Supporting Information

3-Step Catalytic Asymmetric Total Syntheses of 13methyltetrahydroprotoberberine Alkaloids

Shiqiang Zhou and Rongbiao Tong*

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Email: rtong@ust.hk

1.General Information	S-2
2. Experimental Procedures and Characterization Data	S-3
2.1. Redox-A ³ Reaction of Tetrahydroisoquinolines, Aldehydes, and Terminal Alkynes	S-3
2.2. Catalytic Asymmetric Redox-A ³ reaction	S-5
2.3. Pd-catalyzed Reductive Heck exo-Carbocyclization	S-9
2.4. PtO ₂ -catalyzed Hydrogenation	S-12
2.5. Pd-catalyzed Hydrogenation and Debenzylation	S-14
2.6. Preparation of Compounds 9a–9c and 10 via Cascade Heck-Suzuki Reaction	S-16
2.7. Preparation of Compounds 9e–9g via Cascade Heck-Heck Reaction	S-18
2.8. Preparation of Compounds 9h–9j via Cascade Heck-Sonogashira Reaction	S-19
2.9. Screening of Chiral ligands for CuI-catalyzed Redox-A ³ Reaction (Table 1).	S-20
2.10. Copies of HPLC Chromatograms for Screening of Chiral ligands	S-21
3. X-ray data of Compound 4a	S-26
4. Copies of NMR Spectra	S-28
5. Copies HPCL Chromatograms	S-132

Table of Contents

1. General Information

Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane was freshly distilled before use from calcium hydride (CaH₂). All other solvents were dried over 3\AA or 4\AA molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Merck pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040 – 0.062 mm) supplied by Grace. Infrared spectra were collected on a Bruker model TENSOR27 spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ¹H and 77.0 ppm for ¹³C) or DMSO-d₆ (2.50 ppm for ¹H and 39.50 ppm for ¹³C). Abbreviations for signal coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Optical rotations were measured on a JASCO Perkin-Elmer model P-2000 polarimeter. High resolution mass spectra were measured at the Hong Kong University of Science and Technology Mass Spectrometry Service Center on an Agilent GC/MS 5975C system.

2. Experimental Procedures and Characterization Data

2.1. Redox-A³ Reaction of Tetrahydroisoquinolines, Aldehydes, and Terminal Alkynes

Gneral Procedure A (redox-A³): To a flame-dried Schlenk tube were sequentially added (*R*,*R*)-*N*-PINAP (12.8 mg, 0.022 mmol), CuI (2.0 mg, 0.01 mmol), 4 Å molecular sieves (300 mg), and toluene (2 mL) under the argon atmosphere. The reaction mixture was then stirred at rt for 30 min and then PhCO₂H (6.1 mg, 0.05 mmol), **1a** (270 mg, 1.4 mmol)/toluene (1 mL), **2a** (320.0 mg, 1.4 mmol, 98%)/toluene (1 mL), and **3a** (98 mg, 1.0 mmol)/toluene (2 mL) were sequentially added under the argon atmosphere. The Schlenk tube was placed in a pre-heated oil bath at 40 °C and the reaction mixture was stirred at 40 °C for 12 h. After cooling to room temperature, the crude reaction mixture was filtrated through a short pad of silica gel washed with Et₂O (50 mL). After solvent evaporation, the residue was purified by chromatography on silica gel to afford compound **4a0**.

4a0 (401 mg, 80% yield) as pale yellow solid: m.p. 157-159 °C (hexane/dichloromethane); 50% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) = 11.9 min, t_R(minor) = 5.7 min); $[\alpha]^{25}_{D} = -64.0$ (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.04$ (d, *J* = 8.0 Hz, 1H), 6.76 (s, 1H), 6.63 (d, *J* = 8.0 Hz, 1H)

1H), 6.54 (s, 1H), 6.03–5.96 (m, 2H), 4.65 (s, 1H), 3.96 (d, J = 12.0 Hz, 1H), 3.86 (s, 3H), 3.85–3.78 (m, 4H), 3.05–2.91 (m, 1H), 2.86–2.70 (m, 2H), 2.70–2.59 (m, 1H), 0.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.1$, 148.0, 147.2, 146.7, 127.1, 126.1, 125.3, 120.3, 117.4, 111.2, 110.5, 108.5, 104.3, 101.5, 90.3, 56.0, 55.8, 55.5, 53.0, 45.0, 28.6, 0.16. IR (KBr) 2954.7, 2906.2, 2836.3, 2154.9, 1610.2, 1514.7, 1454.3, 1350.6, 1252.5, 1130.3, 1047.8, 921.7, 848.3, 795.4, 741.8, 590.8 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₄H₂₈BrNO₄Si [M]⁺ 502.1049; found 502.0986.

4a1 (253 mg) was obtained by using **General Procedure A** from THIQ **1a'** (186.2 mg, 1.4 mmol), aldehyde **2a'** (148.4 mg, 1.4 mmol), alkyne **3a'** (102.1 mg, 1.0 mmol) as pale yellow oil in 78% yield as pale yellow oil: 95% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/1, 1.0 mL/min, λ = 214 nm, t_R(minor) = 5.0 min, t_R(major) = 7.7 min); [α]²⁵_D = -145.0 (*c* = 1.0, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ = 7.52–7.42 (m, 4H), 7.40–7.33 (m, 2H), 7.33–7.24 (m, 5H), 7.22–7.10 (m, 3H), 4.81 (s, 1H), 4.00–3.90 (m, 2H), 3.20–3.05 (m, 2H), 2.90–2.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 138.3, 135.5, 134.1, 131.8, 129.2 (×2), 129.0, 128.3 (×2), 128.2, 128.0, 127.8, 127.1, 126.9, 125.8, 123.2, 87.5, 86.8, 59.6, 54.3, 45.7, 29.0. IR (KBr) 3063.2, 2923.6, 2856.5, 1709.2, 1641.4, 1488.0, 1450.6, 1263.0, 794.2, 747.4, 705.5, 652.3 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₄H₂₁N [M+H]⁺ 324.1752; found 324.1726.

4a2 (318 mg) was obtained by using **General Procedure A** from THIQ **1a** (270.2 mg, 1.4 mmol), aldehyde **2a'** (148.4 mg, 1.4 mmol), alkyne **3a'** (102.1 mg, 1.0 mmol) as pale yellow oil in 83% yield as pale yellow oil: 86% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) = 8.2 min, t_R(minor) = 10.7 min); $[\alpha]^{25}_{D} = -$

103.0 (c = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.54-7.46$ (m, 4H), 7.40–7.20 (m, 6H), 6.77 (s, 1H), 6.63 (s, 1H), 4.73 (s, 1H), 4.0–3.9 (m, 2H), 3.87 (s, 3H), 3.86 (s, 3H), 3.16–3.05 (m, 1H), 3.05–2.94 (m, 1H), 2.90–2.80 (m, 1H), 2.79–2.69 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.1$, 147.3, 138.3, 131.7, 129.3, 128.4, 128.24, 128.16, 128.0, 127.3, 127.1, 126.0, 111.4, 110.5, 87.5, 86.7, 59.5, 55.9, 55.81, 53.82, 45.9, 28.6. IR (KBr) 3060.8, 2918.0, 2827.8, 1710.4, 1645.9, 1604.8, 1514.7, 1454.7, 1352.0, 1265.1, 1225.9, 1128.3, 1019.6, 854.5, 746.8, 698.7; 573.2 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₆H₂₅NO₂ [M]⁺ 383.1885; found 383.1870.

4a3 (334 mg) was obtained by using **General Procedure A** from THIQ **1a'** (186.2 mg, 1.4 mmol), aldehyde **2a** (320.6 mg, 1.4 mmol), alkyne **3a'** (102.1 mg, 1.0 mmol) in 75% yield as pale yellow oil: 73% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 500/1, 1.0 mL/min, λ = 214 nm, t_R(major) =20.6 min, t_R(minor) = 28.3 min); [α]²⁵_D = -88.0 (*c* = 1.0, CHCl₃)[:] ¹H NMR (400 MHz, CDCl₃) δ = 7.53–7.43 (m, 2H), 7.42–7.27 (m, 4H),

7.25–7.15 (m, 2H), 7.15–7.05 (m, 2H), 6.67 (d, J = 8.4 Hz, 1H), 6.03–5.97 (m, 2H), 5.02 (s, 1H), 4.02 (d, J = 12.8 Hz, 1H), 3.98 (d, J = 12.8 Hz, 1H), 3.22–3.12 (m, 1H), 3.04–2.84 (m, 2H), 2.84–2.74 (m 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.0$, 146.6, 135.5, 134.0, 131.7, 128.9, 128.1, 127.9, 127.7, 126.8, 125.7, 125.3, 123.3, 120.3, 117.3, 108.5, 101.5, 87.9, 86.4, 55.4, 53.1, 45.0, 29.0. IR (KBr) 3062.3, 2899.4, 1596.8, 1492.2, 1452.4, 1244.8, 1048.5, 933.6, 852.20, 797.7, 745.31, 696.13 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₅H₂₀BrNO₂ [M + H]⁺ 446.0756; found 446.0673.

The crude TMS protected product obtained by redox-A³ using **General Procedure A** from THIQ **1a'** (186.2 mg, 1.4 mmol), aldehyde **2a'** (148.4 mg, 1.4 mmol), alkyne **3a** (98.2 mg, 1.0 mmol). Then the crude product was directly subjected to desilylation as described below. After evaporation of the volatile solvents, the crude product was dissolved in MeOH (10 mL) and treated with K_2CO_3 (27 mg, 0.2 mmol). After TLC analysis indicated completion of the desilylation, the reaction mixture was concentrated using rotary evaporator. The crude mixture was added DCM (10 mL) and then washed with brine, dried over anhydrous Na₂SO₄, and concentrated in *vacuo*. The residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc = 30:1) to afford the corresponding redox-A³ reaction product **4a5** (180 mg) as pale yellow oil in 73% yield.

4a5 (180 mg, 73% yield) as pale yellow oil: 95% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 500/1, 1.0 mL/min, λ = 214 nm, t_R(major) =11.3 min, t_R(minor) = 16.2 min); [α]²⁵_D = -67.0 (*c* = 1.0, CHCl₃)^{: 1}H NMR (400 MHz, CDCl₃) δ = 7.57–7.50 (m, 2H), 7.49–7.39 (m, 2H), 7.39–7.32 (m, 1H), 7.30–7.15 (m, 4H), 4.68 (s, 1H), 3.95 (dd, *J* = 16.0 Hz, 12.0 Hz, 2H), 3.16–3.02 (m, 2H),

2.95–2.84 (m, 1H), 2.87–2.76 (m, 1H), 2.54 (d, J = 2.4, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 138.2$, 135.0, 133.9, 129.1, 129.0, 128.3, 127.5, 127.1, 127.0, 125.8, 81.6, 74.5, 59.3, 53.6, 45.3, 28.9. IR (KBr) 3287.9, 3028.3, 2914.8, 2823.7, 1719.6, 1593.2, 1492.9, 1454.0, 1356.2, 1263.4, 1199.1, 1132.1, 1087.8, 948.2, 742.9, 698.9, 647.8 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₁₈H₁₇N [M]⁺ 247.1361; found 247.1325.

2.2. Catalytic Asymmetric Redox-A³ reaction

General Procedure B (catalytic asymmetric redox-A³): To a flame-dried bottom-rounded flask (25 mL) were added CuI (1.2 mg, 0.01 mmol), (S, R)-N-PINAP (11 mg, 0.02 mmol), and newly activated 4 Å molecular sieves (300 mg). To the reaction flask under nitrogen atmosphere were sequentially added toluene (10 mL), aldehyde 2a (229 mg, 1.0 mmol), THIQ 1a (212 mg, 1.1 mmol), and trimethyl silyl acetylene 3a (196 mg, 2.0 mmol), PhCO₂H (6.1 mg, 0.05 mmol). The reaction mixture was heated with an oil bath at 40 °C for 12 h. After TLC analysis indicated the completion of the reaction, the reaction mixture was passed through a short column of silica gel and washed with hexane/ethyl acetate (10/1-2/1). The combined filtrate was concentrated in vacuum. To the crude product in MeOH (10 mL) was added K₂CO₃ (27 mg, 0.2 mmol) and the reaction mixture was stirred at room temperature for 2 h. After TLC analysis indicated the completion of the desilylation, the reaction mixture was concentrated and then diluted with DCM (10 mL) and washed with brine, dried over anhydrous Na₂SO₄. The concentrated residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc = 10:1) to afford the corresponding redox-A³ reaction product 4a (357 mg, 83%) as white solid: m.p. 144-146 °C (hexane/dichloromethane); 95.5% ee (HPLC conditions: Chiralcel OD-H column, hexane/i-PrOH = 90/10, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) = 20.4 min, t_R(minor) = 10.5 min); $[\alpha]^{25}_{D} = -69.0$ (c = 0.1, $CHCl_3$); ¹H NMR (400 MHz, $CDCl_3$) $\delta = 7.05$ (d, J = 8.4 Hz, 1H), 6.72 (s, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.56 (s, 1H), 6.00 (d, J = 2.0 Hz, 2H), 4.69 (s, 1H), 3.91–3.84 (m, 5H), 3.83 (s, 3H), 3.09–2.96 (m, 1H), 2.92-2.77 (m, 2H), 2.65-2.58 (m, 1H), 2.47 (d, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.2$, 148.0, 147.4, 146.7, 127.0, 126.0, 125.4, 120.3, 117.4, 111.4, 110.1, 108.5, 101.6, 82.2, 74.2, 56.0, 55.9, 54.3, 52.9, 44.8, 28.6. IR (KBr) 3288.8, 2906.7, 2833.0, 2249.4, 1518.9, 1453.9, 1265.0, 1224.6, 1129.0, $1047.2, 731.1 \text{ cm}^{-1}$; HRMS (CI⁺) (*m/z*) calcd. for C₂₁H₂₁BrNO₄ [M + H]⁺ 430.0654; found 430.0643. For the X-ray data of 4a (CCDC 1524047), see page S-26.

4b (378 mg) was obtained by using **General Procedure B** from THIQ **1a** (212 mg, 1.1 mmol), aldehyde **2b** (245.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 75% yield as yellow oil: 95% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm,

t_R(major) =34.8 min, t_R(minor) = 20.7 min); [α]²⁵_D = -88.0 (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.27 (d, J = 8.8 Hz, 1H), 6.74 (d, J = 8.8 Hz, 1H), 6.72 (s, 1H), 6.54 (s, 1H), 4.71 (s, 1H), 4.00–3.88 (m, 2H), 3.86 (s, 3H), 3.85 (s, 6H), 3.81 (s, 3H), 3.11–2.99 (m, 1H), 2.76–2.92 (m, 2H), 2.53–2.62 (m, 1H), 2.47 (d, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.3, 149.3, 148.1, 147.3, 132.8, 127.8, 127.2, 126.0, 116.9, 112.5, 111.3, 110.1, 82.6, 73.7, 61.5, 55.9, 55.83, 55.79, 54.0, 53.1, 44.8, 28.7. IR (KBr) 3288.3, 2935.7, 2834.4, 2251.9, 1611.9, 1518.9, 1472.0, 1224.5, 1129.4, 1038.5, 730.7 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₂H₂₅BrNO₄ [M + H]⁺ 446.0967; found 446.0974.

4c (317 mg) was obtained by using **General Procedure B** from THIQ **1a** (212 mg, 1.1 mmol), aldehyde **2c** (229.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 74% yield as yellow oil: 97% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 214 nm, t_R(major)

=14.7 min, $t_R(minor) = 23.5$ min); $[\alpha]^{25}_D = -81.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.09$ (s, 1H), 7.01 (s, 1H), 6.70 (s, 1H), 6.59 (s, 1H), 5.96 (s, 2H), 4.56 (s, 1H), 3.854 (s, 3H), 3.85–3.82 (m, 5H), 3.07–2.86 (m, 2H), 2.85–2.70 (m, 1H), 2.68–2.60 (m, 1H), 2.47 (d, J = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.3$, 147.41, 147.36, 147.3, 130.9, 126.8, 126.0, 114.8, 112.7, 111.4, 110.3, 110.1, 101.6, 82.0, 74.4, 58.5, 56.0, 55.9, 53.5, 45.4, 28.6. IR (KBr): 3452.7, 2072.9, 1636.7, 1518.5, 1478.0, 1262.1, 1227.3, 1128.7, 1036.9, 730.3 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₁H₂₁BrNO₄ [M + H]⁺ 430.0654; found 430.0653.

4d (357 mg) was obtained by using **General Procedure B** from THIQ **1a** (212 mg, 1.1 mmol), aldehyde **2d** (245.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 80% yield as yellow oil: 97.5% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1.0 mL/min, λ = 214 nm,

 $t_R(major) = 17.3 \text{ min}, t_R(minor) = 10.5 \text{ min}); [\alpha]^{25}_D = -83.0 (c = 0.1, CHCl_3);$ ¹H NMR (400 MHz, CDCl_3) $\delta = 7.13$ (s, 1H), 7.02 (s, 1H), 6.71 (s, 1H), 6.59 (s, 1H), 4.57 (s, 1H), 4.07–3.73 (m, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 3.84 (s, 6H), 3.06–2.82 (m, 2H), 2.78–2.70 (m, 1H), 2.66 (m, 1H), 2.48 (d, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl_3) $\delta = 148.5$, 148.3, 148.2, 147.4, 129.6, 126.8, 126.0, 115.4, 114.5, 113.1, 111.4, 110.1, 82.0, 74.3, 58.2, 56.11, 56.05, 55.9, 55.8, 53.7, 45.1, 28.6. IR (KBr) 3287.5, 2934.6, 2834.6, 2254.1, 1611.0, 1505.0, 1463.7, 1377.6, 1281.2, 1157.6, 1129.8, 1031.1, 731.1 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₂H₂₅BrNO₄ [M + H]⁺ 446.0967; found 446.0948.

4e (293 mg) was obtained by using **General Procedure B** from THIQ **1b** (195 mg, 1.1 mmol), aldehyde **2a** (229.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 71% yield as white solid: m.p. 130-132 °C (hexane/dichloromethane); 91% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 99/1+0.5% Et₂NH, 1.0 mL/min, λ = 210 nm,

 $t_{R}(major) = 30.8 \text{ min}, t_{R}(minor) = 25.7 \text{ min}); [\alpha]^{25}{}_{D} = -89.0 (c = 0.1, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3)$ $\delta = 7.05 (d, J = 8.4 Hz, 1H), 6.70 (s, 1H), 6.64 (d, J = 8.4 Hz, 1H), 6.53 (s, 1H), 6.01-5.99 (m, 2H), 5.90-5.87 (m, 2H), 4.67 (s, 1H), 3.90-3.40 (m, 2H), 3.09-2.90 (m, 1H), 2.90-2.73 (m, 2H), 2.63-2.51$ (m, 1H), 2.47 (d, J = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.0$, 146.8, 146.7, 145.8, 128.0, 127.2, 125.4, 120.2, 117.3, 108.6, 108.5, 107.3, 101.6, 100.8, 82.0, 74.2, 54.7, 52.9, 44.6, 28.9. IR (KBr) 3290.6, 2898.3, 2821.7, 2245.2, 1602.2, 1504.2, 1483.1, 1454.4, 1257.9, 1224.9, 1040.4, 930.8, 733.2 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₀H₁₆BrNO₄ [M + H]⁺414.0341; found 414.0320.

4f (391 mg) was obtained by using **General Procedure B** from THIQ **1b** (195 mg, 1.1 mmol), aldehyde **2b** (245.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 91% yield as white solid: m.p. 138-140 °C (hexane/dichloromethane); 94% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 100/1, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) = 46.6

min, $t_R(minor) = 26.9 \text{ min}$; $[\alpha]^{25}_D = -108.0 (c = 0.1, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) $\delta = 7.27$ (d, J = 8.8 Hz, 1H), 6.74 (d, J = 8.8 Hz, 1H), 6.70 (s, 1H), 6.51 (s, 1H), 5.88 (d, J = 1.9 Hz, 2H), 4.70 (s, 1H), 3.88–3.96 (m, 2H), 3.85 (s, 6H), 3.12–2.94 (m, 1H), 2.89–2.71 (m, 2H), 2.59–2.50 (m, 1H), 2.47 (d, J = 2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl_3) $\delta = 152.3$, 149.4, 146.7, 145.8, 132.7, 128.3, 127.8, 127.4, 116.9, 112.6, 108.5, 107.3, 100.7, 82.4, 73.8, 61.5, 55.9, 54.5, 53.1, 44.5, 29.1. IR (KBr) 3286.2, 2935.7, 2903.4, 2836.0, 2248.3, 1693.0, 1573.9, 1504.1, 1472.1, 1285.7, 1264.1, 1224.3, 1039.0, 1009.8, 804.0 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₁H₂₁BrNO₄ [M + H]⁺430.0654; found 430.0651.

4g (310 mg) was obtained by using **General Procedure B** from THIQ **1b** (195 mg, 1.1 mmol), aldehyde **2c** (229.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 75% yield as yellow oil: 94% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 100/1 + 0.5%Et₂NH, 1.0 mL/min, $\lambda = 214$

nm, t_R(major) =32.7 min, t_R(minor) = 24.5 min); $[\alpha]^{25}{}_{D}$ = -112.0 (*c* = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.07 (s, 1H), 7.01 (s, 1H), 6.68 (s, 1H), 6.56 (s, 1H), 5.96 (s, 2H), 5.90 (d, *J* = 2.4 Hz, 2H), 4.54 (s, 1H), 3.83 (d, *J* = 3.6 Hz , 2H), 3.06–2.80 (m, 2H), 2.80–2.69 (m, 1H), 2.65–2.55 (m, 1H), 2.47 (d, *J* = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.38, 147.34, 146.8, 145.9, 130.8, 127.8, 127.2, 114.8, 112.7, 110.3, 108.5, 107.3, 101.6, 100.8, 81.8, 74.4, 58.4, 53.9, 45.2, 29.0. IR (KBr) 3442.6, 1641.6, 1502.3, 1479.1, 1236.7, 1114.6, 1038.5, 732.2 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₀H₁₆BrNO₄ [M + H]⁺ 414.0341; found 414.0357.

4h (301 mg) was obtained by using **General Procedure B** from THIQ **1b** (195 mg, 1.1 mmol), aldehyde **2d** (245.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 70% yield as yellow oil: 96% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 100/1 + 0.5%Et₂NH, 1.0 mL/min, $\lambda = 230$

nm, $t_R(major) = 33.2 \text{ min}$, $t_R(minor) = 27.4 \text{ min}$; $[\alpha]^{25}{}_D = -120.0 (c = 0.1, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) $\delta = 7.11 (s, 1H)$, 7.02 (s, 1H), 6.69 (s, 1H), 6.56 (s, 1H), 5.90 (d, J = 2.8 Hz, 2H), 4.55 (s, 1H), 3.90 (d, J = 14.0 Hz, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 3.80 (d, J = 14.0 Hz, 1H), 3.03–2.81 (m, 2H), 2.81–2.69 (m, 1H), 2.69–2.57 (m, 1H), 2.48 (d, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl_3) $\delta = 148.5$, 148.4, 146.8, 145.9, 129.5, 127.9, 127.3, 115.5, 114.5, 113.1, 108.5, 107.3, 100.8, 81.9, 74.4, 58.2, 56.14, 56.08, 54.1, 45.0, 29.0. IR (KBr) 3285.8, 2902.5, 2838.3, 2254.2, 1602.2, 1504.6, 1483.1, 1255.3, 1221.5, 1158.9, 1009.8, 731.7 cm⁻¹; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₁H₂₁BrNO₄ [M + H]⁺ 430.0654; found 430.0653.

4i (424 mg) was obtained by using **General Procedure B** from THIQ **1c** (296 mg, 1.1 mmol), aldehyde **2a** (229.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 84% yield as yellow oil: 96% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R(major) =31.1 min, t_R(minor) = 20.8 min); $[\alpha]^{25}_{\text{D}} = -125.0$ (*c* = 0.1, CHCl₃); ¹H NMR (400

MHz, CDCl₃) δ = 7.47–7.39 (m, 2H), 7.39–7.32 (m, 2H), 7.32–7.27 (m, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.75 (s, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.59 (s, 1H), 6.01–5.98 (m, 2H), 5.10 (s, 2H), 4.69 (s, 1H), 3.92–3.80 (m, 5H), 3.06–2.88 (m, 1H), 2.87–2.68 (m, 2H), 2.60–2.50 (m, 1H), 2.46 (d, *J* = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.98, 147.97, 147.4, 146.6, 137.2, 128.5, 127.7, 127.5, 127.2, 126.0, 125.3, 120.2, 117.3, 114.0, 110.7, 108.5, 101.5, 82.1, 74.2, 70.9, 56.1, 54.3, 52.9, 44.7, 28.4. IR (KBr) 3445.5, 2086.8, 1644.6, 1467.4, 1284.9, 1239.5, 1080.4, 702.6 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₇H₂₅BrNO₄ [M + H]⁺ 506.0967; found 506.0979.

4j (444 mg) was obtained by using **General Procedure B** from THIQ **1c** (296 mg, 1.1 mmol), aldehyde **2b** (245.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 85% yield as yellow oil: 97% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R(major)

=17.2 min, $t_R(minor) = 23.7$ min); $[\alpha]^{25}_D = -93.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.41$ (d, J = 7.6 Hz, 2H), 7.40–7.30 (m, 2H), 7.30–7.22 (m. 2H), 6.74 (d, J = 4.0 Hz, 2H), 6.57 (s, 1H), 5.08 (s, 2H), 4.71 (s, 1H), 3.99–3.87 (m, 2H), 3.85 (s, 9H), 3.03–3.00 (m, 1H), 2.93–2.65 (m, 2H), 2.54–2.44 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.3$, 149.3, 148.0, 147.4, 137.3, 132.8, 128.5, 127.9, 127.7, 127.5, 127.2, 126.1, 117.0, 114.1, 112.5, 110.8, 82.6, 73.7, 71.0, 61.5, 56.1, 55.9, 54.1, 53.1, 44.8, 28.6. IR (KBr) 3450.8, 2096.7, 1625.8, 1518.5, 1473.8, 1269.7, 1212.3, 1069.9, 1012.7, 736.5 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₈H₂₉BrNO₄ [M + H]⁺ 522.1280; found 522.1263.

4k (410 mg) was obtained by using **General Procedure B** from THIQ **1d** (296 mg, 1.1 mmol), aldehyde **2a** (229.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 81% yield **4k** as yellow oil: 98% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 214 nm, t_R(major) =17.3 min, t_R(minor) = 13.7 min); $\lceil \alpha \rceil^{25}_{D} = -88.0$ (*c* = 0.1, CHCl₃);

¹H NMR (400 MHz, CDCl₃) δ = 7.45 (d, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 2H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.04 (d, *J* = 8.8 Hz, 1H), 6.78 (s, 1H), 6.63 (d, *J* = 8.8 Hz, 1H), 6.58 (s, 1H), 5.98 (d, *J* = 2.4 Hz, 2H), 5.11 (s, 2H), 4.63 (s, 1H), 3.95–3.78 (m, 5H), 3.05–2.91 (m, 1H), 2.9–2.69 (m, 2H), 2.67–2.51 (m, 1H), 2.42 (d, *J* = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 149.0, 148.0, 146.7, 146.6, 137.2, 128.5, 127.8, 127.4, 127.0, 126.7, 125.4, 120.2, 117.3, 113.1, 112.0, 108.5, 101.6, 82.1, 74.1, 71.3, 56.0, 54.3, 52.9, 44.8, 28.6. IR (KBr) 3442.6, 2084.9, 1641.6, 1453.4, 1264.9, 1229.3, 1089.5, 697.7 cm⁻¹; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₇H₂₅BrNO₄ [M + H]⁺ 506.0967; found 506.0989.

41 (454 mg) was obtained by using **General Procedure B** from THIQ **1d** (296 mg, 1.1 mmol), aldehyde **2b** (245.0 mg, 1.0 mmol), alkyne **3a** (196 mg, 2.0 mmol) in 87% yield as yellow oil: 98% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 87.5/12.5, 1.0 mL/min, λ = 214 nm,

 $t_{R}(major) = 30.6 \text{ min}, t_{R}(minor) = 36.2 \text{ min}); [\alpha]^{25}{}_{D} = -85.0 (c = 0.1, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3); \delta = 7.45 (d, J = 8.4 Hz, 2H), 7.36 (t, J = 8.4 Hz, 2H), 7.33-7.25 (m, 2H), 6.79 (s, 1H), 6.75 (d, J = 8.8 Hz, 2H); \delta = 0.4 Hz, 0.2 Hz, 0$

Hz, 1H), 6.57 (s, 1H), 5.11 (s, 2H), 4.67 (s, 1H), 3.96–3.88 (m, 2H), 3.85 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.10–2.96 (m, 1H), 2.89–2.73 (m, 2H), 2.63–2.49 (m, 1H), 2.42 (d, J = 2.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 152.3$, 149.3, 148.8, 146.5, 137.2, 132.8, 128.4, 127.8, 127.7, 127.5, 127.3, 126.8, 116.9, 113.0, 112.5, 112.0, 82.5, 73.7, 71.2, 61.5, 56.0, 55.8, 54.1, 53.1, 44.7, 28.7. IR (KBr): 3442.9, 2095.0, 1634.0, 1517.5, 1471.4, 1268.4, 1222.3, 1074.8, 1010.9, 732.4 cm⁻¹; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₈H₂₉BrNO₄ [M + H]⁺ 522.1280; found 522.1293.

2.3. Pd-catalyzed Reductive Heck exo-Carbocyclization

General Procedure C (Reductive Heck): To a solution of **4a** (215 mg, 0.5 mmol) in DMF/H₂O (12 mL/4 mL) was added HCO₂Na (68 mg, 1 mmol). The solution was bubbled with a stream of dry nitrogen gas for 15 min before addition of Pd(PPh₃)₄ (29 mg, 0.025 mmol). The reaction mixture was heated at 100 °C in an oil bath and stirred for 2 h under the nitrogen atmosphere. The reaction mixture was diluted with CH₂Cl₂ (10 mL). The organic phase was collected and the aqueous phase was extracted with CH₂Cl₂ (3 x 10 mL). The combined organic fractions were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc = 1:1) to provide the cyclization product **5a** (137 mg, 78% yield) as yellow oil. [α]²⁵_D = +103 (*c* = 0.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.15 (d, *J* = 8.0 Hz, 1H), 6.64 (s, 1H), 6.63 (s, 1H), 5.97 (d, *J* = 8.8 Hz, 2H), 5.60 (s, 1H), 4.68 (s, 1H), 4.51 (s, 1H), 4.19 (d, *J* = 16.8 Hz, 1H), 3.98 (d, *J* = 16.8 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.20–3.05 (m, 1H), 2.93–2.79 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.9, 146.7, 146.6, 143.6, 141.9, 128.6, 127.0, 126.4, 117.8, 116.1, 111.7, 111.6, 110.8, 107.0, 101.4, 62.0, 56.0, 55.8, 50.5, 47.6, 27.9. IR (KBr) 3442.6, 1639.5, 1518.7, 1465.7, 1360.3, 1262.5, 1127.1, 1044.8, 729.2 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₁H₂₂NO₄ [M + H]⁺ 352.1549; found 352.1544.

5b (134 mg) was obtained by using **General Procedure C** from **4b** (223 mg, 0.5 mmol) in 73% yield as yellow oil: $[\alpha]^{25}{}_{D} = +93.3$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.36$ (d, J = 8.4 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 6.65 (s, 1H), 6.64 (s, 1H), 5.59 (s, 1H), 4.70 (s, 1H), 4.46 (s, 1H),

4.21 (d, J = 17.2 Hz, 1H), 4.14 (d, J = 17.2 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.84 (s, 3H), 3.83 (s, 3H), 3.20–3.09 (m, 1H), 2.97–2.80 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 151.9$, 147.8, 146.6, 145.0, 142.3, 128.2, 127.8, 127.3, 126.5, 120.1, 111.8, 111.6, 110.9, 109.9, 62.0, 60.1, 56.0, 55.84, 55.77, 51.9, 47.9, 28.2. IR (KBr) 3419.0, 2918.5, 1697.9, 1558.7, 1518.7, 1285.5, 1116.6, 1021.6 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₂H₂₆NO₄ [M + H]⁺ 368.1862; found 368.1867.

5c (128 mg) was obtained by using **General Procedure C** from **4c** (215 mg, 0.5 mmol) in 73% yield as yellow oil: $[\alpha]^{25}_{D} = +121.0$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.07$ (s, 1H), 6.64 (s, 1H), 6.63 (s, 1H), 6.52 (s, 1H), 5.94 (s, 1H), 5.92 (s, 1H), 5.54 (s, 1H), 4.69 (s, 1H), 4.52 (s, 1H),

4.27 (d, J = 16.4 Hz, 1H), 3.87 (d, J = 16.4 Hz, 1H), 3.86 (s, 3H), 3.83 (s, 3H), 3.17–3.06 (m, 1H), 2.92–

2.80 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.9, 147.7, 146.7, 146.6, 142.1, 127.7, 127.2, 126.9, 126.5, 111.8, 111.6, 110.5, 105.9, 104.1, 100.9, 62.0, 56.1, 56.0, 55.8, 47.3, 27.9. IR (KBr) 3443.1, 1635.8, 1518.8, 1455.9, 1356.3, 1262.5, 1107.2, 1054.6, 725.5 cm⁻¹; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₁H₂₂NO₄ [M + H]⁺ 352.1549; found 352.1558.

5d (143 mg) was obtained by using **General Procedure C** from **4d** (223 mg, 0.5 mmol) in 78% yield as yellow oil: $[\alpha]^{25}_{D} = +124.0$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.09$ (s, 1H), 6.65 (s, 2H), 6.54 (s, 1H), 5.58 (s, 1H), 4.69 (s, 1H), 4.55 (s, 1H), 4.35 (d, J = 16.0 Hz, 1H), 3.91 (s,

4H), 3.87 (s, 6H), 3.84 (s, 3H), 3.15 (s, 1H), 2.97–2.80 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 149.5, 147.8 (×2), 146.5, 142.1, 127.0, 126.7, 126.4, 126.0, 111.8, 111.6, 110.1, 108.5, 106.9, 61.9, 55.99, 55.95 (×2), 55.86, 55.83, 47.2, 28.1. IR (KBr) 3442.6, 1635.8, 1518.3, 1465.9, 1259.0, 1217.2, 1023.1, 668.6 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₂H₂₆NO₄ [M + H]⁺ 368.1862; found 368.1866.

5e (119 mg) was obtained by using **General Procedure C** from **4e** (207 mg, 0.5 mmol) in 71% yield as yellow oil: $[\alpha]^{25}_{D} = +90.0$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.16$ (d, J = 8.4 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.62 (s, 1H), 6.60 (s, 1H), 5.97 (d, J = 7.6 Hz, 2H), 5.91 (d, J = 2.0 Hz,

2H), 5.64 (s, 1H), 4.69 (s, 1H), 4.51 (s, 1H), 4.18 (d, J = 16.4 Hz, 1H), 3.95 (d, J = 16.4 Hz, 1H), 3.09–3.19 (m, 1H), 2.96–2.81 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 146.7$, 146.5, 145.3, 143.6, 141.5, 128.4, 128.1, 127.6, 117.8, 116.0, 111.1, 108.8, 108.6, 107.0, 101.4, 100.7, 62.3, 50.0, 47.4, 28.1. IR (KBr) 3442.7, 1636.3, 1481.9, 1262.7, 1035.9, 799.12, 731.3 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₀H₁₈NO₄ [M + H]⁺ 336.1236; found 336.1231.

5f (126 mg) was obtained by using **General Procedure C** from **4f** (215 mg, 0.5 mmol) in 72% yield as yellow oil: $[\alpha]^{25}_{D} = +91.5$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.37$ (d, J = 8.4 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 6.62 (d, J = 2.0 Hz, 2H), 5.91 (d, J = 2.4 Hz, 2H), 5.63 (s, 1H), 4.71

(s, 1H), 4.46 (s, 1H), 4.18 (d, J = 15.2 Hz, 1H), 4.09 (d, J = 15.2 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.19–3.08 (m, 1H), 2.92–2.80 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 151.9$, 146.4, 145.3, 145.0, 141.6, 128.1, 127.8, 127.4, 127.3, 120.2, 111.0, 110.5, 108.8, 108.6, 100.7, 62.1, 60.1, 55.8, 51.1, 47.6, 28.1. IR (KBr) 3443.1, 2078.5, 1636.3, 1485.2, 1285.4, 1279.5, 1033.7, 728.5 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₁H₂₂NO₄ [M + H]⁺ 352.1549; found 352.1538.

5g (132 mg) was obtained by using **General Procedure C** from **4g** (207 mg, 0.5 mmol) in 79% yield as yellow oil: $[\alpha]^{25}{}_{D} = +95.0$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.08$ (s, 1H), 6.61 (s, 1H), 6.60 (s, 1H), 6.50 (s, 1H), 5.94-5,89 (m, 4H), 5.57 (s, 1H), 4.70 (s, 1H), 4.45 (s, 1H), 4.24 (d,

J = 16.0 Hz, 1H), 3.85 (d, J = 16.0 Hz, 1H), 3.19–3.00 (m, 1H), 2.92–2.84 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 147.7$, 146.7, 146.4, 145.2, 141.7, 128.0, 127.7 (×2), 127.0, 110.8, 108.8, 108.7, 105.9, 104.1, 100.9, 100.7, 62.2, 55.6, 47.0, 28.1. IR (KBr) 3442.7, 2075.7, 1635.5, 1485.2, 1242.6, 1035.1, 727.5 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₀H₁₈NO₄ [M + H]⁺ 336.1236; found 336.1240.

5h (133 mg) was obtained by using **General Procedure C** from **4h** (215 mg, 0.5 mmol) in 76% yield as yellow oil: $[\alpha]^{25}_{D} = +103.5$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.09$ (s, 1H), 6.62 (s, 2H), 6.53 (s, 1H), 5.91 (d, J = 2.4 Hz, 2H), 5.62 (s, 1H), 4.71 (s, 1H), 4.54 (s, 1H), 4.30 (d, J

= 16.2 Hz, 1H), 3.91 (s, 3H), 3.90–3.84 (m, 4H), 3.20–3.07 (m, 1H), 2.94–2.82 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 149.6, 147.9, 146.5, 145.2, 141.5, 127.9, 127.6, 126.1, 125.5, 110.6, 108.8, 108.7, 108.5, 106.9, 100.7, 62.2, 56.0, 55.9, 55.2, 46.9, 28.1. IR (KBr) 3442.7, 1636.7, 1516.9, 1258.7, 1034.8, 723.0 cm⁻¹; HRMS (CI⁺) (*m/z*) calcd. for C₂₁H₂₂NO₄ [M + H]⁺ 352.1549; found 352.1574.

5i (149 mg) was obtained by using **General Procedure C** from **4i** (253 mg, 0.5 mmol) in 70% yield as yellow oil: $[\alpha]^{25}_{D} = +162.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.45$ (d, J = 7.2 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.16 (d, J = 8.4 Hz, 1H), 6.73 (d, J = 8.4

Hz, 1H), 6.68 (s, 1H), 6.66 (s, 1H), 5.99 (s, 1H), 5.96 (s, 1H), 5.61 (s, 1H), 5.13 (s, 2H), 4.69 (s, 1H), 4.51 (s, 1H), 4.16 (d, J = 16.8 Hz, 1H), 3.97 (d, J = 16.8 Hz, 1H), 3.83 (s, 3H), 3.20–3.00 (m, 1H), 2.96–2.70 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 147.3$, 147.1, 146.6, 143.6, 141.8, 137.2, 128.6, 128.5, 127.8, 127.3, 127.1, 127.0, 117.7, 116.1, 114.4, 112.4, 110.9, 107.0, 101.4, 71.0, 62.0, 56.2, 50.5, 47.6, 27.8. IR (KBr) 3445.5, 1629.4, 1536.5, 1445.7, 1324.3, 1258.6, 1122.1, 1037.6, 733.1; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₇H₂₅NO₄ [M + H]⁺ 428.1862; found 428.1852.

5j (170 mg) was obtained by using **General Procedure C** from **4j** (261 mg, 0.5 mmol) in 77% yield as yellow oil: $[\alpha]^{25}_{D} = +153.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.45$ (d, J = 7.6 Hz, 2H), 7.41–7.33 (m, 3H), 7.30 (d, J = 7.3 Hz, 1H), 6.86 (d, J = 8.8 Hz, 1H), 6.68 (s, 1H), 6.67

(s, 1H), 5.60 (s, 1H), 5.13 (s, 2H), 4.71 (s, 1H), 4.47 (s, 1H), 4.16 (s, 1H), 4.13 (s, 1H), 3.88 (s, 3H), 3.83 (s, 6H), 3.15-3.10 (m, 1H), 2.92-2.75 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 151.9, 147.3, 147.1, 145.0, 142.1, 137.3, 128.5, 128.1, 127.8, 127.7, 127.3, 127.19, 127.16, 120.1, 114.4, 112.5, 110.9, 110.1, 71.1, 61.9, 60.1, 56.2, 55.8, 51.7, 47.8, 28.0. IR (KBr) 3445.5, 1629.4, 1536.5, 1445.7, 1324.3, 1258.6, 1122.1, 1037.6, 733.1; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₈H₂₉NO₄ [M + H]⁺ 443.2097; found 443.2045.

5k (158 mg) was obtained by using **General Procedure C** from **4k** (253 mg, 0.5 mmol) in 74% yield as yellow oil: $[\alpha]^{25}_{D} = +100.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.40$ (d, J = 8.0 Hz, 2H), 7.34 (t, J = 8.0 Hz, 2H), 7.31 – 7.27 (m, 1H), 7.12 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.66 (s, 1H), 6.64 (s, 1H), 5.97 (s, 1H), 5.96 (s, 1H), 5.51

(s, 1H), 5.11 (s, 2H), 4.53 (s, 1H), 4.46 (s, 1H), 4.12 (d, J = 16.0 Hz, 1H), 3.96 (d, J = 16.0 Hz, 1H), 3.88 (s, 3H), 3.19–3.02 (m, 1H), 2.92–2.74 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.7$, 146.6, 145.5, 143.5, 141.6, 137.2, 128.53, 128.45, 127.7, 127.4 (×2), 126.4, 117.8, 116.1, 115.0, 112.2, 110.7, 107.0, 101.4, 71.2, 61.9, 56.0, 50.4, 47.7, 27.9. IR (KBr) 3453.5, 1634.3, 1527.5, 1448.6, 1353.3, 1256.6, 1134.1, 731.1 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₇H₂₅NO₄ [M + H]⁺ 428.1862; found 428.1850.

51 (170 mg) was obtained by using **General Procedure C** from **41** (261 mg, 0.5 mmol) in 77% yield as yellow oil: $[\alpha]^{25}_{D} = +$ 112.0 (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.41$ (d, J = 7.3 Hz, 2H), 7.38–7.30 (m, 3H), 7.28 (d, J = 7.3 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.67 (s,

1H), 6.65 (s, 1H), 5.49 (s, 1H), 5.11 (s, 2H), 4.52 (s, 1H), 4.39 (s, 1H), 4.20–4.10 (m, 2H), 3.88 (s, 6H), 3.82 (s, 3H), 3.20–2.99 (m, 1H), 2.96–2.72 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 151.8, 148.6, 145.5, 145.0, 141.9, 137.3, 128.4, 128.0, 127.9, 127.7, 127.6, 127.4, 126.4, 120.1, 115.1, 112.2, 110.9, 109.9, 71.2, 61.8, 60.1, 56.0, 55.8, 51.7, 47.9, 28.1. IR (KBr) 3679.4, 3622.5, 2937.0, 1580.2, 1494.9, 1283.3, 1025.1 cm⁻¹; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₈H₂₉NO₄ [M]⁺443.2097; found 443.2003.

2.4. PtO₂-catalyzed Hydrogenation

General Procedure D: To a solution of compound **5a** (35 mg, 0.1 mmol) in acetic acid (2.0 mL) was added PtO₂ (2.3 mg, 0.01 mmol) and the reaction suspension was stirred under an atmosphere of hydrogen (1 atm) for 12 h. The solvent (acetic acid) was removed by rotary evaporation under reduced pressure. The residue was dissolved in DCM (5 mL) and washed with saturated aqueous sodium carbonate (2 x 5 mL). The organic layer was collected, dried over MgSO₄, and concentrated. The residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc = 5:1) to provide cavidine¹ (**6a**, 33.9 mg, 96% yield) as white solid: m.p. 180-182 °C (hexane/dichloromethane); 94% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R(major) =9.8 min, t_R(minor) = 18.4 min); [α]²⁵_D = +242.0 (*c* = 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 6.72 (d, *J* = 8.0 Hz, 1H), 6.69 (s, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 3.50 (d, *J* = 16.0 Hz, 1H), 3.25 (dt, *J* = 24.4, 12.4 Hz, 1H), 3.19–3.00 (m, 1H), 2.63–2.57 (m, 2H), 0.94 (d, *J* = 6.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 147.7, 147.2, 144.7, 143.0, 135.9, 128.4, 128.3, 121.2, 116.8, 111.2, 108.6, 106.7, 101.0, 63.1, 56.1, 55.8, 53.3, 51.3, 38.6, 29.3, 18.4. IR (KBr) 2927.2, 2788.6, 1610.7, 1515.5, 1256.8, 1043.2, 808.6 cm⁻¹; HRMS (Cl⁺) (m/z) calcd. for C₂₁H₂₄NO₄ [M + H]⁺ 354.1705; found 354.1722.

Corydaline² **6b** (33.5 mg) was obtained by using **General Procedure D** from **5b** (36.7 mg, 0.1 mmol) in 91% yield as white solid: m.p. 138-140 °C (hexane/dichloromethane); 93% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) =10.0

min, $t_R(minor) = 18.9 \text{ min}$; $[\alpha]^{25}_D = +249.0 (c = 0.5, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) $\delta = 6.91$ (d, J = 8.8 Hz, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.68 (s, 1H), 6.61 (s, 1H), 4.20 (d, J = 16.0 Hz, 1H), 3.88 (s, 6H), 3.862 (s, 3H), 3.858 (s, 3H), 3.69 (s, 1H), 3.50 (d, J = 16.0 Hz, 1H), 3.29–3.02 (m, 3H), 2.71–2.50 (m, 2H), 0.94 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 150.0, 147.6, 147.1, 144.8, 134.9, 128.5, 128.45, 128.35, 124.0, 111.1, 110.9, 108.7, 63.0, 60.1, 56.1, 55.9, 55.8, 54.4, 51.4, 38.3, 29.3, 18.3. IR (KBr) 2933.6, 2806.1, 2755.3, 1622.5, 1531.2, 1462.1, 1259.8, 1064.0, 1028.3 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₂H₂₈NO₄ [M + H]⁺ 370.2018; found 370.2055.$

¹ Kitsiou, C.; Unsworth, W. P.; Coulthard, G.; Taylor, R. J. Tetrahedron, 2014, 70, 7172–7180.

² Yu, L. L.; Li, R. T.; Ai, Y. B.; Liu, W.; Deng, Z. S.; Zou, Z. M. Molecules 2014, 19, 13332–13341.

Pseudocavidine^{3,4} **6c** (33.2 mg) was obtained by using **General Procedure D** from **5c** (35.1 mg, 0.1 mmol) in 94% yield as white solid: m.p. 183-185 °C (hexane/dichloromethane); 94% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 90/10, 1.0 mL/min, λ = 214 nm, t_R(major) = 10.0

min, $t_R(minor) = 18.4 \text{ min}$; $[\alpha]^{25}_D = +270.0 (c = 0.5, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) $\delta = 6.68$ (s, 1H), 6.65 (s, 1H), 6.60 (s, 1H), 6.53 (s, 1H), 5.90 (s, 2H), 3.92 (d, J = 14.8 Hz, 1H), 3.879 (s, 3H), 3.872 (s, 3H), 3.70 (s, 1H), 3.59 (d, J = 14.8 Hz, 1H), 3.20–3.00 (m, 3H), 2.60–2.50 (m, 2H), 0.94 (d, J = 6.8 Hz, 3H) ¹³C NMR (100 MHz, CDCl₃) $\delta = 147.7$, 147.2, 146.0, 145.7, 134.4, 128.34, 128.27, 127.0, 111.2, 108.63, 108.56, 105.8, 100.6, 63.2, 58.9, 56.1, 55.8, 51.2, 38.8, 29.2, 18.1. IR (KBr) 2933.5, 2800.6, 1635.9, 1512.8, 1483.5, 1257.0, 1037.6, 730.1 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₁H₂₄NO₄ [M + H]⁺ 354.1705; found 354.1735.

Pseudocorydaline 6d (35.4 mg) was obtained by using **General Procedure D** from **5d** (36.7 mg, 0.1 mmol) in 96% yield as white solid: m.p. 143-145 °C (hexane/dichloromethane); 93.5% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 97.5/2.5, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) =

28.2 min, $t_R(minor) = 36.9 min$); $[\alpha]^{25}_D = +259.0$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 6.70$ (s, 1H), 6.68 (s, 1H), 6.61 (s, 1H), 6.56 (s, 1H), 3.94 (d, J = 14.4 Hz, 2H), 3.88 (s, 9H), 3.85 (s, 3H), 3.73 (s, 1H), 3.62 (d, J = 14.4 Hz, 1H), 3.16–3.25 (m, 1H), 3.03–3.16 (m, 2H), 2.51–2.63 (m, 2H), 0.96 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 147.62$, 147.56, 147.3, 147.1, 133.3, 128.5, 128.3, 126.0, 111.5, 111.1, 108.8, 108.6, 63.3, 58.6, 56.0, 55.9 (×2), 55.8, 51.3, 38.4, 29.2, 18.0. IR (KBr) 2929.5, 1610.5, 1511.2, 1227.0, 1028.4, 749.6 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₂H₂₈NO₄ [M + H]⁺ 370.2018; found 370.2028.

Tetrahydrocorysamine ⁵ **6e** (31.3 mg) was obtained by using **General Procedure D** from **5e** (33.5 mg, 0.1 mmol) in 93% yield as white solid: m.p. 200-202 °C (hexane/dichloromethane); 91% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 200/1, 1.0 mL/min, λ = 214 nm, t_R(major) =

12.0 min, $t_R(minor) = 20.7 min$); $[\alpha]^{25}_D = +226.0$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 6.71$ (d, J = 8.0 Hz, 1H), 6.69 (s, 1H), 6.66 (d, J = 8.0 Hz, 1H), 6.58 (s, 1H), 5.98–5.90 (m, 4H), 4.06 (d, J = 15.2 Hz, 1H), 3.70 (s, 1H), 3.48 (d, J = 15.2 Hz, 1H), 3.25–3.16 (m, 1H), 3.16–2.97 (m, 2H), 2.59 (dd, J = 15.2, 7.6 Hz, 2H), 0.95 (d, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 146.3$, 145.6, 144.7, 143.0, 135.9, 129.6, 129.3, 121.3, 116.7, 108.3, 106.8, 105.6, 101.0, 100.7, 63.5, 53.3, 51.2, 38.7, 29.8, 18.4. IR (KBr) 3459.5, 2933.5, 2866.7, 1637.3, 1484.7, 1265.7, 1040.9, 637.5 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₀H₂₀NO₄ [M + H]⁺ 338.1392; found 338.1385.

Thalictricavine^{6,7} **6f** (34.5 mg) was obtained by using **General Procedure D** from **5f** (35.1 mg, 0.1 mmol) in 98% yield as white solid: m.p. 204-206 °C (hexane/dichloromethane); 93% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 250/1 + 0.5% Et₂NH, 1.0 mL/min, λ = 230 nm,

³ Shamma, M.; Jones, C. D.; Weiss, J. A. Tetrahedron 1969, 25, 4347-4355.

⁴ Pai, B. R.; Nagarajan, K.; Suguna, H.; Natarajan, S. *Heterocycles* 1978, *9*, 1287–1288.

⁵ Hanaoka, M.; Hirasawa, T.; Cho, W. J.; Yasuda, S. Chem. Pharm. Bull. 2000, 48, 399-404.

⁶ Hanaoka, M.; Yoshida, S.; Mukai, C. Chem. Pharm. Bull. 1989, 37, 3264–3267.

⁷ Takao, N.; Iwasa, K.; Kamigauhi M.; Sugiura, M. Chem. Pharm. Bull. 1977, 25, 1426–1435.

 $t_{R}(major) = 25.2 \text{ min}, t_{R}(minor) = 21.8 \text{ min}); [\alpha]^{25}_{D} = +261 (c = 0.1, CHCl_3); {}^{1}H NMR (400 \text{ MHz}, CDCl_3) \\\delta = 6.89 (d, J = 8.4 \text{ Hz}, 1\text{H}), 6.82 (d, J = 8.4 \text{ Hz}, 1\text{H}), 6.68 (s, 1\text{H}), 6.58 (s, 1\text{H}), 5.92 (d, J = 7.2 \text{ Hz}, 2\text{H}), \\4.19 (d, J = 16.0 \text{ Hz}, 1\text{H}), 3.86 (s, 6\text{H}), 3.66 (s, 1\text{H}), 3.48 (d, J = 16.0 \text{ Hz}, 1\text{H}), 3.12-3.25 (m, 2\text{H}), 3.00-3.12 (m, 1\text{H}), 2.58 (d, J = 14.4 \text{ Hz}, 2\text{H}), 0.96 (d, J = 6.8 \text{ Hz}, 3\text{H}). {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, CDCl_3) \delta = 150.0, \\146.3, 145.6, 144.8, 134.9, 129.7, 129.3, 128.4, 124.0, 111.0, 108.3, 105.6, 100.7, 63.4, 60.1, 55.9, 54.4, \\51.3, 38.4, 29.8, 18.2. \text{ IR} (KBr) 3445.7, 2926.1, 2745.9, 1683.8, 1457.1, 1220.8, 1039.0, 796.3 cm^{-1}; \\HRMS(CI^{+}) (m/z) \text{ calcd. for } C_{21}H_{24}\text{NO}_4 [M + \text{H}]^+ 354.1705; found 354.1710.$

Tetrahydroworenine ⁸ **6g** (31.0 mg) was obtained by using **General Procedure D** from **5g** (33.5 mg, 0.1 mmol) in 92% yield as white solid: m.p. 208-209 °C (hexane/dichloromethane); 94% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 100/1 + 0.5% Et₂NH, 1.0 mL/min, $\lambda = 214$

nm, $t_R(major) = 20.2 \text{ min}$, $t_R(minor) = 17.7 \text{ min}$; $[\alpha]^{25}_D = +240.0 (c = 0.2, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) $\delta = 6.68$ (s, 1H), 6.63 (s, 1H), 6.58 (s, 1H), 6.52 (s, 1H), 5.90 (s, 2H), 5.92 (s, 2H), 3.91 (d, J = 14.8 Hz, 1H), 3.68 (s, 1H), 3.58 (d, J = 14.8 Hz, 1H), 3.17–2.94 (m, 3H), 2.58–2.48 (m, 2H), 0.95 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl_3) δ (ppm) 146.3, 146.0, 145.7, 145.6, 134.4, 129.5, 129.3, 126.9, 108.6, 108.3, 105.8, 105.5, 100.7, 100.6, 63.6, 58.9, 51.1, 38.9, 29.7, 18.1. IR (KBr) 3444.3, 2956.5, 2876.6, 1635.3, 1384.6, 1260.9, 1033.9, 669.5 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₀H₂₀NO₄ [M + H]⁺ 338.1392; found 338.1385.

Pseudothalictricavine ⁹ **6h** (33.5 mg) was obtained by using **General Procedure D** from **5h** (35.1 mg, 0.1 mmol) in 95% yield as white solid: m.p. 168-169 °C (hexane/dichloromethane); 95.5% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 100/1 + 0.5% Et₂NH, 1.0 mL/min, $\lambda = 230$

nm, $t_R(major) = 25.2 \text{ min}$, $t_R(minor) = 21.8 \text{ min}$; $[\alpha]^{25}_D = +246.0 (c = 0.1, \text{CHCl}_3)$; ¹H NMR (400 MHz, CDCl}3) $\delta = 6.69$ (s, 1H), 6.66 (s, 1H), 6.58 (s, 1H), 6.55 (s, 1H), 5.93 (d, J = 9.2 Hz, 2H), 3.93 (d, J = 16.0 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.71 (s, 1H), 3.60 (d, J = 16.0 Hz, 1H), 3.00–3.20 (m, 2H), 2.51–2.61 (m, 1H), 0.98 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl}3) $\delta = 147.6$, 147.3, 146.3, 145.6, 133.3, 129.7, 129.3, 125.9, 111.6, 108.8, 108.3, 105.6, 100.7, 63.7, 58.5, 55.9 (×2), 51.2, 38.5, 29.7, 18.0. IR (KBr) 3414.4, 2929.3, 1611.1, 1388.3, 1037.5, 750.1 cm⁻¹; HRMS (CI⁺) (*m*/*z*) calcd. for C₂₁H₂₄NO4 [M + H]⁺ 354.1705; found 354.1721.

2.5. Pd-catalyzed Hydrogenation and Debenzylation:

General Procedure E: To a solution of **5i** (43 mg, 0.1 mmol) in MeOH (2.0 mL) was added Pd/C (10.6 mg, 0.01 mmol, 10 wt%). The suspension was stirred under an atmosphere of hydrogen (1 atm) for 12 h. After completion of the reaction, CH_2Cl_2 (4 mL) was added to the solution and the reaction mixture was washed with saturated aqueous brine. The organic layer was collected and the aqueous layer was extracted with CH_2Cl_2 (3 x 4 mL). The combined fractions were dried over anhydrous magnesium sulfate

⁸ Govindachari, T. R.; Nagarajan, K.; Natarajan, S.; Pai, B. R. Indian J. Chem. 1971, 9, 1313–1315.

⁹ Cushman, M.; Gentry, J.; Dekow, F. W. J. Org. Chem. 1977, 42, 1111–1116.

and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc = 5:1) to provide isoapocavidine (**6i**, 28.7 mg, 85% yield) as colorless oil: 95.5% *ee* (HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) = 16.1 min, t_R(minor) = 20.6 min); $[\alpha]^{25}_{D} = +265.0$ (*c* = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 6.71$ (d, *J* = 8.0 Hz, 1H), 6.68 (s, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 6.66 (s, 1H), 5.96 (s, 1H), 5.93 (s, 1H), 4.06 (d, *J* = 16.0 Hz, 1H), 3.88 (s, 3H), 3.74–3.68 (m, 1H), 3.49 (d, *J* = 16.0 Hz, 1H), 3.22 (qt, *J* = 16.4, 8.2 Hz, 1H), 3.16–3.08 (m, 1H), 3.08–2.95 (m, 1H), 2.64–2.49 (m, 2H), 0.93 (d, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 145.4$, 144.7, 143.6, 143.0, 135.9, 129.1, 127.9, 121.2, 116.8, 114.0, 107.8, 106.7, 101.0, 63.2, 56.1, 53.4, 51.2, 38.7, 29.1, 18.4. IR (KBr) 2933.2, 2764.6, 1620.5, 1462.3, 1358.7, 1256.8, 1143.2, 864.6 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₀H₂₁NO₄ [M]⁺ 339.1471; found 339.1474.

Corybulbine¹⁰ **6j** (32 mg) was obtained by using **General Procedure E** from **5j** (44.3 mg, 0.1 mmol) in 90% yield as colorless oil: 96% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 97.5/2.5, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) = 24.1 min, t_R(minor) = 34.1 min); [α]²⁵_D

= +277.0 (*c* = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 6.90 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.68 (s, 1H), 6.66 (s, 1H), 5.50 (s, 1H), 4.19 (d, *J* = 11.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 6H), 3.68 (s, 1H), 3.49 (d, *J* = 11.6 Hz, 1H), 3.24–3.10 (m, 2H), 3.05 (t, *J* = 13.9 Hz, 1H), 2.63–2.47 (m, 2H), 0.95 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 150.0, 145.4, 144.9, 143.6, 134.9, 129.2, 128.5, 128.0, 123.9, 114.0, 110.9, 107.9, 63.1, 60.1, 56.1, 55.9, 54.5, 51.4, 38.4, 29.1, 18.3. IR (KBr) 2944.3, 1637.9, 1532.2, 1247.0, 1068.4, 755.7 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₁H₂₅NO₄ [M]⁺ 355.1784; found 355.1779.

Apocavidine¹¹ **6k** (28.8 mg) was obtained by using **General Procedure E** from **5k** (42.7 mg, 0.1 mmol) in 85% yield as colorless oil: 95.5% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, λ = 214 nm, t_R(major) = 13.9 min, t_R(minor) = 18.0 min); [α]²⁵_D = +211.0 (*c* =

0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 6.77$ (s, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.66 (d, J = 8.0 Hz, 1H), 6.59 (s, 1H), 5.94 (d, J = 12.2 Hz, 2H), 4.06 (d, J = 16.0 Hz, 1H), 3.89 (s, 3H), 3.70(s, 1 H), 3.48 (d, J = 16.0 Hz, 1H), 3.59–3.39 (m, 1H), 3.39–3.00 (m, 1 H), 2.71–2.41 (m, 2H), 0.94 (d, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 144.7$, 144.6, 144.1, 143.0, 136.0, 129.2, 127.5, 121.3, 116.7, 111.4, 110.4, 106.7, 101.0, 63.0, 55.8, 53.3, 51.4, 38.3, 29.3, 18.5. IR (KBr) 2929.5, 2778.3, 1643.7, 1535.5, 1235.7, 1144.3, 1067.9, 877.6 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₀H₂₂NO₄ [M + H]⁺ 340.1549; found 340.1552.

Isocorybulbine 6l (32.3 mg) was obtained by using **General Procedure E** from **5l** (44.3 mg, 0.1 mmol) in 91% as colorless oil: 94.5% *ee* (HPLC conditions: Chiralcel OD-H column, hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 214$ nm, t_R(major) = 10.4 min, t_R(minor) = 17.5 min); [α]²⁵_D = +225.0 (*c*

= 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 6.89 (d, *J* = 8.4 Hz, 1H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.77 (s, 1H), 6.59 (s, 1H), 4.19 (d, *J* = 15.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 6H), 3.65 (s, 1H), 3.49 (d, *J* = 15.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 6H), 3.65 (s, 1H), 3.49 (d, *J* = 15.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 6H), 3.65 (s, 1H), 3.49 (d, *J* = 15.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 6H), 3.65 (s, 1H), 3.49 (d, *J* = 15.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 6H), 3.65 (s, 1H), 3.49 (d, *J* = 15.6 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 6H), 3.65 (s, 1H), 3.49 (d, *J* = 15.6 Hz, 1H), 3.88 (s, 3H), 3.88 (s, 3H),

¹⁰ Saito, S. Y.; Tanaka, M.; Matsunaga, K.; Li, Y.; Ohizumi, Y. Biol. Pharm. Bull. 2004, 27, 1270-1274.

¹¹ Yu, C. K., MacLean, D. B.; Rodrigo, R. G. A.; Manske, R. H. F. Can. J. Chem. Eng. 1970, 48, 3673–3678.

Hz, 2H), 3.25-3.12 (m, 2H), 3.10-3.00 (m, 1H), 2.59 (dd, J = 12.8, 6.8 Hz, 2H), 0.95 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 150.0$, 144.8, 144.7, 144.0, 135.0, 129.3, 128.4, 127.6, 124.1, 111.4, 110.9, 110.4, 62.9, 60.1, 55.8 (×2), 54.4, 51.5, 38.1, 29.4, 18.3. IR (KBr) 2935.3, 1622.9, 1544.4, 1253.0, 1124.5, 1069.8, 743.6 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₁H₂₅NO₄ [M]⁺ 355.1784; found 355.1786.

General Procedure F (Heck-Suzuki): To a solution of compound **4a** (86 mg, 0.2 mmol) and boronic acid (0.3 mmol) in DMF/H₂O (6.0 mL/2.0 mL) was added K₂CO₃ (55.2 mg, 0.4 mmol). The solution was bubbled with a stream of dry nitrogen gas for 15 min before the addition of Pd(PPh₃)₄ (11.5 mg, 0.01 mmol). The reaction mixture was stirred at 100 °C for 2 h and then the mixture was diluted with EtOAc, washed with water and brine. The organic layers were dried with Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel to afford the corresponding compounds **9a–9c** and **9k**.

9a (78.5 mg) was obtained by using **General Procedure F** from **4a** (86 mg, 0.2 mmol) in 92% as colorless oil: $[\alpha]^{25}{}_{D}$ = +121.0 (*c* = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.20–7.16 (m, 4H), 7.16–7.10 (m, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.70 (s, 1H), 6.63 (s, 1H), 6.43 (d, *J* = 8.0, 1H), 6.03 (s, 1H), 5.97 (s, 2H), 4.50 (s, 1H), 4.31 (d, *J* = 16.0 Hz, 1H), 4.02 (q, *J* = 16.0 Hz, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.41–3.30 (m, 1H), 3.00–2.88 (m, 3H).¹³C

NMR (100 MHz, CDCl₃) δ = 148.0, 146.9, 146.1, 143.3, 138.0, 135.7, 129.1, 128.1, 127.8, 127.6, 126.8, 126.6, 126.2, 122.6, 117.8, 111.6, 111.5, 106.0, 101.3, 63.4, 56.1, 55.8, 50.9, 48.0, 28.0. IR (KBr) 2922.8, 1645.1, 1607.4, 1512.2, 1463.1, 1363.1, 1258.7, 1128.8, 1043.8, 914.9, 811.6, 731.4, 646.5, 582.4, 476.8 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for C₂₇H₂₅NO₄ [M+H]⁺ 428.1862; found 428.1825.

9b (87.0 mg) was obtained by using **General Procedure F** from **4a** (86 mg, 0.2 mmol) in 95% as colorless oil: $[\alpha]^{25}_{D} = +137.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.16-7.08$ (m, 4H), 6.69 (d, J = 8.0 Hz, 1H), 6.67 (s, 1H), 6.64 (s, 1H), 6.46 (d, J = 8.0 Hz, 1H), 6.00–5.92 (m, 3H), 4.47 (s, 1H), 4.28 (d, J = 16.0 Hz, 1H), 4.02 (d, J = 16.0 Hz, 1H), 3.87 (s, 3H),

3.86 (s, 3H), 3.40–3.26 (m, 1H), 2.98–2.85 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 148.0, 146.9, 146.3, 143.4, 136.7, 136.4, 132.2, 130.4, 128.3, 127.6, 127.5, 125.8, 125.1, 122.4, 117.7, 111.4 (×2), 106.1, 101.4, 63.4, 56.1, 55.8, 51.0, 48.1, 28.1. IR (KBr) 3005.0, 2923.7, 2837.2, 1605.0, 1510.2, 1463.1, 1363.2, 1130.9, 1045.7, 913.1, 821.3, 731.8, 644.1, 512.4 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for C₂₇H₂₄ClNO₄ [M+H]⁺462.1472; found 462.1422.

9c (92.0 mg) was obtained by using **General Procedure F** from **4a** (86 mg, 0.2 mmol) in 93% as colorless oil: $[\alpha]^{25}_{D} = +123.0$ (c = 0.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.43$ (s, 1H), 7.37 (t, J = 8.0 Hz, 2H), 7.28 (d, J = 8.0 Hz, 1H), 6.68 (s, 1H), 6.66–6.61 (m, 2H), 6.44 (d, J = 8.3, 1H), 5.99 (s, 3H), 4.49 (s, 1H), 4.30 (d, J = 17.3 Hz, 1H), 4.04 (d, J = 17.4, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.34 (ddd, J = 9.2 Hz, 6.2, 3.7, 1H), 3.00–2.83 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ = 148.1, 147.0, 146.6, 143.5, 138.7, 137.9, 132.5, 130.6, 130.3, 128.4, 127.7, 127.2, 126.0 (d, J = 3.9 Hz), 125.7, 125.4, 124.6, 123.2 (d, J = 3.9 Hz), 122.7, 122.4, 117.9, 111.5, 106.0, 101.4, 63.4, 56.1, 55.8, 51.2, 48.1, 28.2. IR (KBr) 2924.4, 1608.2, 1513.7, 1464.9, 1329.6, 1258.6, 1163.0, 1125.6, 1043.9, 915.8, 808.6, 731.6, 652.3, 587.0, 472.2 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for C₂₈H₂₄F₃NO₄ [M+H]⁺ 496.1376; found 496.1376.

9k (86.0 mg) was obtained by using **General Procedure F** from **4e** (82.8 mg, 0.2 mmol) in 90% as colorless oil: $[\alpha]^{25}_{D} = +87.0$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.48$ (s, 1H), 7.41 (s, 1H), 7.39 (s, 1H), 7.29 (d, J = 8.0 Hz, 1H), 6.65 (s, 1H), 6.64–6.60 (m, 2H), 6.43 (d, J = 8.0 Hz, 2H), 6.04 (s, 2H), 5.97 (s, 2H), 5.97–5.92 (m, 2H), 4.49 (s, 2H), 4.28 (d, J = 16.0 Hz, 2H), 4.01 (d, J = 16.0 Hz, 2H), 3.38–3.25 (m, 1H), 3.02–2.80 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 146.7$, 146.5, 145.6, 143.5, 138.8, 137.5, 132.5, 130.7, 130.4, 128.7, 128.4, 128.1 (q, J = 10.8 Hz, 1C), 126.8, 125.98, 126.0, 125.4 (q, J = 10.8 Hz, 1C), 124.9, 123.23, 123.19, 122.7 (q, J = 10.8 Hz, 1C), 122.5, 120.0 (q, J = 10.8 Hz, 1C). 117.8, 108.7, 108.3, 106.1, 101.34, 100.78, 63.7, 50.4, 47.9, 28.20. IR (KBr) 2899.0, 1637.0, 1383.3, 1328.8, 1253.2, 1167.6, 1126.0, 1043.5, 996.7, 915.2, 812.5, 733.2, 653.8, 590.6, 523.2, 465.1 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for C₂₇H₂₀F₃NO₄ [M+H]⁺ 480.1423; found 480.1379.

10¹² (41.4 mg) was obtained by using **General Procedure D** from **9k** (47.9 mg, 0.1 mmol) in 86% yield as colorless oil: $[\alpha]^{25}_{D} = +261.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, DMSO- d_6) $\delta = 7.47-7.32$ (m, 2H), 7.17 (d, J = 7.2 HZ, 1H), 7.04 (s, 1H), 6.94 (s, 1H), 6.65 (s, 1H), 6.54 (d, J = 8.0, 1H), 6.02–5.96 (m, 2H), 5.95–5.90 (m, 2H), 5.89 (s, 1H), 4.04 (d, J = 15.6, 1H), 3.71 (s, 1H), 3.59–3.48 (m, 1H), 3.44 (d, J = 15.6 Hz, 1H), 3.15–3.06 (m, 1H), 2.95 (s, 1H), 2.72 (dd, J = 13.6 Hz, 4.8, 1H), 2.66–2.54 (m, 2H), 2.50–2.41 (m, 1H). ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 145.9$, 145.41, 144.7, 142.7, 142.4, 133.3, 132.7, 129.0, 128.65, 128.61, 128.56, 128.3 (q, J = 10.8 Hz, 1C), 125.6 (q, J = 10.8 Hz, 1C), 122.9 (q, J = 10.8 Hz, 1C), 122.2, 122.1, 121.7, 120.2 (q, J = 10.8 Hz, 1C), 116.2, 108.0, 105.9, 105.6, 100.9, 100.5, 62.9, 52.67, 50.4, 45.2, 38.5, 29.1. IR (KBr) 2917.9, 1648.3, 1473.8, 1370.7, 1329.2, 1261.6, 1165.4, 1123.2, 1069.1, 1038.8, 931.2, 806.3, 737.6, 702.0, 660.00 cm⁻¹; HRMS (CI⁺) (m/z) calcd. for C₂₇H₂₂F₃NO₄ [M]⁺ 482.1579; found 482.1547.

¹² Zhang, Z. H.; Zhang, H. J.; Deng, A. J.; Wang, B.; Li, Z. H.; Liu, Y.; Wu, L. Q.; Wang, W. J.; Qin, H. L. J. Med. Chem. 2015, 58, 7557-7571.

2.7 Preparation of Compounds 9e–9g via Cascade Heck-Heck reaction

General Procedure G (Heck-Heck): To a solution of compound **4a** (86 mg, 0.2 mmol) and olefin (1 mmol) in DMF/H₂O (6.0 mL/2.0 mL) was added K₂CO₃ (55.2 mg, 0.4 mmol). The solution was bubbled with a stream of dry nitrogen gas for 15 min before the addition of Pd(PPh₃)₄ (11.5 mg, 0.01 mmol). The mixture was stirred at 110 °C for 3 h and then the mixture was diluted with EtOAc, washed with water and saturated brine. The organic layers were dried with Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel to afford compounds **9e–9g**.

9e(72.0 mg) was obtained by using **General Procedure G** from **4a** (86 mg, 0.2 mmol) in 83% yield as colorless oil: $[\alpha]^{25}_{D} = +261.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.79$ (dd, J = 16.0 Hz, 12.0, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.65 (s, 1H), 6.54 (s, 1H), 6.02 (d, J = 4.0 Hz, 2H), 5.83 (d, J = 16.0 Hz, 1H), 5.77 (d, J = 12.0 Hz, 1H), 4.49 (s, 1H), 4.23 (d, J = 16.0 Hz, 1H), 3.99 (d, J = 16.0 Hz, 1H),

3.89 (s, 3H), 3.83 (s, 3H), 3.70 (s, 3H), 3.18–3.08 (m, 1H), 2.93–2.77 (m, 3H).¹³C NMR (100 MHz, CDCl₃) δ = 167.7, 148.1, 147.6, 147.0, 145.2, 141.9, 128.3, 127.8, 125.1, 123.3, 123.1, 121.9, 117.6, 111.5, 111.2, 106.5, 101.6, 63.2, 56.1, 55.8, 51.4, 51.3, 48.3, 28.4. IR (KBr) 2938.9, 2841.6, 1709.3, 1615.6, 1514.2, 1460.7, 1366.7, 1262.8, 1135.2, 1043.4, 912.9, 815.5, 731.0, 646.0, 567.3 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for C₂₅H₂₅NO₆ [M+H]⁺ 436.1760; found 436.1739.

9f (71.0 mg) was obtained by using **General Procedure G** from **4a** (86 mg, 0.2 mmol) in 85% yield as colorless oil: $[\alpha]^{25}{}_{\rm D} = +135.0$ (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 7.65$ (dd, J = 8.0, 4.0, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.66 (s, 1H), 6.54 (s, 1H), 6.10 (d, J = 16.0 Hz, 1H), 6.05–6.0 (m, 2H), 5.79 (d, J = 16.0 Hz, 1H), 4.50 (s, 1H), 4.23 (d, J = 16.0 Hz, 1H), 4.50 (s, 1H), 4.23 (d, J = 16.0 Hz, 1H), 4.50 (s, 1H), 50 (

16.0 Hz, 1H), 4.01 (d, J = 16.0 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H), 3.18–3.06 (m, 1H), 2.95–2.78 (m, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 198.6$, 148.2, 147.7, 146.4, 143.8, 140.6, 131.5, 128.4, 127.8, 125.0, 123.4, 123.1, 117.8, 111.5, 111.3, 106.5, 101.7, 63.3, 56.1, 55.9, 51.5, 48.5, 28.4, 27.5. IR (KBr) 2922.1, 1663.9, 1597.0, 1513.1, 1463.4, 1365.0, 1139.7, 1043.8, 993.0, 913.8, 816.9, 729.8, 646.0 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for C₂₅H₂₅NO₅ [M+H]⁺ 420.1811; found 420.1700.

9g (70.0 mg) was obtained by using **General Procedure G** from **4a** (86 mg, 0.2 mmol) in 78% yield as colorless oil: $[\alpha]^{25}{}_{\rm D}$ = +117.0 (c = 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ = 7.65 (d, J = 8.0 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.66 (s, 1H), 6.61 (s, 1H), 6.01 (d, J = 8.0 Hz, 2H), 5.97 (d, J = 8.0 Hz, 1H), 4.51 (s, 1H), 4.20 (d, J = 16.0 Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.72 (s, 3H),

3.20–3.01 (m, 1H), 2.97–2.76 (m, 3H), 1.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 169.1, 148.1,

147.3, 147.0, 143.6, 143.2, 135.7, 128.5, 128.0, 127.9, 125.4, 123.5, 120.9, 117.6, 111.5, 111.4, 106.4, 101.6, 63.56, 56.1, 55.8, 51.8, 51.4, 48.6, 28.4, 12.9. IR (KBr) 2925.6, 1704.5, 1608.2, 1513.1, 1464.5, 1353.3, 1258.4, 1114.4, 1042.9, 915.1, 816.5, 736.4, 646.7 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for $C_{26}H_{27}NO_6$ [M+H]⁺ 450.1917; found 450.1893.

2.8. Preparation of Compounds 9h-9j via Cascade Heck-Sonogashira Reaction

General Procedure H (Heck-Sonogashira): To a solution of compound **4a** (86 mg, 0.2 mmol) and alkyne (1 mmol) in DMF/H₂O (6.0 mL/2.0 mL) were added K_2CO_3 (55.2 mg, 0.4 mmol) and CuI (3.8 mg, 0.02 mmol). The solution was bubbled with a stream of dry nitrogen gas for 15 min before the addition of Pd(PPh₃)₄ (11.5 mg, 0.01 mmol). The mixture was stirred at 110 °C for 3 h. The reaction mixture was then diluted with EtOAc, washed with water and saturated brine. The organic layers were dried with Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel to afford compounds **9h–9j**.

9h (71 mg) was obtained by using **General Procedure H** from **4a** (86 mg, 0.2 mmol) in 79% yield as colorless oil: $[\alpha]^{25}_{D} = +91.5$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.17$ (d, J = 8.0 Hz, 1H), 7.41–7.34 (m, 2H), 7.34–7.27 (m, 3H), 6.81 (d, J = 8.0 Hz, 1H), 6.66 (s, 1H), 6.59 (s, 1H), 6.07–5.96 (m, 2H), 5.36 (s, 1H), 4.59 (s, 1H), 4.32 (d, J = 16.0 Hz, 1H), 4.00 (d,

 $J = 16.0 \text{ Hz}, 1\text{H}, 3.88 \text{ (s, 3H)}, 3.85 \text{ (s, 3H)}, 3.26-3.13 \text{ (m, 1H)}, 2.98-2.80 \text{ (m, 3H)}.^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta = 148.2, 147.0, 146.9, 144.9, 143.4, 131.3, 128.3, 128.0, 127.7, 127.4, 125.8, 123.7, 121.7, 117.1, 111.7, 111.5, 106.2, 105.6, 101.5, 95.1, 88.9, 62.7, 56.0, 55.9, 51.0, 47.5, 28.1. IR (KBr) 2923.3, 2847.5, 1712.9, 1648.3, 1602.0, 1511.7, 1465.0, 1361.6, 1260.1, 1124.6, 1045.5, 912.8, 808.9, 729.5, 644.4, 532.7 \text{ cm}^{-1}$. HRMS (CI⁺) (m/z) calcd. for C₂₉H₂₅NO4 [M+H]⁺ 452.1862; found 452.2018.

9i (77 mg) was obtained by using **General Procedure H** from **4a** (86 mg, 0.2 mmol) in 80% yield as colorless oil: $[\alpha]^{25}_{D} = +77.5$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.18$ (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 6.83–6.79 (m, 3H), 6.65 (s, 1H), 6.59 (s, 1H), 6.00 (d, J = 0.4 Hz, 2H), 5.35 (s, 1H), 4.58 (s, 1H), 4.32 (d, J = 16.0 Hz, 1H), 3.99 (d, J = 16.0 Hz, 1H), 3.87 (s, 3H), 3.85 (s, 3H), 3.80 (s, 3H), 3.25–3.10 (m, 1H), 2.94–2.80 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 159.5$, 148.1, 146.9, 143.8, 143.3,

132.7, 127.8, 127.4, 125.9, 121.5, 117.1, 115.9, 114.0, 111.7, 111.50, 106.2, 105.9, 101.4, 95.2, 87.6, 62.7, 56.0, 55.9, 55.3, 50.9, 47.4, 28.1. IR (KBr) 3003.5, 2925.2, 2837.6, 2189.3, 1604.5, 1511.1, 1465.0,

1363.7, 1254.0, 1178.9, 1121.9, 1042.2, 912.1, 824.1, 732.8, 648.3, 536.7, 472.4 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for $C_{30}H_{27}NO_5$ [M+H]⁺ 482.1967; found 482.1891.

9j (67 mg) was obtained by using **General Procedure H** from **4a** (86 mg, 0.2 mmol) in 75% yield as colorless oil: $[\alpha]^{25}{}_{D} = +134$ (c = 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta = 8.14$ (d, J = 8.0 Hz, 1H), 6.74 (d, J = 8.0, 1H), 6.63 (s, 1H), 6.54 (s, 1H), 5.98 (m, 2H), 5.15 (s, 1H), 4.52 (s, 1H), 4.27 (d, J = 16.0 Hz, 1H), 3.95 (d, J = 16.0 Hz, 1H), 3.86 (s, 3H), 3.82 (s, 3H), 3.23–3.10 (m, 1H), 2.90–2.86 (m, 3H), 2.35 (td, J = 7.0 Hz, 2.5 Hz, 2H), 1.60–

1.45 (m, 2H) 1.44–1.22 (m, 4H), 0.89 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 148.1$, 146.8, 146.6, 143.2, 142.6, 127.7, 127.3, 126.0, 121.2, 116.9, 111.6, 111.5, 106.5, 106.0, 101.3, 79.3, 62.7, 56.0, 55.9, 50.7, 47.4, 31.1, 28.3, 28.0, 22.2, 19.9, 14.0. IR (KBr) 2928.1, 2863.3, 1644.9, 1605.4, 1512.7, 1464.8, 1363.6, 1257.4, 1126.3, 1046.7, 992.8, 915.5, 808.1, 730.8, 637.4 cm⁻¹. HRMS (CI⁺) (m/z) calcd. for C₂₈H₃₁NO₄ [M]⁺ 445.2253; found 445.2254.

2.9. Screening of Chiral ligands for CuI-catalyzed Redox-A³ Reaction (Table 1).

To a flame-dried bottom-rounded flask (25 mL) were added CuI (1.2 mg, 0.01 mmol), Pybox (0.022 mmol), and newly activated 4 Å molecular sieves (300 mg). To the reaction flask under nitrogen atmosphere were sequentially added toluene (10 mL), **1a** (270 mg, 1.4 mmol), **2a** (320.0 mg, 1.4 mmol), and **3a** (98 mg, 1.0 mmol). The reaction mixture was heated with an oil bath at 40 °C for 12 h. After TLC analysis indicated the completion of the reaction, the solvent was removed by evaporation, and the residue was purified by chromatography (hexane/EtOAc = 10:1) on silica gel to afford **4a0**. The HPLC spectra of different entries are shown in pages S-21–24.

	Me Ph	HN Ph	HN HN Ph	~	
	N N PPh ₂				J_O N_∕
				<i>i</i> Pr	- /Pr
(R, R)-N-F	PINAP (R, S	3)- <i>N</i> -PINAP L2	(S, R)-N-PINAP L3	14	L
Ph	N O N Ph	Bn L6	N Bn		
Entry	Catalyst	Ligand	Conversion (%)	Yield (4a0 ,	%) er
1	Cul	L1	100	88	25:75
2	Cul	L4	58	72	55:45
3	Cu(OTf) ₂	L4	0	0	0
4	Cul	L5	55	70	41:59
5	Cul	L6	64	78	30:70
6	Cul	L7	64	78	47:53
7	Cul	L2	100	94	97:3
8	Cul	L3	100	90	2.5:97.5

2.10. Copies of HPLC Chromatograms for Screening of Chiral ligands

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	5.707	41945205	30.29	2471744	51.79
2	12.190	96552760	69.71	2301160	48.21

SAMPLE INFORMATION			ION	
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	zsq6-90-4(90/10) Unknown 1 6 10.00 ul 35.00 Minutes		Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name	Breeze 9/2/2016 5:51:25 AM HKT zsq project 2 12/15/2016 10:28:04 AM HKT 2998 Ch2 214nm@1.2nm
2.50 2.00 1.50 2 2 0.50	5.670	12.036		MeO MeO TMS 4a0 entry 6
0.00	.00 10.00	15.0	00 20.00 Minutes	25.00 30.00 38

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	5.670	47617296	47.38	2653154	66.03
2	12.036	52892575	52.62	1364915	33.97

Project Name Defaults Reported by User: Breeze user (Breeze)

2 15.263

1322223

1.27

2.95

2 15.564

5509594

45.86

22.22

94812

3. X-ray data of Compound 4a (CCDC 1524047).

Table 1 Crystal data and structure refinement for qiang5CuLT.				
Identification code	qiang5CuLT			
Empirical formula	$C_{21}H_{20}BrNO_4$			
Formula weight	430.29			
Temperature/K	173.15			
Crystal system	monoclinic			
Space group	P2 ₁			
a/Å	9.4538(2)			
b/Å	8.19410(10)			
c/Å	12.3501(2)			
α/°	90			
β/°	90.0050(10)			
γ/°	90			
Volume/Å ³	956.71(3)			
Ζ	2			
$\rho_{cale}g/cm^3$	1.494			
µ/mm ⁻¹	3.155			
F(000)	440.0			
Crystal size/mm ³	$0.2\times0.2\times0.18$			
Radiation	$CuK\alpha (\lambda = 1.54178)$			
2Θ range for data collection/°	7.158 to 133.56			
Index ranges	$-11 \le h \le 11, -9 \le k \le 9, -14 \le l \le 14$			
Reflections collected	12931			
Independent reflections	$3352 [R_{int} = 0.0216, R_{sigma} = 0.0163]$			
Data/restraints/parameters	3352/1/246			
Completeness to theta = 66.5°	98.7%			

Goodness-of-fit on F ²	1.003
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0245, wR_2 = 0.0650$
Final R indexes [all data]	$R_1 = 0.0248, wR_2 = 0.0653$
Largest diff. peak/hole / e Å ⁻³	0.36/-0.36
Flack parameter	-0.024(5)

Crystal structure determination of [qiang5CuLT]

Crystal Data for C₂₁H₂₀BrNO₄ (*M*=430.29 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 9.4538(2) Å, *b* = 8.19410(10) Å, *c* = 12.3501(2) Å, *β* = 90.0050(10)°, *V* = 956.71(3) Å³, *Z* = 2, *T* = 173.15 K, μ (CuK α) = 3.155 mm⁻¹, *Dcalc* = 1.494 g/cm³, 12931 reflections measured (7.158° $\leq 2\Theta \leq 133.56^{\circ}$), 3352 unique ($R_{int} = 0.0216$, $R_{sigma} = 0.0163$) which were used in all calculations. The final R_1 was 0.0245 (I > 2 σ (I)) and wR_2 was 0.0653 (all data).

......

170

	7.260 7.088 7.011	6.702		4.560 3.854 7.3.846 7.3.846	2.830 3.031 3.031 3.022 3.024 7.2.995 7.2.995 7.2.957 7.2.957	2.931 2.918 2.906 2.892 2.892 2.892 2.797 2.797 2.797 2.769	12.764 12.7555 12.7555 12.7555 12.7555 12.7555 12.7555 12.7555 12.7555 12.7555	BF	UKER	!
			MeO MeO	Br O 4c				NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 TD0 ======= SF01 NUC1 P1 SI SF WDW SSB LB GB PC	zsq6-125 20161 14 5 mm PABBO 2 65 CE 8012. 0.122 4.0894 103 62. 6 29 1.00000 = CHANNEL f1 400.1324 400.1300 0 1	-1a 1 210 .26 ect BB/ g30 536 Cl3 16 2 266 Hz 966 sec .52 400 usec .50 usec .50 usec .50 usec .50 usec .50 000 sec 1 .50 usec .50 000 sec 1 .50 000 sec 1 .50 000 sec .50 .50 000 .50 000 .50 000 .50 .5
						Muril			J	
8.5 8	.0 7.5 7.0	5.9	6.0 5.5	5.0 4.5	4.0 3.5 82.02 82.02	2.24 	2.0 1.5	1.0 0.	5 0.0	ppm

	7.260 7.057 7.057 7.036 6.639 6.647 6.647 6.626 6.626 6.626 6.526 6.526 6.500	5.885 5.883 5.883 5.883 5.882	4.664	2.957 2.957	-2555 -2555 -2555 -2555 -2,468 -2,468 -2,468	BRUKER			
			e v v v v v v v v v v v v v v v v v v v				NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 TD0 SF01 NUC1 P1 SI SF WDW SSB LB GB PC	zsq6-134-1a 1 20161208 22.42 spect 5 mm PABBO BB/ zg30 65536 CDC13 16 2 8012.820 Hz 0.122266 Hz 4.0894966 sec 142.88 62.400 usec 6.50 usec 296.5 K 1.00000000 sec 1 CHANNEL f1 ======= 400.1324710 MHz 1H 14.50 usec 65536 400.1300094 MHz EM 0 0.30 Hz 0 1.00	
8.5 8.0 7.5	7.0 6.5 10.1 10.		5.0 4.5	4.0 3.5	2.5 21.1 21.1 23.1 25.3 1.1 25.3 1.1 25.3 1.1 25.3 25.5 25.5 25.5 25.5 25.5 25.5 25.5	2.0 1.5	1.0 0.5	5 0.0 ppm	

		7.282	6.733 6.733 6.697 6.697	5.885 5.882 5.877 5.877	4.695 3.952 7.3.933 3.921 7.3.909 7.3.890	2.981 2.981 2.988 2.005 2.988 2.988 2.988	2.866 2.861 2.849 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.823 2.823 2.823 2.823 2.823 2.823 2.823 2.823 2.823 2.823 2.823 2.824 2.827 2.824 2.827 2.824 2.827 2.824 2.827 2.824 2.827 2.824 2.827 2.824 2.827 2.824 2.827 2.824 2.827 2.727 2.827 2.727 2.827 2.7277 2.7277 2.7277 2.72777 2.7277777777	2.55 2.756 2.756 2.756 2.583 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.553 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.5566 2.56	BF	UKER	
				o o o 4f	OMe Br				NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD FULPROG TD SOLVENT NS SWH FIDRES AQ RG RG C DW DE TE D1 TDO SFO1 NUC1 P1 SF SF NUC1 P1 SF SF WDW SSB LB GB PC	zsq6-132- 2016112 0.4 spec 5 mm PABBO BF zgG 6553 CDC1 8012.82 0.12226 4.089499 142.8 62.40 6.5 2977 1.0000000 = CHANNEL fl == 400.132471 14.8 6553 400.130005 F 0.3 1.0	-1 1 1 24 11 37 30 30 30 30 30 30 30 42 20 Hz 56 56 56 56 50 0 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
							Mr. Mar. In				
8.5	8.0	7.5 7	7.0 6.5	6.0 5.5	5.0 4.5	4.0 3.5 06.2 06.2 06.2	3.0 2.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	2.0 1.5 1	.0 0.	5 0.0	ppm

8.5

	7.452 7.434	7.378 7.360 7.341 7.309 7.291	6.582	5.985 5.985		5.115 5.109		3.797 3.029 3.029 7.2.996 7.2.996	2.865 2.840 2.820 2.820 2.794 2.794 2.794 2.794	2.567 2.591 2.595 2.567 2.567 2.567 2.567 2.266 2.266 2.266 2.2460 2.2460 2.2416	BF	UKER
					MeO- BnO	N 4k	Br				NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 TD0 SF01 NUC1 P1 SI SF WDW SSB LB GB FC	zsq6-87-1 3 1 20161124 23.52 spect 5 mm PABBO BB/ zg30 65536 CDC13 16 2 8012.820 Hz 0.122266 Hz 4.0894966 sec 187.77 62.400 usec 6.50 usec 297.3 K 1.00000000 sec 1 400.1324710 MHz H 14.50 usec 65536 400.1300094 MHz EM 0 0.30 Hz 0 1.00
8.5	8.0	7.5 <u>881</u> 7.5	7.0 6.5 960 10 10 10 10 10 10 10 10 10 10 10 10 10	0.0 510 0.0	5.5	5.0	4.5	4.0 3.5	3.0 2.5 113 113 113 113	2.0 1.5	i 1.0 0.5	5 0.0 ppm

.....

T

170

170

·····

180

5. Copies of HPCL Chromatograms

Project Name Defaults Reported by User: Breeze user (Breeze)

	(min)	(µV*sec)	% Area	(µV)	Height
1	4.979	71781	2.39	5603	2.50
2	7.745	2932952	97.61	218319	97.50

Project Name Defaults Reported by User: Breeze user (Breeze)

1

2

RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
4.711	4632083	49.66	240965	49.89
7.939	4695830	50.34	242015	50.11

6	Breeze ²
	HPLC System

Project Name Defaults Reported by User: Breeze user (Breeze)

2

28.276

1258672

13.54

10548

10.32

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	11.521	17917791	50.12	532033	72.34
2	16.346	17829169	49.88	203424	27.66

r

	SAMPLE	INFORMAT	ION
Sample Name: Sample Type: Vial: Injection #: Injection Volume Run Time:	zsq6-120-1 ((95/5 AD) Unknown 1 2 : 20.00 ul 60.00 Minutes	Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name	Breeze 10/20/2016 7:50:36 AM HKT zsq project 2 12/15/2016 7:35:52 AM HKT 2998 Ch2 214nm@1.2nm
0.16 0.14 0.12 0.10 ₹ 0.08 0.06 0.04 0.02 0.00	~~20.745	4 27.45	$MeO \xrightarrow{OMe}_{MeO} MeO \xrightarrow{Br}_{4b}$
0.00 5.00	10.00 15.00 20.00 25.00	30.00 35.00 Minutes	40.00 45.00 50.00 55.00 60.00
Project Name Reported by User:	RT (min) Area (µV*sec) % Area 1 20.745 571581 2.94 2 34.720 18893146 97.06 Defaults Breeze user (Breeze)	Height (μV) % Height 9169 5.46 158800 94.54	Breeze 2 HPLC System
	SAMPLE	INFORMAT	ION
Sample Name: Sample Type: Vial: Injection #: Injection Volume Run Time:	zsq2-104-1new made ((95/5 AE Unknown 1 1 20.00 ul 60.00 Minutes	 Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name 	Breeze 10/20/2016 6:40:31 AM HKT zsq project 2 12/15/2016 7:37:16 AM HKT 2998 Ch2 214nm@1.2nm
0.16 0.14 0.12 0.10 ₹ 0.08 0.06 0.04 0.02 0.00		35.008	$MeO \xrightarrow{\qquad } MeO \xrightarrow{\qquad } MeO \xrightarrow{\qquad } MeO \xrightarrow{\qquad } MeO$ racemic 4b
0.00 5.00	10.00 15.00 20.00 25.00 RT Area (min) (μV*sec) % Area	30.00 35.00 Minutes 35.00 Height % (μV) Height 1000407 05.00	40.00 45.00 50.00 55.00 60.00

89651

34.74

50.04

2 35.008 10252371

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	10.513	29862365	50.07	1000742	65.50
2	17.344	29779848	49.93	527000	34.50

Project Name Defaults Reported by User: Breeze user (Breeze)

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	24.491	376056	2.83	4858	5.06
2	32.742	12896314	97.17	91191	94.94

Project Name Defaults Reported by User: Breeze user (Breeze)

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	24.373	9144380	50.32	100896	60.17
2	32.758	9029440	49.68	66778	39.83

Project Name Defaults Reported by User: Breeze user (Breeze)

2

33.358

5497782

43.20

48545

50.60

Project Name Defaults Reported by User: Breeze user (Breeze)

Breeze² 2

C System

Project Name Defaults Reported by User: Breeze user (Breeze)

INFORMATION SAMPLE Sample Name: zsq6-149-1a ((875/125 OD) Acquired By: Breeze Sample Type: Unknown Date Acquired: 10/15/2016 5:19:34 PM HKT Vial: Acq. Method: zsq project 2 1 Date Processed: 12/15/2016 8:48:35 AM HKT Injection #: 1 Injection Volume: 10.00 ul Channel Name: 2998 Ch2 214nm@1.2nm Run Time: 80.00 Minutes Sample Set Name 0.060 0.050 OMe .OMe 0.040 MeO ́∭Ві ₹ 0.030 BnÓ 41 0.020 0.010 36.222 0.000 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 Minutes RT Area Height % % Area (µV*sec) (min) Height (µV) 1 30.576 6023778 97.95 63143 98.29 2 36.222 126337 2.05 1101 1.71 Breeze² 2 Project Name Defaults LC System Reported by User: Breeze user (Breeze) SAMPLE INFORMATION Sample Name: zsq4-89-1a ((875/125 OD) Acquired By: Breeze 10/15/2016 6:22:28 PM HKT Sample Type: Unknown Date Acquired: Acq. Method: zsq project 2 Vial: 1 12/15/2016 8:50:41 AM HKT Date Processed: Injection #: 2 Injection Volume: 10.00 ul Channel Name: 2998 Ch2 214nm@1.2nm Run Time: 60.00 Minutes Sample Set Name 0.12 ₿ 36.060 0.10 ОМе OMe 0.08 MeC ∖\\Bi ₹ 0.06 BnÓ racemic 4I 0.04

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 Minutes

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	30.401	11381724	50.13	119767	55.00
2	36.060	11322054	49.87	97994	45.00

0.02

18101

1.49

Project Name Defaults Reported by User: Breeze user (Breeze)

2

18.943

1346398

3.57

	SAM	1PLE I	NFORMAT	ION
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	zsq6-138-1b2 (20 Unknown 1 5 10.00 ul 35.00 Minutes	0/1 AD)	Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name	Breeze 11/19/2016 5:26:35 PM HKT zsq project 2 12/15/2016 5:32:18 AM HKT 2998 Ch2 214nm@1.2nm
0.30 0.25 0.20 ⊋ 0.15 0.10 0.05		12.030	0.701	tetrahydrocorysamine (6e)
0.00	5.00 10.00	15.00	20.00 Minutes	 25.00 30.00 35.0
Project Name Reported by User:	RT (min) Area (µV*set) 1 12.030 125058 2 20.701 5976 Defaults Breeze user (Brees)	a % Area 553 95.44 2 662 4.56 ze)	Height (μV) Height 193172 97.75 6760 2.25	Breeze 2 HPLC System
	SAN	1PLE I	NFORMAT	ION
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	zsq2-130-1b3 (20 Unknown 1 6 20.00 ul 35.00 Minutes	0/1 AD)	Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Nam∉	Breeze 11/19/2016 6:02:08 PM HKT zsq project 2 12/15/2016 5:33:55 AM HKT 2998 Ch2 214nm@1.2nm
0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.020 0.010 0.000	5.00 10.00		50, 20,00	racemic tetrahydrocorysamine (6e)
F	RT Area (min) (μV*se 1 12.094 38325	c) % Area He (175 50.40 91	Minutes aight % µV) Height 1808 69.39	

30.61

49.60 40506

2 20.455 3771173

		SAMPLE	INFORMAT	ION					
	Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	Yzsq6-135-1a10 (250/1Et2NH Unknown 1 10 10.00 ul 50.00 Minutes	Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Name	Breeze 10/26/2016 5:53:47 PM HKT zsq project 2 12/15/2016 6:41:55 AM HKT 2998 Ch3 230nm@1.2nm					
	0.040 0.035 0.030 0.025 0.025 0.020 0.015 0.015 0.010 0.005 0.000 -0.005		21.811	$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ $					
	0.00 5.00	10.00 15.00 20.00 RT (min) Area (μV*sec) % Area H 1 21.811 173006 3.59 2 25.175 4640033 96.41 3	25.00 30.00 Minutes 30.00 (μV) Height 1875 4.63 8618 95.37	9 35.00 40.00 45.00					
	Project Name Reported by User:	Defaults Breeze user (Breeze)		Breeze 2 HPLC System					
		SAMPLE	INFORMAT	ION					
	Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	Yzsq2-112-1a11 (250/1Et2NH Unknown 1 11 10.00 ul 50.00 Minutes	Acquired By: Date Acquired: Acq. Method: Date Processed: Channel Name: Sample Set Namé	Breeze 10/26/2016 6:42:26 PM HKT zsq project 2 12/15/2016 6:40:53 AM HKT 2998 Ch3 230nm@1.2nm					
L	0.040 0.030 ₹ 0.020 0.010 0.000 -0.010		21.484>	$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & &$					
	0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 Minutes								
	RT Area % Area Height %								

S-153

43446

36848

54.11

45.89

21.481

25.464

1

2

4192186

4557091

47.91

52.09

Project Name

Defaults Reported by User: Breeze user (Breeze)

2 20.696 3600902

SAMPLE						LE	INFORMATION					
Sa Sa Via Inj Ru	impl impl al: ecti ecti n T	le Name: le Type: on #: on Volun ime:	ne:	zsq6-153 Unknown 1 4 10.00 ul 40.00 Min	-1a3 (95/5 A nutes	.D)	Acqu Date Acq. Date Chan Sam	ired By: Acquirec Method: Processe nel Nam Die Set N	B 2: 1 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2:	reeze 1/18/2016 3:16:0 sq project 2 2/15/2016 9:29:11 998 Ch2 214nm@	4 PM HKT 6 AM HKT ⊉1.2nm	
0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0	2 20 8 8 6 4 4 2 0 8 8 6 6 4 4 2					46.084	20.619		HO– Mec	Soapocavidine (6 i)	٦ ٥	
0.0	0.00		5.00	1 1 1 1	10.00	15.00	20.00 Minute	S	25.00	30.00	35.00	40.00
				RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height				
			1	16.084	10201069	97.82	211971	98.31				
			2	20.619	227842	2.18	3654	1.69				

Project Name Defaults Reported by User: Breeze user (Breeze) SAMPLE INFORMATION Sample Name: Yzsq6-152-1a (97.5/2.5 OD) Acquired By: Breeze Sample Type: Unknown Date Acquired: 10/12/2016 7:16:12 PM HKT Vial: Acq. Method: zsq project 2 1 12/15/2016 9:25:47 AM HKT Injection #: 2 Date Processed: Injection Volume: 20.00 ul Channel Name: 2998 Ch2 214nm@1.2nm Run Time: 60.00 Minutes Sample Set Name 0.12 g 0.10 OMe 0.08 MeC Me ₽ ^{0.06} corybulbine (6j) 0.04 0.02 34.058 0.00 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 Minutes RT Area % Height % Area (min) (µV*sec) (µV) Height 24.087 9613188 97.93 114839 98.48 1 34.058 202788 2 2.07 1777 1.52 Project Name Defaults Reported by User: Breeze user (Breeze) SAMPLE INFORMATION Sample Name: Yzsq4-96-2a (97.5/2.5 OD) Acquired By: Breeze Date Acquired: 10/12/2016 8:16:15 PM HKT Sample Type: Unknown Vial: Acq. Method: zsq project 2 1 Injection #: 3 Date Processed: 12/15/2016 9:23:50 AM HKT Injection Volume: 20.00 ul Channel Name: 2998 Ch2 214nm@1.2nm Run Time: 60.00 Minutes Sample Set Name 0.040 24.402 0.035

Breeze[®] 2

OMe

55.00

Breeze[®] 2

LC System

System

	RT (min)	Area (µV*sec)	% Area	Height (µV)	% Height
1	24.402	2528143	51.77	31608	63.41
2	33.051	2354978	48.23	18241	36.59

