 g, 78%). Benzazepinone **9h** was previously reported by Altenbach and co-workers:²⁶ ¹H NMR (500 MHz, CDCl₃) δ 8.22 (s, 1H), 7.16 (dd, *J* = 8.0 Hz, 6.0 Hz, 1H), 6.83 (dt, *J* = 8.0 Hz, 2.5 Hz, 1H), 6.73 (dd, *J* = 9.0 Hz, 2.5 Hz, 1H), 2.27 (t, *J*_{CF} = 7.5 Hz, 2H), 2.37 (t, *J* = 7.5 Hz, 2H), 2.20 (quin, *J* = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.3 (C), 161.8 (d, *J*_{CF} = 244.5 Hz, C), 139.1 (d, *J* = 8.9 Hz, C), 130.9 (d, *J*_{CF} = 9.3 Hz, CH), 129.9 (C), 112.3 (d, *J*_{CF} = 20.2 Hz, CH), 109.1 (d, *J*_{CF} = 23.7 Hz, CH), 32.8 (CH₂), 29.7 (CH₂), 28.5 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -115.3; ATR-FTIR (thin film): 3187, 3102, 2951, 1663, 1605, 1507, 1483, 1260, 1161, 1151, 998, 834, 705 cm⁻¹.

Benzazepine-2-one 9i. The optimized procedure was followed using 0.026 g of azide **8i** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded the product as a white solid (0.0197 g, 86%): $R_f = 0.30$ (1:1 hexanes:EtOAc); mp = 146 - 148 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.48 (s,

1H), 7.39 (d, J = 8.0 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.26 (s, 1H), 2.87 (t, J = 7.0 Hz, 2H), 2.38 (t, J = 7.0 Hz, 2H), 2.27 (quin, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0 (C), 138.4 (C), 138.3 (C), 130.5 (CH), 130.1 (q, $J_{CF} = 32.8$ Hz, C), 123.7 (q, $J_{CF} = 270.3$ Hz, C), 122.4 (q, $J_{CF} = 3.8$ Hz, CH), 118.7 (q, $J_{CF} = 3.8$ Hz, CH), 32.7 (CH₂), 30.4 (CH₂), 28.2 (CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ -62.9; ATR-FTIR (thin film): 3190, 2925, 1675, 1327, 1166, 1115, 1076, 987, 828, 672 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₁NOF₃ [M + H]⁺: 230.0794, found 230.0793.

Benzazepine-2-one 9j. The optimized procedure was followed using 0.022 g of azide **8j** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded the product as a brown solid (0.0155 g, 80%), as a mixture of rotamers: $R_f = 0.48$ (1:1 hexanes:EtOAc); mp = 142 – 144 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (s, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 10.0 Hz, 1H), 2.85 (t, J = 7.0 Hz, 0.32H), 2.73 (t, J = 7.0 Hz, 2H), 2.35 (t, J = 7.0 Hz, 2H), 2.26 – 2.17 (m, 5.38H); ¹³C NMR (125 MHz, CDCl₃) δ 175.2 (C), 159.9 (d, $J_{CF} = 242.5$ Hz, C), 136.4 (d, $J_{CF} = 9.8$ Hz, C), 132.3 (d, $J_{CF} = 6.0$ Hz, CH), 129.7 (d, $J_{CF} = 2.9$ Hz, C), 129.0 (d, $J_{CF} = 5.9$ Hz, C), 121.9 (d, $J_{CF} = 16.5$ Hz, 116.9 (C), 108.9 (d, $J_{CF} = 23.4$ Hz, CH), 32.9 (CH₂), 32.8 (CH₂), 29.7 (CH₂), 29.6 (CH₂), 28.5 (CH₂), 27.5 (CH₂), 14.6 (CH₃), 14.1 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ –119.3; ATR-FTIR (thin film): 3192, 2951, 2869, 1667, 1625, 1509, 1495, 1376, 1102, 881, 759 cm⁻¹ HRMS (ESI) m/z calcd for C₁₁H₁₃NOF [M + H]⁺: 194.0983, found 194.0981.

Benzazepine-2-one 9k. The optimized procedure was followed using 0.022 g of azide **8k** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded product as a light orange solid (0.0142 g, 74%): $R_f = 0.14$ (5:1 hexanes:EtOAc); mp = 160 – 162 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.22 (s, 1H), 7.07 (t, J = 7.5 Hz, 1H), 6.80 (t, J = 8.0 Hz, 2H), 3.83 (s, 3H), 2.78 (t, J = 7.5 Hz, 2H), 2.37 (t, J = 7.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 174.3 (C), 150.1 (C), 134.8 (C), 126.8 (C), 125.5 (CH), 121.7 (CH), 109.1 (CH), 55.6 (CH₃), 33.3 (CH₂), 30.4 (CH₂), 28.5 (CH₂); ATR-FTIR (thin film): 3198, 2968, 2935, 1652, 1602, 1455, 1288, 1084, 787, 771 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₄NO₂ [M + H]⁺: 192.1019, found 192.1025.

Quinolinone 11a.²⁷ The optimized procedure was followed using 0.018 g of azide **10a** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (7:1 – 3:1 hexanes:EtOAc) afforded product as a white solid (0.0118 g, 80%). The spectral data of **11a** matched that reported by Liu and Hu:^{27 1}H NMR (500 MHz, CDCl₃) δ 7.66 (br s, 1H), 7.19 – 7.16 (m, 2H), 6.99 (t, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 8.0 Hz, 1H), 2.97 (t, *J* = 7.5 Hz, 2H), 2.64 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 172.4 (C), 137.1 (C), 128.1 (CH), 127.5 (CH), 127.4 (C), 123.3 (CH), 115.2 (CH), 30.8 (CH₂), 25.4 (CH₂); ATR-FTIR (thin film): 3197, 2975, 2914, 1682, 1595, 1492, 1439, 1386, 1282, 1246, 1033, 817, 749 cm⁻¹.

Benzazepine-2-one 11b.²⁸ The optimized procedure was followed using 0.019 g of azide **10b** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 1:1 hexanes:EtOAc) afforded product as a white solid (0.0083 g, 51%). The spectral data of **10b** matched that reported by Ashweek and co–workers:²⁸ ¹H NMR (500 MHz, CDCl₃) δ 8.21 (br s, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.14 (d, *J* = 7.5 Hz, 1H), 7.06 (t, *J* = 7.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 1H), 4.74 (s, 2H), 4.58 (s, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 173.2 (C), 135.8 (C), 129.2 (CH), 128.7 (C), 128.6 (CH), 123.8 (CH), 119.2 (CH), 73.5 (CH₂), 72.9 (CH₂); ATR-FTIR (thin film): 3192, 3058, 2992, 1657, 1592, 1495, 1447, 1402, 1133, 944, 839 cm⁻¹.

Benzazepine-2-one 11c. The optimized procedure was followed using 0.024 g of azide **10c** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a white solid (0.0143 g, 66 %): $R_f = 0.29$ (3:1 Hexane:EtOAc); mp = 178 – 180 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (br s, 1H), 7.24 – 7.19 (m, 2H), 7.10 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 6.95 (dd, J = 7.5 Hz, 1.0 Hz, 1H), 2.84 – 2.78 (m, 2H), 2.43 – 2.34 (m, 2H), 2.20 (quin, J = 7.0 Hz, 1H), 0.99 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4 (C), 137.8 (C), 134.1 (C), 130.9 (CH), 127.3 (CH), 125.3 (CH), 121.2 (CH), 51.4 (CH), 34.8 (CH₂), 34.4 (C), 32.4 (CH₂), 27.7 (CH₃); ATR-FTIR (thin film): 3056, 2962, 2360, 1663, 1586, 1491, 1264, 733 cm⁻¹. HRMS (ESI) m/z calcd for C₁₄H₂₀NO [M + H]⁺: 218.1543, found 218.1545.

Benzazepine-2-one 11d.²⁹ The optimized procedure was followed using 0.025 g of azide **10d** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a white solid (0.0237 g, quantitative). The spectral data of **11d** matched that reported by Hudson and co–workers:²⁹ ¹H NMR (500 MHz, CDCl₃) δ 8.25 (br s, 1H), 7.33 – 7.28 (m, 5H), 7.24 – 7.21 (m, 2H), 7.17 (t, *J* = 7.0 Hz, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 3.71 (quin, *J* = 7.5 Hz, 1H), 3.20 (dd, *J* = 14.0 Hz, 7.0 Hz, 1H), 2.91 (dd, *J* = 13.5 Hz, 6.5 Hz, 1H), 2.69 – 2.62 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 174.1 (C), 145.0 (C), 137.4 (C), 133.0 (C), 130.7 (CH), 128.7 (CH), 127.8 (CH), 126.9 (CH), 126.8 (CH), 125.7 (CH), 121.8 (CH), 46.7 (CH), 39.6 (CH₂), 38.8 (CH₂); ATR-FTIR (thin film): 3195, 3059, 2918, 1664, 1584, 1492, 1380, 1158, 756 cm⁻¹.

Benzazepine-2-one 11e.³⁰ The optimized procedure was followed using 0.025 g of azide **10e** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a white solid (0.0161 g, 72%). The spectral data of **11e** matched that reported by Ikeda and co–workers:^{30 1}H NMR (500 MHz, CDCl₃) δ 7.44 (br s, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.32 – 7.26 (m, 3H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.80 (d, *J* = 7.5 Hz, 1H), 4.44 – 4.39 (m, 1H), 2.63 – 2.45 (m, 4H); ¹³C NMR (125 MHz, CDCl₃)

δ 174.6 (C), 140.9 (C), 137.1 (C), 137.0 (C), 128.9 (CH), 128.8 (CH), 128.6 (CH), 127.3 (CH), 127.1 (CH), 125.8 (CH), 121.8 (CH), 45.1 (CH), 33.6 (CH₂), 32.7 (CH₂); ATR-FTIR (thin film): 3198, 3060, 2924, 1665, 1484, 1381, 759, 735 cm⁻¹.

Benzazepine-2-one 11f. The optimized procedure was followed using 0.034 g of azide **s8s** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a brown solid (0.0209 g, 66%). R_f = 0.27 (1:1 hexanes:EtOAc); mp = 160 – 162 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (dd, *J* = 8.0 Hz, 1.5 Hz, 1H), 7.47 – 7.39 (m, 3H), 7.24 – 7.16 (m, 2H), 7.04 – 6.97 (m, 2H), 6.59 (d, *J* = 7.5 Hz, 1H), 4.79 – 4.73 (m, 1H), 2.57 – 2.49 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 174.3 (C), 140.2 (C), 137.2 (C), 135.6 (C), 133.6 (CH), 129.2 (CH), 128.6 (CH), 128.0 (CH), 127.9 (C), 127.4 (CH), 126.0 (CH), 125.9 (CH), 121.8 (CH), 44.3 (CH), 32.7 (CH₂), 32.6 (CH₂); ATR-FTIR (thin film): 3197, 3060, 2924, 1667, 1486, 1470, 1379, 757, 738 cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₁₅NOBr [M + H]⁺: 316.0331, found 316.0337.

Benzazepine-2-one 11g. The optimized procedure was followed using 0.032 g of azide **10g** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a brown solid (0.0175 g, 60%): $R_f = 0.24$ (1:1 hexanes:EtOAc); mp = 158 – 160 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (br s, 1H), 7.27 – 7.22 (m, 2H), 7.13 (t, J = 7.0 Hz, 1H), 6.95 (d, J = 7.5 Hz, 1H), 5.90 – 5.89 (m, 1H), 5.78 – 5.76 (m, 1H), 3.68 – 3.58 (m, 2H), 2.74 – 2.61 (m, 3H), 2.27 – 2.23 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 174.5 (C), 137.0 (C), 136.7 (C), 132.2 (CH), 131.4 (CH), 131.0 (CH), 127.6 (CH), 125.5 (CH), 122.9 (CH), 52.1 (CH), 45.2 (CH), 39.9 (CH₂), 37.8 (CH₂); ATR-FTIR (thin film): 3197, 3050, 2920, 1666, 1583, 1489, 1433, 1391, 1169, 752, 732, 706 cm⁻¹. HRMS (ESI) m/z calcd for C₁₃H₁₄NO [M + H]⁺: 200.1072, found 200.1075.

Benzazepine-2-one 11h. The optimized procedure was followed using 0.023 g of azide **10h** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a brown solid (0.0147 g, 73%): $R_f = 0.12$ (3:1 hexanes:EtOAc); mp = 164 – 166 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (br s, 1H), 7.24 – 7.20 (m, 2H), 7.12 (dt, J = 7.5 Hz, 1.0 Hz, 1H), 6.96 (dd, J = 7.5 Hz, 1.0 Hz, 1H), 3.29 (q, J = 7.5 Hz, 1H), 2.91 – 2.83 (m, 1H), 2.52 (dd, J = 12.5 Hz, 7.5 Hz, 1H), 2.14 (dd, J = 12.5 Hz, 7.5 Hz, 1H), 2.05 – 1.96 (m, 2H), 1.95 – 1.85 (m, 2H), 1.67 – 1.57 (m, 1H), 1.57 – 1.49 (m, 1H) ; ¹³C NMR (125 MHz, CDCl₃) δ 175.2 (C), 137.1 (C), 136.0 (C), 129.6 (CH), 127.2 (CH), 125.4 (CH), 122.5 (CH), 46.3 (CH), 44.5 (CH), 38.4 (CH₂), 31.4 (CH₂), 31.3 (CH₂), 25.0 (CH₂); ATR-FTIR (thin film): cm⁻¹. HRMS (ESI) m/z calcd for C₁₃H₁₆NO [M + H]⁺: 202.1229, found 200.1232.

Benzazepine-2-one 11i. The optimized procedure was followed using 0.024 g of azide **10i** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a white solid (0.0205 g, 95%): $R_f = 0.23$ (1:1 hexanes:EtOAc); mp = 173 – 175 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (br s, 1H), 7.30 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.24 – 7.17 (m, 2H), 6.98 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 3.10 – 3.05 (m, 1H), 2.89 – 2.82 (m, 1H), 2.33 – 2.29 (m, 1H), 2.19 – 2.11 (m, 1H), 1.91 (t, J = 12.0 Hz, 1H), 1.87 – 1.81 (m, 1H), 1.75 – 1.58 (m, 6H), 1.56 – 1.46 (m, 3H), 1.14 – 1.09 (m, 1H) ; ¹³C NMR (125 MHz, CDCl₃) δ 174.9 (C), 137.7 (C), 137.1 (C), 127.5 (CH), 126.9 (CH), 125.5 (CH), 121.7 (CH), 42.8 (CH), 42.3 (CH₂), 41.0 (CH), 29.7 (CH₂), 28.4 (CH₂), 28.3 (CH₂), 26.7 (CH₂), 26.4 (CH₂), 25.3 (CH₂); ATR-FTIR (thin film): 3191, 2918, 2853, 2359, 1667, 1582, 1481, 1443, 1373, 757, 730 cm⁻¹. HRMS (ESI) m/z calcd for C₁₆H₂₂NO [M + H]⁺: 244.1697, found 244.1701.

Benzazepine-2-one 11j. The optimized procedure was followed using 0.027 g of azide **10i** (0.10 mmol) and 0.0080 g of Rh₂(esp)₂ (1 mol %) in 1.0 mL of toluene. Purification by MPLC (5:1 – 3:1 hexanes:EtOAc) afforded product as a brown solid (0.0160 g, 65%): $R_f = 0.27$ (2:1 hexanes:EtOAc); mp = 170 – 172 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (br s, 1H), 7.24 – 7.16 (m, 3H), 7.01 – 6.99 (m, 1H), 3.09 (q, J = 6.5 Hz, 1H), 2.54 – 2.42 (m, 2H), 1.83 – 1.64 (m, 3H), 1.48 – 1.41 (m, 1H), 1.33 – 1.21 (m, 3H), 1.13 – 1.04 (m, 1H), 0.93 (t, J = 7.5 Hz, 3H), 0.90 – 0.80 (m, 4H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5 (C), 137.8 (C), 135.1 (C), 127.5 (CH), 126.8 (CH), 125.3 (CH), 121.8 (CH), 42.7 (CH), 41.8 (CH), 39.5 (CH₂), 31.3 (CH₂), 30.8 (CH₂), 20.8 (CH₂), 19.5 (CH₂), 14.4 (CH₃), 14.1 (CH₃); ATR-FTIR (thin film): 3196, 2955, 2929, 2870, 1665, 1378, 756 cm⁻¹. HRMS (EI) m/z calcd for C₁₆H₂₃NO: 245.17819, found 245.17797.

The diastereomeric identity of the product was confirmed using X-Ray crystallography.³¹

IV. Mechanistic Experiments

A. Synthesis of Mechanism Probes.

The ortho-cyclopentanol aryl azide was constructed following the sequence below (Scheme s2).

Scheme s2. Synthesis of ortho-cyclopentanol aryl azide.

Spiro[4H-3,1-benzoxazine-4,1'-cyclopentan]-2(1H)-one s6.³² To a cooled (0 °C) 3 M solution of *N*-Boc aniline (0.800 g, 4.14 mmol) in 1.4 mL of dry Et₂O under an inert atmosphere of argon was dropwise added 5.45 mL of a 1.9 M solution of *t*-butyl lithium in pentane using a syringe pump. After 3 h, a solution of the 0.550 mL of cyclopentanone (6.21 mmol) in 2.0 mL dry Et₂O was added dropwise. The resulting mixture was allowed to warm to rt. The reactives were quenched through the addition of a saturated aq soln of NH₄Cl. The resulting mixture was diluted with EtOAc. The two layers were separated, and the aqueous layer was extracted 3 additional times with EtOAc (3 × 5 mL). The combined organic extracts were washed with brine, dried over MgSO₄ and the filtrate concentrated under reduced pressure. The resulting residue was purified by MPLC (2:1 hexanes:EtOAc) to afford the product as a white solid (0.33 g, 40%). The spectral data of **s6** matched that reported by Puwen and Jeffrey:²⁶ ¹H NMR (500 MHz, CDCl₃) δ 9.39 (br s, 1H), 7.22 – 7.19 (m, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 2.37 – 2.31 (m, 2H), 2.11 – 1.99 (m, 4H), 1.88 – 1.82 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 153.4 (C), 134.8 (C), 128.8 (CH), 124.6 (C), 123.3 (CH), 122.9 (CH), 114.6 (CH), 93.2 (C), 39.7 (CH₂), 23.7 (CH₂); ATR-FTIR (thin film): 3096, 2927, 1702, 1596, 1493, 1372, 1262, 1047, 762 cm⁻¹.

1-(2-Aminophenyl) cyclopentanol s7. To a solution of 0.330 g of **s6** (1.63 mmol) in 6.0 mL of EtOH was added 3.0 mL of a 10% aq soln of NaOH. The resulting mixture was heated to reflux, and the reaction progress was monitored using TLC. Once the starting material was consumed, the reaction mixture was cooled to room temperature and concentrated *in vacuo*. The resulting mixture was diluted with water and extracted with 3×10 mL of EtOAc. The combined organic phases were washed with saturated brine, dried over MgSO₄, filtered and the filtrate was concentrated *in vacuo* to give **s7** as a yellow solid (0.230 g, 80%) which was submitted to the next step without further characterization or purification.

1-(2-Azidophenyl) cyclopentanol 18. To a cooled solution (0 °C) of 0.092 g of 1-(*o*-aminophenyl) cyclopentanol **s7** (0.52 mmol)) in 2.6 mL of MeCN, was added dropwise 0.250 mL of *t*-BuONO (2.08 mmol) and 0.210 mL of Me₃SiN₃ (1.56 mmol). The resulting solution was warmed to room temperature. After 1.5 h, the reaction mixture was concentrated in vacuo. The residue was purified by MPLC (10:1 hexanes:EtOAc) to afford the product as a yellow oil (0.085 g, 80%): $R_f = 0.70$ (3:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.46 (dd, J = 8.0 Hz, 1.5 Hz, 1H), 7.31 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 7.19 (dd, J = 8.0 Hz, 1.0 Hz, 1H), 7.11 (dt, J = 7.5 Hz, 1.5 Hz, 1H), 2.99 (s, 1H), 2.11 – 2.04 (m, 4H), 2.01 – 1.92 (m, 2H), 1.82 – 1.74 (m, 2H) ; ¹³C NMR (125 MHz, CDCl₃) δ 137.2 (C), 137.1 (C), 128.4 (CH), 126.6 (CH), 124.8 (CH), 118.9 (CH), 82.6 (C), 39.6 (CH₂), 23.5 (CH₂); ATR-FTIR (thin film): 3423, 2951, 2871, 2120, 2084, 1576, 1484, 1443, 1284, 1000, 750 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₃N₃ONa [M + Na]⁺: 226.0957, found 226.0959.

1-Azido-2-(1-methoxycyclobutyl)benzene 21a. A solution of azide alcohol **8a** (0.100 g, 0.53 mmol) in THF (2 mL) was added to a cold (- 50 °C) stirred suspension of 60% NaH (0.030 g, 0.78 mmol) in THF (3 mL). After stirring for 10 min, methyl iodide (0.050 mL, 0.78 mmol) was added. The mixture was allowed to warm to room temperature overnight and

the reactives were quenched through the addition of water. The resulting mixture was extracted with dichloromethane, dried over anhydrous magnesium sulfate, and the filtrate was concentrated *in vacuo*. The resulting residue was purified by MPLC (15:1 hexanes:EtOAc) to provide the compound as a yellow oil (0.054 g, 50%): $R_f = 0.66$ (5:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (t, *J* = 7.5 Hz, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 7.12 (t, *J* = 7.5 Hz, 1H), 2.93 (s, 3H), 2.54 – 2.42 (m, 4H), 2.10 – 2.01 (m, 1H), 1.72 – 1.64 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.6 (C), 132.7 (C), 129.1 (CH), 129.0 (CH), 123.9 (CH), 119.2 (CH), 81.8 (C), 50.6 (CH₃), 32.4 (CH₂), 14.9 (CH₂); ATR-FTIR (thin film): 2983, 2940, 2819, 2121, 2085, 1485, 1443, 1295, 1130, 752 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₃N₃ONa [M + Na]⁺: 226.0956, found 226.0958.

(1-(2-Azidophenyl)cyclobutoxy)trimethylsilane 21b. To a cooled solution (0 °C) of 0.162 g of aryl azide 8a (0.86 mmol) in 8 mL of CH₂Cl₂ under an Ar atmosphere was added 1.00 mL of 2,6-lutidine (8.60 mmol) followed by the dropwise addition of 0.780 mL of Me₃SiOTf (4.30 mmol). After 3 h, the reaction mixture was passed through a short silica gel column using Et₂O as the eluent, and the filtrate was concentrated *in vacuo*. The resulting residue was purified by MPLC (20:1 hexanes:EtOAc) to give the product as a yellow oil (0.170 g, 75%): $R_f = 0.47$ (10:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 2.67 - 2.62 (m, 2H), 2.46 - 2.40 (m, 2H), 1.95 - 1.87 (m, 1H), 1.53 - 1.43 (m, 1H), 0.12 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 139.2 (C), 135.3 (C), 128.9 (CH), 127.2 (CH), 124.1 (CH), 119.6 (CH), 77.6 (C), 37.3 (CH₂), 14.0 (CH₂), 1.3 (CH₃); ATR-FTIR (thin film): 2953, 2123, 2090, 1487, 1444, 1294, 1249, 1135, 987, 839 cm⁻¹. HRMS (ESI) m/z calcd for C₁₃H₁₉N₃OSiNa [M + Na]⁺: 284.1195, found 284.1196.

B. Mechanistic experiments

Tetrahydrocyclopenta indol-ol 20. To a 10 mL Schlenk tube, under a nitrogen atmosphere, was added 0.020 g of azide **18** (0.10 mmol) followed by 0.080 g of Rh₂(esp)₂ (0.001 mmol) in 1.0 mL of toluene. The Schlenk tube was sealed and heated at 120 °C for 16 h. The reaction mixture was then cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and the crude mixture was purified by MPLC (5:1 – 3:1 hexanes:EtOAc) to afford the product as a brown liquid (0.009 g, 51%): $R_f = 0.18$ (3:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.26 (m, 1H), 7.13 – 7.10 (m, 1H), 6.76 (t, *J* = 7.0 Hz, 1H), 6.60 (d, *J* = 7.5 Hz, 1H), 4.01 – 3.99 (m, 1H), 3.91 (br s, 1H), 2.15 – 2.04 (m, 4H), 1.81 – 1.76 (m, 1H), 1.69 – 1.64 (m, 1H), 1.59 – 1.48 (m, 1H) ; ¹³C NMR (125 MHz, CDCl₃) δ 150.9 (C), 132.7 (C), 129.6 (CH), 123.9 (CH), 118.8 (CH), 109.6 (CH), 90.7 (C), 71.2 (CH), 41.3 (CH₂), 35.6 (CH₂), 24.7 (CH₂); ATR-FTIR (thin film): 3243, 2946, 2923, 2854, 1713, 1606, 1464, 1314, 1295, 1067, 1056, 756 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₄NO [M + H]⁺: 176.1074, found 176.1075.

Methoxy-tetrahydrocyclobuta indole 22a. To a 10 mL Schlenk tube, under a nitrogen atmosphere, was added 0.020 g of azide **21a** (0.10 mmol) followed by 0.080 g of Rh₂(esp)₂ (0.001 mmol) in 1.0 mL of toluene. The Schlenk tube was sealed and heated at 120 °C for 16 h. The reaction mixture was then cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and the crude mixture was purified by MPLC (5:1 – 3:1 hexanes:EtOAc) to afford the product as a brown liquid (0.009 g, 52%): $R_f = 0.41$ (5:1 hexanes:EtOAc) ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.29 (m, 1H), 7.19 (dt, *J* = 7.5 Hz, 1.0 Hz, 1H), 6.88 – 6.85 (dt, *J* = 7.5 Hz, 1H), 6.76 – 6.74 (m, 1H), 4.20 (t, *J* = 6.5 Hz, 1H), 4.03 (br s, 1H), 3.05 (s, 3H), 2.48 – 2.35 (m, 2H), 2.24 – 2.17 (m, 1H), 1.47 – 1.39 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 152.2 (C), 130.3 (C), 129.7 (CH), 125.1 (CH), 119.7 (CH), 111.9 (CH), 86.3 (C), 59.2 (CH₃), 51.2 (CH), 31.9 (CH₂), 22.5 (CH₂); ATR-FTIR (thin film): 3359, 2922, 2852, 1607, 1464, 1310, 1172, 746 cm⁻¹. HRMS (ESI) m/z calcd for C₁₁H₁₄NO [M + H]⁺: 176.1075, found 176.1075.

Trimethylsilyloxytetrahydrocyclobutaindole 22b. To a 10 mL Schlenk tube, under a nitrogen atmosphere, was added 0.026 g of azide **21b** (0.10 mmol) followed by 0.080 g of Rh₂(esp)₂ (0.001 mmol) in 1.0 mL of toluene. The Schlenk tube was sealed and heated at 120 °C for 16 h. The reaction mixture was then cooled to room temperature and filtered through a pad of silica gel. The filtrate was concentrated *in vacuo*, and the crude mixture was purified by MPLC using neutral alumina (15:1 hexanes:EtOAc) to afford the product as a brown liquid (0.012 g, 51%): $R_f = 0.84$ (10:1 hexanes:EtOAc); ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 7.5 Hz, 1H), 7.16 (t, *J* = 8.0 Hz, 1H), 6.82 (t, *J* = 7.0 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 4.09 (dd, *J* = 8.0 Hz, 1.5 Hz, 1H), 4.04 (br s, 1H), 2.45 (dd, *J* = 10.0 Hz, 7.0 Hz, 2H), 2.17 – 2.11 (m, 1H), 1.38 – 1.30 (m, 1H), – 0.04 (s, 9H) ; ¹³C NMR (125 MHz, CDCl₃) δ 151.0 (C), 134.4 (C), 129.4 (CH), 125.4 (CH), 119.5 (CH), 112.0 (CH), 82.4 (C), 63.7 (CH), 35.1 (CH₂), 22.2 (CH₂), 1.26 (CH₃); ATR-FTIR (thin film): 3368, 2953, 2360, 2124, 1608, 1478, 1465, 1250, 1168, 1128, 841 cm⁻¹. HRMS (EI) m/z calcd for C₁₃H₂₀NOSi [M + H]⁺: 234.1314, found 234.1314.

V. References

- 1. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.
- 2. Nanjo, T.; Yamamoto, S.; Tsukano, C.; Takemoto, Y. Org. Lett. 2013, 15, 3754.
- 3. Sarvari, H. M.; Shargi, H. J. Org. Chem. 2006, 71, 6652.
- 4. Ghalib, M.; Niaz, B.; Jones, G. P.; Heinicke, W. J. Heteroatom. Chem. 2013, 24, 452.
- 5. Curtin, L. M.; Michaelides, R. M.; Heyman, H. R.; Frey, R. R. Abbott Laboratories. US WO 2010144468, December A1 16, 2010.
- 6. Deprés, J.-P.; Navarro, B.; Greene, A. E. Tetrahedron 1989, 45, 2989.
- 7. Montaigne, R.; Ghosez, L. Angew. Chem. Int. Ed. Engl. 1983, 7, 221.
- 8. Snider, B. B.; Spindell, D. K. J. Org. Chem. 1980, 45, 5017.
- 9. Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Org. Lett. 2010, 12, 1552.
- 10. Fensome, A.; Harrison, D. D.; Winneker, R. C.; Zhang, P.; Kern, J. C.; Terefenko, E. A. Wyeth, John, and Brother Ltd. US 2004000230 A1, December 31, 2003.
- 11. Zhu, F. F.; Shen, Y. Y.; Wan, X.; Feng, Y. Y.; Xu, H. J. Tetrahedron 2012, 68, 4145.
- 12. Bogdanowicz, M. J.; Trost, B. M. J. Am. Chem. Soc. 1973, 95, 5321.

- 13. Dabrowski, A. J.; Moebius, D. C.; Wommack, J. A.; Kornahrens, A. F.; Kingsbury, S. J. Org. Lett. 2010, 12, 3598.
- 14. Lee-Ruff, E.; Wells, D. Nucleosides, Nucleotides Nucleic Acids. 2008, 27, 484.
- 15. (a) Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809. (b) Zhang, F.; Moses, J. E. Org. Lett. 2009, 11, 1587.
- 16. Trunk, M.; Egan, M. Boehringer Ingelheim International G.m.b.H. 2008 WO 2008023001 A1 February 28, 2008.
- 17. (a) Han, G.; Tamaki, M.; Hruby, V. J. J. Peptide Res., 2001, 58, 338. (b) Chakrabarty, M.; Kundu, T.; Harigaya. Y. Synth. Commun. 2006, 36, 2069.
- 18. Dhillon, K. S.; Balakumar, C.; Bali. A. Med. Chem. Res. 2012, 21, 3053.
- 19. Chen, W.Y.; Gilman, N. W. J. Heterocyclic Chem. 1983, 20, 663.
- 20. CCDC number 1525478
- 21. Crosby, I. T.; Shin, J. K.; Capuano, B. Aust. J. Chem. 2010, 63, 211.
- 22. Huanming, C.; Bo, L.; Zhongqiang, Z.; Wenjie, C.; Wanmei, C.; Qingsong, L.; Jianghui. W.; Peng, Z.; Zhaojian, J.; Guiping, Z.; Chunhua, G.; Hongju, G.; Gaolei, Z. Shanghai Simcere Pharmaceutical R&D Co., Ltd. Peop. Rep. China WO 2014048165 A1, April 3, 2014.
- 23. Park, M.; London, C.; Hoyt, B. S.; Tetrahedron Lett. 2009, 50, 1911.
- 24. Kiyoshi, T.; Seiichiro, T.; Yoshiteru, E.; Takashi, T. Fujisawa Pharmaceutical Co., Ltd. Japan WO 9915524 A1, April 1, 1999.
- 25. Huisgen, R. Justus Liebigs Ann. Chem. 1951, 574, 171.
- Altenbach, R. J.; Khilevich, A.; Kolasa, T.; Rohde, J. J.; Bhatia, P. A.; Patel, M. V.; Searle, X. B.; Yang, F.; Bunnelle, W. H.; Tietje, K.; Bayburt, E. K.; Carroll, W. A.; Meyer, M. D.; Henry, R.; Buckner, S. A.; Kuk, J.; Daza, A. V.; Milicic, I. V.; Cain, J. C.; Kang, C. H.; Ireland, L. M.; Carr, T. L.; Miller, T. R.; Hancock, A. A.; Nakane, M.; Esbenshade, T. A.; Brune, M. E.; O'Neill, A. B.; Gauvin, D. M.; Katwala, S. P.; Holladay, M. W.; Brioni, J. D.; Sullivan, J. P. J. Med. Chem. 2004, 47, 3220.
- 27. Liu, B.; Hu, L. Bioorg. Med. Chem. 2003, 11, 3889.
- 28. Ashweek, N.; Chen, M.; Coon, T. R.; Ewing, T.; Jiang, W.; Moree, W.; Rowbottom, M.; Wade, W.; Zhao L.; Zhu, Y. F.; Yu, J.; Beaton, G. Neurocrine Biosciences, Inc. WO 2008124614 A1, October 16, 2008.
- 29. Hudson, K.; Laing, N.; Lewis, P. AstraZeneca AB, US WO 2007104933 A1, September 20, 2007.
- 30. Sato, T.; Ishida, S.; Ishibashi, H.; Ikeda, M. J. Chem. Soc., Perkin Trans. 1, 1991, 353.
- 31. CCDC 1525486.
- 32. Puwen, Z.; Jeffrey, K. Wyeth, US WO 20050085470 A1, April 21, 2005.

V. Spectral Data

A.	Spectral Data for Formamides s1	<i>s</i> -36
В.	Spectral Data for <i>ortho</i> -Cyclobutanol Anilines s3	<i>s</i> -52
C.	Spectral Data for <i>ortho</i> -Cyclobutanol Carbamates s5	<i>s</i> -76
D.	Spectral Data for <i>ortho</i> -Cyclobutanol Aryl Azides 8 and 10	<i>s</i> -96
E.	Spectral Data for Benzazepine-2-ones 9 and 11	<i>s</i> -138
F.	Spectral Data for Mechanism Experiments	<i>s</i> -180

while-bases was an investigation of the product of

,109.239

-106.430

-109.480

106.403

 $^{\rm L}106.087$

-106.307

 $\begin{pmatrix} 159.250 \\ 158.802 \\ 135.336 \\ 135.285 \\ 133.888 \\ 133.840 \\ 133.840 \\ 133.381 \\ 133.381 \\ 122.524 \\ 122.524 \end{pmatrix}$

r161.195

.295

161.

f1 (ppm) -1

I		· I	' '		· · ·		·	'	·	'	' 1		'		'	'	' 1	' 1	'	'	1 1	- I I		-
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-′
											T	i (ppm	I)											

0048090600000	< 4 8 9 0 C - C 4 C 0 - 4 - S 4 S S 0 C - C 4 C 0 - 4 - S 4 S S 0 C - C 4 C 0 - 4 - S 4 S S 0 C - C 4 S S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4400000000444	0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\mathcal{N} \mathcal{N} \mathcal{N} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{U}
$\infty \infty \infty \infty \infty \infty 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	$\circ \circ \circ \circ \circ \circ \land \land$	
	000000mmm000000000	

00000000000000000000000000000000000	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
-0.087779334	10007400-0000000000000000000000000000000
$\bigcirc \bigcirc $	

00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000
-44000044000	1 0 0 0 0 v v 4 4 m 0 0 - 0	00400110000000000000000000000000000000
4	, <i>o</i> o o o n n n n n n n n n n n n	<u> </u>
000000000000000000000000000000000000000		

	122.5 122.6 122.5 122.5 119.4 119.4	118.63 118.63 115.86 115.86	 -13.562	S-57
F_3C HO HO NH_2 e3d				
500				

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

$w > 0 > 4 < 0 \\ w > 0 > 4 < 0 \\ w > 0 > 0 > 0 < 4 \\ w > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 > 0 >$	4 0 1 4 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	- 4 - 1 ∞	0000-00000000000000000000000000000000
000000000000000000000000000000000000	<u> </u>	+ 4 4 の 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} $
\circ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$0, \alpha, \alpha,$	\mathcal{O}
00000000000000000			

s3e

Me s3g				-145.466	-138.601	125.627	15C./11~		-77.220			35 177	771.00	-21.072	-13.687	S-61	
 ••••••••••••••••••••••••••••••••••••••	- I I I	v.	 				. I .	······	 	•••••••••••••••••••••••••••••••••••••••	~~~~	 		, I			1

× 9 - 6 × 0 × 6 + 9 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	0 ∞ 4 − 0 4 Γ 4 ∞ 0 0 Γ 0 4 ∞ 0 V	000000000000000000000000000000000000000
(1 0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	$A \vdash O \cup O \land O \land$	$> \bigcirc \bigcirc$
-1 -1 -1 -1 -1 -1 -1 -1	, <i>u</i> , <i>o</i> , <i>o</i> , <i>v</i> , <i>v</i> , <i>v</i> , <i>v</i> , <i>v</i> , <i>v</i> , <i>n</i>	
000000000000000000000000000000000000000		

s3h

\mathbf{c}		\mathbf{O}	4	9	6	4	6	\sim	$\mathbf{\omega}$	4	9		5	6	0	9	0		5		•	9	5	6	S	9	\mathbf{c}	$r \cdot c$	1 m	<u> </u>	t 🗙	っす	5	9	9	4	∞	\sim	\sim	9	S	0	<u>о</u> с	って	1
	S	9	4	6	\mathcal{O}	\mathcal{O}	2	\sim	- 	\circ	6	∞	9	S	5	4	4	∞	\sim	2		\circ	\sim	—	_	0	0	6	50	∞ o	0 Г	- [-	. 9	S	4	S	\mathbf{c}	\mathbf{c}	\sim		\circ	0	$\infty $	$\rho \checkmark$	2
\sim	\sim	6	6	\mathbf{c}	9	9	9	9	9	9	S	S	\mathbf{c}	\mathcal{C}	\mathbf{c}	\mathcal{O}	\sim	\mathcal{C}	\mathbf{c}	\mathcal{O}	∞	3	\circ	0	0	\mathbf{O}	\mathbf{O}	6	50	ס ע	סע	~ 0	6	6	6	9	9	9	9	9	9	9	S C	へく	2
~	~	S.	v.	<u> </u>	i	i	i	-	i	~i	~i		ંતાં		ai		6		-	6			i	~i	i	ai	ai				<u> </u>	:													_
12	12	~	\sim		- (1	<u> </u>	- (1			- 12		<u> </u>	- 12	- (1		- 1	<u> </u>	<u> </u>	<u> </u>					<u> </u>	<u> </u>	C Y	C Y							5	<u> </u>	<u> </u>	5	5	5	<u> </u>	<u> </u>	5		<u> </u>	Γ.
													11	11																			1.11												

s3i

V 0 8 4 8 6 4 8 6 4 8 6 4 8 6 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 7 8	, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	+++++++++++++++++++++++++++++++++++	50-00000000000
$P \otimes N \otimes Q \otimes W \otimes W \otimes H \otimes P \otimes V \otimes W \otimes H \otimes W \otimes W$	$0,0,0,-0,0,\infty,\infty,4,0,0,4,0,-0,0,0,0,0,0,0,0,0,0,0,0,0,0,$	$\mathcal{O} \cap \mathcal{O} \circ \mathcal{O} \otimes \mathcal{O} \circ \circ \mathcal{O} \circ \circ O$	D N M A
$0 0 \infty \infty \infty 0 0 0 - \infty 0 0 0 0 0 0 0 0 0 0 $	- 0 0 0 0 v v v 4 4 4 m m m m m	$\mathcal{A} = \mathcal{A} = \mathcal{O} = $	$\infty \infty \infty \infty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$
0000000400000			

$-\infty000-00000000000000000000000000000000$	000000000000000000000000000000000000	0 6 5 0 7 4 0 7 8 5 7 6 6 7	9696976-80890
$\bigcirc \bigcirc \bigcirc \\ \bigcirc \\$	0 0 0 0 0 0 0 0 0 0 4 4	+ 4 の ∞ レ レ レ ⊙ 心 心 ∿ 4 4 ω	$\omega \circ \circ \circ \circ \circ \lor 4 4 \omega \circ \circ \circ \lor \circ \circ \lor \circ \circ$
0 x x x L L L L V x x x 0		> > ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\circ @ \circ \circ$
	n n m		

P = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	- O 4 O v O v ー ー 4 4 O O 4	$\cdot \otimes -1 \otimes 0 \otimes $	> -
9941011877960	x x て て v 4 4 4 - 0 0 x し c	· 9 9 9 9 4 4 7 9 9 4 6	$\mathcal{N} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} M$
000 0044440	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\circ \circ $	0 W W M M M M M M M M M M M M M M M M M
		:	

S-71

|--|

1	· 1									. 1							. 1							· ·
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f	1 (ppm)											

-0040040040000000000000000000000000000	000000000000000000000000000000000000000	0 8 -	$\omega \otimes \omega \otimes \omega \otimes \omega + - \phi \otimes \omega$	3377777777777777777777777777777777777
Γ 0 0 0 4 0 0 0 0 0	$\infty 4 0 - \infty 0$	0 0 0 0 0 0 0 0 0 0	$4 \omega \omega \omega \omega \omega 0 0 \infty \nu \nu$	$\sim 0 0 0 - 0 0 0 0$
$\circ \circ \neg$	0 - 1 - 1 - 4 - 4 - 4 - 6	4 4 4 4 <i>4 w w w w w</i>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$1 \cup 1 \cup 1 \cup 2 \cup $
	and the second se			

s8

000000000000000000000000000000000000000	4 ∞ 4 0 0 ∞ 0 − 0 Γ 0 ∞ 0 0	0004000000000000000000000000000000000	404000400840
$0 \otimes 0 \\ 0 \\$	て る る ろ み 4 4 3 2 2 1 1 0	000000000000000000000000000000000000	$0 \otimes 0 4 4 0 - 0 4 0 - 0 9 0$
0000044444000	くうううううう ちゅうゆう ちゅう	$\mathbf{t} \neq \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u}$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
m m q q q q q q q q q q q q q q q q q q			

\sim
\circ
i
C
<u></u>

-61.723

				1		
marayarananananananananananananananananan	Mundamilaniani	MMMMMMMM	uniter and a second statements	AUNUALINA A VARM	niye uwan Aliya	n an

1	'	· I	' 1	· I	'	' 1	'	'	'	' '	' '	' '	' ' '	'	'	'	'	'	' '	'	'	1	· I	· ·
30	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f	1 (ppm)											

$m 0 4 m 0 n 0 \infty 0 m 0 1 - 1$	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0
0000004000000	× て	4 4 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0
$\infty \otimes \alpha \vee \neg \neg \vee \alpha \vee \alpha \otimes \alpha \vee \alpha$	う ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	(m,m,m,m,m,m,0,0,0,0,0,0,0,0,0,0,0,0,0,0

s5c

$4 \omega 4 0 \infty \delta - \delta \infty 4 - \delta \infty$	$4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 - 04 + 0000000	0, 4, 0, 0, 0, 0, 4, 0, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
$\circ \circ $	$\circ \circ \circ \circ \leftarrow \circ \circ$	× × × × × × × × × × × × × × × × × × ×
· · · · · · · · · · · · · · · · · · ·		

s5i

0 1 4 7 0 7 7 4 7 0 7 7 4 7 0 7 7 4 7 0 7 7 4 7 0 7 7 7 7	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 4 m m ∞ 0 L m 0 9 m − 0 − L 0
$4 \omega 0 \psi / \rho \delta \delta 4 4 0 \delta \delta$	$ \begin{tabular}{l} \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	$\dot{\omega} \dot{\omega} \dot{\omega} \dot{d} \dot{-} \dot{O} = \dot{O} \otimes O \vdash \dot{-} \dot{O} \otimes \dot{C} \overset{*}{=} \dot{O} \overset{*}{=} \dot{O} \otimes \dot{C} \overset{*}{=} \dot{O} \otimes \dot{C} \overset{*}{=} \dot{O} \overset{*}{=} $
0 0 m m m N N N N N N N N O O O O O		4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0
	11111111111222222260	

8a

	∠137.372 ~136.202 ~128.747 ~128.747 ~124.717 ~118.790	-76.728	-35.218	
HO N_3 8a				
0 220 210 200 190 180 17	0 160 150 140 130 120 110 100	90 80 70 60	50 40 30	20 10 0 -1

f1 (ppm)

-0.00000000000000000000000000000000000	4 7 4 9 0 1 7 4 8 7 8 4 9 0 7 1 8 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 3 7 3 2 0 2 8 0 2 6 6 7 3 7 3 7 0 5 1
$0 \otimes 0 0 \otimes 4 \otimes 0 \otimes 7 \otimes 7$	t	$\mathcal{O} \to \mathcal{O} \to $
$-1 \bigcirc \bigcirc$	<u>, , , , , , , , , , , , , , , , , , , </u>	

0.0 -0.

0 0 0 0 0 0 0 0 0 0	0040-080047557	つ つ の 一 ひ つ の つ の つ の つ つ て	000-0040000000000000000000000000000000
4 0 0 - 0 0 0 0 0 0 0 0 0 0	4 m m U U O 0 00 L L O N 4 4 n	$0, 4, \omega, \omega,$	$ \circ \circ$
	<u>- う う い い い こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ</u>	000	$\circ \circ $
	γ β	, , , , , , , , , , , , , , , , , , ,	

	135. 134. 1129. 118.	-76.76	-35.200 -21.000 -14.449
Me Me N ₃ 8c			

f1 (ppm)

00 - 800000 - 60	$\infty - 400000000000000000000000000000000000$	00000-0000000000000000000000000000000	00 - 00 - 000 -
6819359811	0 0 0 4 4 m 0 0 0 0 m v 1	- 9 6 6 8 8 7 7 9 9 9 9 9	$4 4 \omega 4 4 \omega \omega 0 0 0 0 0 0$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	らううううう 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	$\mathcal{O} \mathcal{O} \rightarrow \rightarrow$	0 0 ¹ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7



8d


























00000 - 000000000000000000000000000000	9 - 9 6 4 7 7 0 9 6 6 - 7 0 6 6	04 % 0 % 0 % 7 - % 0 %	13830001000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v v v u u v v v u – o o o o o o o	× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	0000000000000000000000000000000000
$(\mathcal{O},\mathcal{O},\mathcal{O},\mathcal{O},\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty,\infty$	<u>-                                    </u>	ກຸ ຕຸ ຕຸ ຕຸ ຕຸ ຕຸ ຕຸ ຕຸ ຕຸ <del>ຕຸ</del> -	
00000000000000	$\mathbf{\dot{o}}$ $\dot{$		



8h



30 220		200	 	170	160	 				 		  80	 70	60	 l	· · · · · · · · · · · · · · · · · · ·	·	 	
F	HC	°√ `N₃																	
				707 271	~161.455	L139.147 L139.081 122.245	\[         \lap{a}         \]     \[         \lap{a}         \]     \[         \lap{a}         \]     \[         \lap{a}         \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[         \lap{a}     \]     \[      \]     \[         \la	127.786	L 111.412 $ L 111.245$	7106.395	161.001-	-76.329				euc.cc-		 S-111	

$0$ $\omega$ $0$ $4$ $-1$ $\delta$ $\infty$ $\delta$ $\omega$ $\infty$ $-1$ $\delta$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 2 3 3 3 4 0 5 2 7 3 7 0 4 8 3 8 7 4 9
$04 \times \times$	000000000000000000000000000000000000000	0 4 4 m m 0 0 0 - m 0 - m 0 0 0 8 m 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 m m m m m m m m m m m	,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0





	139.716         139.716         138.434         131.538         131.274         131.274         131.274         131.274         131.274         131.274         131.274         131.274         121.512         121.542         121.542         121.542         115.679         115.618         115.618	-76.457	-35.075	– 14.396 2-113
F ₂ C N ₂				
8i				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	170 160 150 140 130 120 110 100 90	80 70 60 50	40 30	20 10 0 -1

f1 (ppm)

ν 6 ∞ − 6 6 π − 6 Γ 0 ν κ	$0 \otimes 0 \otimes$	0 0 0 0 0 0 0 0 0 0	v o w x d o - 4 o
$\omega - 44\omega \alpha \alpha \rho 4\omega \omega \alpha c$	1 – – 0 0 0 0 – – 0 0 0 4 4 6 0 0 1	44 4 + 4 +	$0 \infty \infty \Gamma \Gamma 0 0 10 4$
$\infty \infty \infty \infty \infty \infty 0 0 0 0 0 0 0 0 0 0 0 0 0 $) ろ ろ ろ み 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	100 <i>D</i>	
0.0000000000000000000000000000000000000			

	$ \begin{bmatrix} 161.554 \\ 159.592 \\ 136.184 \\ 136.119 \\ 131.967 \\ 131.943 \\ 130.401 \\ 130.401 \\ 129.312 \\ 120.957 \\ 120.957 \\ 120.822 \\ 113.881 \\ 113.881 \\ 113.861 \\ 105.905 \end{bmatrix} $	-76.361	37.356 37.351 37.351 37.351 37.321 37.321 37.321 12.373 14.498 14.498 14.498 14.498 14.123 14.113
$ \begin{array}{c} HO\\ F\\ F\\ N_3\\ \textbf{8j} \end{array} $			
30 220 210 200 190 180 170	D 160 150 140 130 120 110 100 90 f1 (ppm)		

000000000000000000000000000000000000	$-\infty 000000000000000000000000000000000000$	-000000000000000000000000000000000000
0 C C 0 0 4 4 0 0 0 4 0	0 0 0 0 0 0 0 0 4 4 0 0 0 0 − −	+ - 0 0 6 6 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0
$\bigcirc \bigcirc $	× × × × × × × × × × × × × × × × × ×	4 4 4 m m m m m m m m m m m m m m m m m
00000077777	00000000000000000000000000000000000000	

10a

30 220	210 20	, , DO 1	190	180	170	160	150	140	130	120	110 f1 (name	, 100	90	80	70	60	50	40	30	20	10	0 -1
1(^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	D b	\\v i¹41\\n \vj\.A	ŧŔĨĸŦĸħţ	MMAROMONIA IN	nutry (parocha)	\/ [[] M]/1 ⁰ /1 ⁰ /M/\/\/	₩ <mark>₩</mark> ₩₩₩₩₩			ulovali avita	111111/11/11/11	WW	Mykkanfikelivili	erd north/b/cr	W N.V.W.M.M.M.	nywyhay k	YMMyMYMymy	WATING WYWYW	MM JANH MANA M	HJA Ng a, Mujilu jn	nt	INTERNATIONS
	HO	^o						137.385	129.85	1125.08				-82.753	-75.672							S-121

<pre></pre>	0 0 m d 0 0 4 0 4 h v d 0 d x	$D \propto D \propto O \otimes O$	-004000
∞ ∞ <	0	000000000000000000000000000000000000	$\mathcal{N} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{M} M$
444400000000000	000	- 9 N 4 4 4 4 N N N N N N N N	
· · · · · · · · · · · · · · · · · · ·	- $ -$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

50	ע כ	י ע	4.	4,	- (\mathbf{O}	9	9	0	9	6	4	0	9	0	0	1	2	0	9	0	∞	\mathbf{c}	∞	2	S	\sim	\mathfrak{C}	~	- \	0 0	$\vee \propto$		- 6	\mathcal{C}		4	4	∞	~		4 (∞		∞ (0 '	9	7 10	$\sim c$	2
0	` •	- (⊃ `	9	9	S	4	\mathbf{c}	\mathbf{c}	2		0	0	∞	C	9	4	\mathbf{c}	0	0	6	9	S	\mathcal{C}	0	\odot	∞	-	0	\overline{o}	$1 \propto$	<u> </u>	$\circ \circ$	$\sim -$		0	6	∞		S	S	4 (\mathfrak{O}	3	-	- (0	<u>∞1</u> 9	\mathcal{P}	0
N, I	۰ i	4 '	4.0	$\dot{\mathbf{u}}$ (\mathbf{n} (n.	Ċ.	ú.	Ċ.	<i>w</i>	$\dot{\omega}$	$\dot{\omega}$	Ω.	2	0	2	2	2	2	2					0	0	<u>o</u> .	9	-	0,0	\supset \circ	$ > \subset $	ο 2 σ	<u>)</u> 0	<u>_</u>	S.	∞	∞	∞.	9	<u>ں</u>	ý, í	ں ف	9	6	Ω, ί	<u>ر</u> و	N. 4	ΩY	<u> </u>
	- t	- I	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	1	1	1	1	5	1	1	1	1	1	1	1	1	1	1	4	4	ŝ	(m)	m I	m (n c	n n	ic	in	N	N	N	d'	Cİ.	d'	Ci -	d (d -	CI -	N.	d	d	d c	NC	N
		L	L			1	1											~/	\square						Ĺ	Ĺ						L L				2														<u>َ</u> ا

10d

000000000000000000000000000000000000	100000-0000000000000000000000000000000	001000000000000000000000000000000000000
$\infty \vdash 0 0 0 0 0 0 \infty \times \vdash \nu u <$	0000700780-080-000000	$\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{A} + \mathcal{N}\mathcal{M}\mathcal{N}\mathcal{N}\mathcal{N}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}\mathcal{O}O$
4444440000000	0 m m m m m n 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

10e

9-09-000044x	$+ \infty - 000 - 000 - 000 - 000 - 000 - 000 - 00000 - 00000 - 00000 - 0000 - 0000 - 0000 - 00000 - 00000 - 00000 - 00000 - 0000 - 00000 - 00000 - 00000 - 000000$	0400-00000	· / / / / w & m / / / / (∞ m ∞ − − 0 0 0
$\bigcirc \bigcirc $	0 0 4 4 4 0 0 4 4 0 0	000040-0000	00800000000	\bigcirc $4 \circ \circ \circ \circ \frac{-2}{130} \bigcirc$
		\circ	י ט ט ט ט ט ט ט ט ט ט ע	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		) N N N N N N N N N N N N N N N N N N N	N N N N N N N N N







400044-00004	$0 \otimes \mathcal{N} \otimes \mathcal{O} \otimes \mathcal{O} \otimes \mathcal{O} + \mathcal{N} + \mathcal{N} \vee$	<b>ア 0 4 - 0 % ふ ふ 4 - ア ら 2 </b> %	0040-000000000000000000000000000000000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$4 \omega 0 0 - 0 \delta \omega - 0 \delta \infty$	$\square \square $	- C O O O 4 4 0 0 @10 -
$\square \square $	00000000000000000000000000000000	00000000004444	- 4 4 4 4 4 4 4 6 m -
· · · · · · · · · · · · · · · · · · ·			
	m mm	מש מיו ר	







30 220	210 200	0 190	180 1	170 160	150 14	10 130	120 1 ^{′′} f1 (p	0 100 pm)	90	80 70	60	50	40	30 2	20 2	10	0 -1
vanchi/vohillaaquafingaaquahi	MININI MININI JUMINI MINI	Wo <mark>ylan</mark> k/KayaapoNapanay	www.huyuhumuh	WWWWWWWWWW	MINNER INNER IN INTER		1 WY 61.11/12 MINING 1	naudununujunutu	AMIPANITAN (UPANI) A	WYNHY WILLYNHYNH	14/11/14/14/14/14/14/14/14/14/14/14/14/1	YV wyvinio	1921/Uwwaliwywywyby by	14441/4 ₁₁ 1441	n managen an	4VVMInepuplicud	1. <b>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</b>
	HO H H N ₃ 10h					7128.7 7128.7 7128.7	1124.8			77.11		-53.12	534.23 52.75	732.40	~ 24.74		
					101	.432 .432 .770 .770	.428			112		123	237 796	560	44	S	5-133

0 / 4 - 9 % - 8 / 0 / 4 - 9	94 - 90000000000000000000000000000000000	√∞ √ − − − ∞ ∞ √ ∞ ∞ − −	10m96-1006-10m92
$\dot{\alpha}$ 4 $\dot{\alpha}$ $\dot{\alpha}$ 9 0 0 - 0 0 0 $\infty$ $\infty$ 0 $\lambda$	$44 \omega \nu \delta \nu \delta \delta \omega - 00$	0 L N N 4 N - 0 8 4 4 N N	O = O O O O O O O D D O O O O O O O O O
444400000000	0074400000	$\infty \infty \infty \infty \infty \infty \infty \infty \infty \cdots	N N N 4 4 4 0 0 0 0 0 0 0 0 0



10i





$\odot \otimes \checkmark \omega \otimes \odot \omega \otimes \omega = \otimes \omega	949974791919199719	000000000000000000000000000000000000
$\omega \delta \delta \phi \phi \otimes \infty \wedge 4 4 0$	$O \rightarrow D \rightarrow U \oplus U \oplus O \oplus$	0 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
$\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $d$ $         -$	$ \omega \delta $	2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7
<b><i><u><u></u></u></i></b>	- $        -$	

















				-17/ 065				135.503	134.230	127.928									~32.649 ~30.264	~28.360		S-143	
Me	g	NH NH	ò																				
www.hulony.and.	<b>I MANINI MANA MAN</b>	NHW/NH/NHWY	WaladuateerNy	NMAMMAN	WARNING MAN	hunananan kanan	140/11/MMIN/www	Mwww.Am	M. J. William	Murul May WW	U/Waii49ayu/au/\vi/	un/inv/npv/vin/inv	wildowynijaage/i/yygn	when when the m	l _{ent} uran an a	Vortgeright, behavywelt	ennationen	njiraaltid (d. Vaga ba	ngrat kan (Veg Saby))	darman yanaran	an in the free for the form	March Life Marchard	Norr
30 220	210	200	190	180	170	160	150	140	130	120		 100 )	90	80	70	60	50	40	30	20	10	0	 -1














	-175.238	L 137.591 137.591 137.385 131.218 129.676 126.393 122.397		~32.790 ~29.893 ~28.507 ~20.935	S-151
Me N	ò		1		
ระสปกปันธุ การ เป็นสนาประเทศ กับ โอการปรักษาเศรษณฑิ มีคป้องได้การเพิ่ม็กปรัก	สมของ/เอไหนตามตาไหน/งกไฟสาม/เป็นว่าน/ฟนปไจว่าน/ฟนปไจว่าน/ฟนปไจว่าน/ฟนปไจว่าน/ฟนปไจว่าน/ฟนปไจว่าน/ฟนปไจว่าน/ฟนป		ศษป้างไปฟ้านั้นไปกับคนเป็นสามมาตามีไ		A MANIMUM MINIMUM MINIMUM
очрадурилация и сели и сели терицисти 	190 180 170 160	) 150 140 130 120 110 100	90 80 70 60 5	0 40 30 20 10	





9h









-8.475 -8.475 7.400 7.334 7.351 7.351 7.355

2.882 2.867 2.853 2.395 2.395 2.395 2.395 2.395 2.366 2.288 2.259 2.259









			-174.263	-150.102	-134.823 $\int 126.819$ $\int 125.458$ -121.637	-109.063		-55.609	∠33.293 _30.392 \28.507	S-159
	Me ^H O 9k	)								
^ա ետ չուն ու	Mallolon Marana and Marana br>Marana Marana M	uphtudWadayynywyn	lluluuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	nfinninumrentovitiku unmenentoliti		1.1/1.6/1.00 ¹¹ //www.longen.org////////////////////////////////////	NAUDY INNAUNINAUNINAUNINAUNINAUNINAUNINAUNINA	W/WWWWWWWWWWWWWWWWWWWWWW		Kunnuluun

f1 (ppm)





















Ĥ

11d











-0.





000000000000000000000000000000000000	9 V V 4
	N N N N
<u> </u>	0 0 0 0

2.568 2.559 72.554 72.538 2.5511 2.511 2.511 2.487











0696914-69-66	-4 - 0 - 4 - 0 - 0 - 0 - 4 - 4	000000000000000000000000000000000000000
0 m m l l l l l l l 0 0 4 m l	10-0000400000	060740-000-0000-000000000000000000000000
$\sim$		0.4 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0

























0074800074701	л о о о о о о о о о о о о о о о о о о	2 2 4 - 4 2 4 3 2 7 5 4 5 2 0 0 4 8 4 2 7 8 7 7 8 7 8 7 9 7 8 7 9 7 8 7 7 7 7 7
004400-000000	${\boldsymbol{\vdash}} \ \omega \ {\boldsymbol{\cup}} \ {\boldsymbol{\dashv}} \ {\boldsymbol{\dashv}} \ {\boldsymbol{\cup}} \ {\boldsymbol{\oslash}} \ {\boldsymbol{o}}	$\mathfrak{B} \square \square \mathfrak{A} \mathfrak{B} \mathfrak{B} \square \square \mathfrak{D} \mathfrak{O} \mathfrak{O} \mathfrak{O} \mathfrak{O} \mathfrak{O} \mathfrak{O} \mathfrak{O} O$
44400000000	000000	0 0 0 6 6 6 6 6 6 6 6 6 6 6 8 7 7 7 7 7 7 7 7
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	


$\infty \cup \cup \infty \cup \delta $	$\omega \dot{\omega} - \nu + 4 \dot{4} - \tilde{\infty} \dot{\omega} \dot{\nu} \dot{\delta} \dot{\omega} \dot{\nu} \dot{4} \dot{\alpha}$	$\circ \mathcal{N} \mathcal{N} \mathcal{O} \circ \mathcal{O} \sim \mathcal{O} \circ $
-7 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$\circ \infty \circ \circ \circ \circ \circ \infty \infty / / \wedge \circ 0^{-164} \square$
4 4 % % % - 1 - 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0	4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0	0 ∞ 心 心 4 4 4 4 4 4 4 4 ↓ 🍼

040800800-00	C C C C C C C C C C C C C C C C C C C	4 0 4 - 1 0 4 0 0 0 0 0	$POP - 4 \\ w \\ 4 \\ 0 \\ 4 \\ 0 \\ - 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
P 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 ∞ n 4 w w 0 0 0 0 ∞ 0	<u> </u>	$\square \square $
001110011000000000	0000000	00000000000000	
66.6.6.7.7.7.7.7.7	4 4 m m n	- $ -$	
	n m n		

