3-Step Catalytic Asymmetric Total Syntheses of 13methyltetrahydroprotoberberine Alkaloids

Shiqiang Zhou and Rongbiao Tong*
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

Email: rtong@ust.hk

Table of Contents

1.General Information	$\mathrm{S}-2$
2. Experimental Procedures and Characterization Data	$\mathrm{S}-3$
2.1. Redox-A ${ }^{3}$ Reaction of Tetrahydroisoquinolines, Aldehydes, and Terminal Alkynes	$\mathrm{S}-3$
2.2. Catalytic Asymmetric Redox-A ${ }^{3}$ reaction	$\mathrm{S}-5$
2.3. Pd-catalyzed Reductive Heck exo-Carbocyclization	$\mathrm{S}-9$
2.4. PtO_{2}-catalyzed Hydrogenation	$\mathrm{S}-12$
2.5. Pd -catalyzed Hydrogenation and Debenzylation	$\mathrm{S}-14$
2.6. Preparation of Compounds $\mathbf{9 a - 9 \mathbf { c }}$ and 10 via Cascade Heck-Suzuki Reaction	$\mathrm{S}-16$
2.7. Preparation of Compounds $\mathbf{9 e - 9 g}$ via Cascade Heck-Heck Reaction	$\mathrm{S}-18$
2.8. Preparation of Compounds $\mathbf{9 h} \mathbf{- 9 j}$ via Cascade Heck-Sonogashira Reaction	$\mathrm{S}-19$
2.9. Screening of Chiral ligands for CuI-catalyzed Redox-A ${ }^{3}$ Reaction (Table 1).	$\mathrm{S}-20$
2.10. Copies of HPLC Chromatograms for Screening of Chiral ligands	$\mathrm{S}-21$
3. X-ray data of Compound $\mathbf{4 a}$	$\mathrm{S}-26$
4. Copies of NMR Spectra	$\mathrm{S}-28$
5. Copies HPCL Chromatograms	$\mathrm{S}-132$

1. General Information

Reactions were carried out in oven or flame-dried glassware under a nitrogen atmosphere, unless otherwise noted. Tetrahydrofuran (THF) was freshly distilled before use from sodium using benzophenone as indicator. Dichloromethane was freshly distilled before use from calcium hydride $\left(\mathrm{CaH}_{2}\right)$. All other solvents were dried over $3 \AA$ or $4 \AA$ molecular sieves. Solvents used in workup, extraction and column chromatography were used as received from commercial suppliers without prior purification. Reactions were magnetically stirred and monitored by thin layer chromatography (TLC, 0.25 mm) on Merck pre-coated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size $0.040-0.062 \mathrm{~mm}$) supplied by Grace. Infrared spectra were collected on a Bruker model TENSOR27 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV-400 spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). Chemical shifts are reported in parts per million (ppm) as values relative to the internal chloroform (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$) or DMSO- $\mathrm{d}_{6}(2.50$ ppm for ${ }^{1} \mathrm{H}$ and 39.50 ppm for ${ }^{13} \mathrm{C}$). Abbreviations for signal coupling are as follows: s , singlet; d , doublet; t , triplet; q, quartet; m, multiplet. Optical rotations were measured on a JASCO Perkin-Elmer model P2000 polarimeter. High resolution mass spectra were measured at the Hong Kong University of Science and Technology Mass Spectrometry Service Center on an Agilent GC/MS 5975C system.

2. Experimental Procedures and Characterization Data

2.1. Redox- $\mathrm{A}^{\mathbf{3}}$ Reaction of Tetrahydroisoquinolines, Aldehydes, and Terminal Alkynes

Cul ($1 \mathrm{~mol} \%$)

Gneral Procedure A (redox- A^{3}): To a flame-dried Schlenk tube were sequentially added $(R, R)-\mathrm{N}$ PINAP ($12.8 \mathrm{mg}, 0.022 \mathrm{mmol}$), CuI ($2.0 \mathrm{mg}, 0.01 \mathrm{mmol}$), $4 \AA$ molecular sieves (300 mg), and toluene $(2 \mathrm{~mL})$ under the argon atmosphere. The reaction mixture was then stirred at rt for 30 min and then $\mathrm{PhCO}_{2} \mathrm{H}(6.1 \mathrm{mg}, 0.05 \mathrm{mmol})$, 1a $(270 \mathrm{mg}, 1.4 \mathrm{mmol}) / \mathrm{toluene}(1 \mathrm{~mL}), \mathbf{2 a}(320.0 \mathrm{mg}, 1.4 \mathrm{mmol}$, $98 \%)$ /toluene (1 mL), and $\mathbf{3 a}(98 \mathrm{mg}, 1.0 \mathrm{mmol}) /$ toluene $(2 \mathrm{~mL})$ were sequentially added under the argon atmosphere. The Schlenk tube was placed in a pre-heated oil bath at $40^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the crude reaction mixture was filtrated through a short pad of silica gel washed with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After solvent evaporation, the residue was purified by chromatography on silica gel to afford compound $\mathbf{4 a 0}$.

4 aO
$4 \mathrm{a0}$ ($401 \mathrm{mg}, 80 \%$ yield) as pale yellow solid: m.p. $157-159{ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 50% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\operatorname{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=11.9$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $\left.)=5.7 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-64.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.03-5.96(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.78(\mathrm{~m}$, 4H), 3.05-2.91 (m, 1H), 2.86-2.70 (m, 2H), 2.70-2.59 (m, 1H), $0.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=148.1,148.0,147.2,146.7,127.1,126.1,125.3,120.3,117.4,111.2,110.5,108.5,104.3$, $101.5,90.3,56.0,55.8,55.5,53.0,45.0,28.6,0.16$. IR (KBr) 2954.7, 2906.2, 2836.3, 2154.9, 1610.2, 1514.7, 1454.3, 1350.6, 1252.5, 1130.3, 1047.8, 921.7, 848.3, 795.4, 741.8, $590.8 \mathrm{~cm}^{-1}$; HRMS (CI ${ }^{+}$) $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{BrNO}_{4} \mathrm{Si}[\mathrm{M}]^{+} 502.1049$; found 502.0986.

$4 a 1$

4a1 (253 mg) was obtained by using General Procedure A from THIQ 1a' (186.2 $\mathrm{mg}, 1.4 \mathrm{mmol})$, aldehyde $\mathbf{2 a}^{\prime}(148.4 \mathrm{mg}, 1.4 \mathrm{mmol})$, alkyne $\mathbf{3 a}{ }^{\prime}(102.1 \mathrm{mg}, 1.0$ mmol) as pale yellow oil in 78% yield as pale yellow oil: 95% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=100 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ minor $)=5.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $\left.)=7.7 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-145.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.52-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.10$ $(\mathrm{m}, 3 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=138.3,135.5,134.1,131.8,129.2(\times 2), 129.0,128.3(\times 2), 128.2,128.0,127.8,127.1,126.9$, $125.8,123.2,87.5,86.8,59.6,54.3,45.7,29.0$. IR (KBr) 3063.2, 2923.6, 2856.5, 1709.2, 1641.4, 1488.0, 1450.6, 1263.0, 794.2, $747.4,705.5,652.3 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 324.1752$; found 324.1726 .

4 a 2
$\mathbf{4 a 2}(318 \mathrm{mg})$ was obtained by using General Procedure A from THIQ 1a ($270.2 \mathrm{mg}, 1.4 \mathrm{mmol}$), aldehyde $\mathbf{2 a '}^{\prime}(148.4 \mathrm{mg}, 1.4 \mathrm{mmol})$, alkyne 3a’ (102.1 $\mathrm{mg}, 1.0 \mathrm{mmol}$) as pale yellow oil in 83% yield as pale yellow oil: 86% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=8.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=10.7 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-$ $103.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.54-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{~s}$, $1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.0-3.9(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.94$ (m, 1H), 2.90-2.80 (m, 1H), 2.79-2.69 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.1,147.3,138.3$, 131.7, 129.3, 128.4, 128.24, 128.16, 128.0, 127.3, 127.1, 126.0, 111.4, 110.5, 87.5, 86.7, 59.5, 55.9, 55.81, 53.82, 45.9, 28.6. IR (KBr) 3060.8, 2918.0, 2827.8, 1710.4, 1645.9, 1604.8, 1514.7, 1454.7, 1352.0, 1265.1, 1225.9, 1128.3, 1019.6, 854.5, 746.8, 698.7; $573.2 \mathrm{~cm}^{-1}$; HRMS (CI $)^{+}(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{NO}_{2}[\mathrm{M}]^{+} 383.1885$; found 383.1870.

4a3
$\mathbf{4 a 3}(334 \mathrm{mg})$ was obtained by using General Procedure A from THIQ 1a' ($186.2 \mathrm{mg}, 1.4 \mathrm{mmol}$), aldehyde 2a ($320.6 \mathrm{mg}, 1.4 \mathrm{mmol}$), alkyne 3a' ${ }^{\prime}(102.1$ $\mathrm{mg}, 1.0 \mathrm{mmol}$) in 75% yield as pale yellow oil: 73% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=500 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}($ major $)=20.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=28.3 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=-88.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.25-7.15 (m, 2H), 7.15-7.05 (m, 2H), $6.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.97(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.02$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.74(\mathrm{~m}$ $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.0,146.6,135.5,134.0,131.7,128.9,128.1,127.9,127.7$, $126.8,125.7,125.3,123.3,120.3,117.3,108.5,101.5,87.9,86.4,55.4,53.1,45.0,29.0$. IR (KBr) 3062.3 , $2899.4,1596.8,1492.2,1452.4,1244.8,1048.5,933.6,852.20,797.7,745.31,696.13 \mathrm{~cm}^{-1} ;$ HRMS (CI $^{+}$) $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 446.0756$; found 446.0673.

The crude TMS protected product obtained by redox- A^{3} using General Procedure A from THIQ 1a' ($186.2 \mathrm{mg}, 1.4 \mathrm{mmol}$), aldehyde 2a' ($148.4 \mathrm{mg}, 1.4 \mathrm{mmol}$), alkyne 3a $(98.2 \mathrm{mg}, 1.0 \mathrm{mmol})$. Then the crude product was directly subjected to desilylation as described below. After evaporation of the volatile solvents, the crude product was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and treated with $\mathrm{K}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.2 \mathrm{mmol})$. After TLC analysis indicated completion of the desilylation, the reaction mixture was concentrated using rotary evaporator. The crude mixture was added $\mathrm{DCM}(10 \mathrm{~mL})$ and then washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel using eluents (hexane/ $\mathrm{EtOAc}=30: 1$) to afford the corresponding redox- A^{3} reaction product $\mathbf{4 a 5}(180 \mathrm{mg})$ as pale yellow oil in 73% yield.

$4 a 5$
$4 \mathbf{a 5}$ ($180 \mathrm{mg}, 73 \%$ yield) as pale yellow oil: 95% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=500 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=11.3$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $\left.)=16.2 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-67.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.15$ (m, 4H), $4.68(\mathrm{~s}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=16.0 \mathrm{~Hz}, 12.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 2 \mathrm{H})$, 2.95-2.84 (m, 1H), 2.87-2.76(m, 1H), $2.54(\mathrm{~d}, J=2.4,1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.2$, $135.0,133.9,129.1,129.0,128.3,127.5,127.1,127.0,125.8,81.6,74.5,59.3,53.6,45.3,28.9$. IR (KBr) 3287.9, 3028.3, 2914.8, 2823.7, 1719.6, 1593.2, 1492.9, 1454.0, 1356.2, 1263.4, 1199.1, 1132.1, 1087.8, 948.2, 742.9, 698.9, 647.8 cm^{-1}; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}[\mathrm{M}]^{+} 247.1361$; found 247.1325.

2.2. Catalytic Asymmetric Redox- $\mathbf{A}^{\mathbf{3}}$ reaction

General Procedure B (catalytic asymmetric redox-A ${ }^{3}$): To a flame-dried bottom-rounded flask (25 mL) were added CuI ($1.2 \mathrm{mg}, 0.01 \mathrm{mmol}$), (S, R) - N-PINAP ($11 \mathrm{mg}, 0.02 \mathrm{mmol}$), and newly activated $4 \AA$ molecular sieves (300 mg). To the reaction flask under nitrogen atmosphere were sequentially added toluene (10 mL), aldehyde 2a ($229 \mathrm{mg}, 1.0 \mathrm{mmol}$), THIQ 1a ($212 \mathrm{mg}, 1.1 \mathrm{mmol}$), and trimethyl silyl acetylene 3a ($196 \mathrm{mg}, 2.0 \mathrm{mmol}$), $\mathrm{PhCO}_{2} \mathrm{H}(6.1 \mathrm{mg}, 0.05 \mathrm{mmol})$. The reaction mixture was heated with an oil bath at $40^{\circ} \mathrm{C}$ for 12 h . After TLC analysis indicated the completion of the reaction, the reaction mixture was passed through a short column of silica gel and washed with hexane/ethyl acetate (10/1$2 / 1)$. The combined filtrate was concentrated in vacuum. To the crude product in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(27 \mathrm{mg}, 0.2 \mathrm{mmol})$ and the reaction mixture was stirred at room temperature for 2 h . After TLC analysis indicated the completion of the desilylation, the reaction mixture was concentrated and then diluted with $\mathrm{DCM}(10 \mathrm{~mL})$ and washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The concentrated residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc $=10: 1$) to afford the corresponding redox- A^{3} reaction product $\mathbf{4 a}(357 \mathrm{mg}, 83 \%)$ as white solid: m.p. 144-146 ${ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 95.5\% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=$ $90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=20.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=10.5 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=-69.0(c=0.1$, $\left.\mathrm{CHCl}_{3}\right)^{;}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.56(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 5 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.09-2.96(\mathrm{~m}, 1 \mathrm{H})$, 2.92-2.77 (m, 2H), 2.65-2.58 (m, 1H), $2.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.2$, $148.0,147.4,146.7,127.0,126.0,125.4,120.3,117.4,111.4,110.1,108.5,101.6,82.2,74.2,56.0,55.9$, 54.3, 52.9, 44.8, 28.6. IR (KBr) 3288.8, 2906.7, 2833.0, 2249.4, 1518.9, 1453.9, 1265.0, 1224.6, 1129.0, $1047.2,731.1 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 430.0654$; found 430.0643. For the X-ray data of $\mathbf{4 a}$ (CCDC 1524047), see page S-26.

4b

4b (378 mg) was obtained by using General Procedure B from THIQ 1a ($212 \mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde 2b ($245.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in 75% yield as yellow oil: 95% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}($ major $)=34.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=20.7 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=-88.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.88$ $(\mathrm{m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.11-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.62(\mathrm{~m}$, $1 \mathrm{H}), 2.47(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.3,149.3,148.1,147.3,132.8,127.8$, $127.2,126.0,116.9,112.5,111.3,110.1,82.6,73.7,61.5,55.9,55.83,55.79,54.0,53.1,44.8,28.7$. IR (KBr) 3288.3, 2935.7, 2834.4, 2251.9, 1611.9, 1518.9, 1472.0, 1224.5, 1129.4, 1038.5, $730.7 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 446.0967$; found 446.0974.

4 c

4c (317 mg) was obtained by using General Procedure B from THIQ 1a ($212 \mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde $\mathbf{2 c}$ ($229.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne $\mathbf{3 a}$ (196 mg , 2.0 mmol) in 74% yield as yellow oil: 97% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=14.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=23.5 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-81.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.09$ $(\mathrm{s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 3.854(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.82(\mathrm{~m}$, $5 \mathrm{H}), 3.07-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.3,147.41,147.36,147.3,130.9,126.8,126.0,114.8,112.7,111.4,110.3,110.1$, 101.6, 82.0, 74.4, 58.5, 56.0, 55.9, 53.5, 45.4, 28.6. IR (KBr): 3452.7, 2072.9, 1636.7, 1518.5, 1478.0, 1262.1, 1227.3, 1128.7, 1036.9, $730.3 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 430.0654; found 430.0653.

4d
$\mathbf{4 d}$ (357 mg) was obtained by using General Procedure B from THIQ 1a $(212 \mathrm{mg}, 1.1 \mathrm{mmol})$, aldehyde 2d ($245.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in 80% yield as yellow oil: 97.5% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}($ major $)=17.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=10.5 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=-83.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.07-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.86$ $(\mathrm{s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.06-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.5,148.3,148.2,147.4,129.6,126.8,126.0,115.4,114.5$, $113.1,111.4,110.1,82.0,74.3,58.2,56.11,56.05,55.9,55.8,53.7,45.1,28.6$. IR (KBr) 3287.5, 2934.6, $2834.6,2254.1,1611.0,1505.0,1463.7,1377.6,1281.2,1157.6,1129.8,1031.1,731.1 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}_{\left(\mathrm{CI}^{+}\right)}$ $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 446.0967$; found 446.0948.

$4 e$
$\mathbf{4 e}(293 \mathrm{mg})$ was obtained by using General Procedure B from THIQ 1b ($195 \mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde 2a ($229.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 mg , 2.0 mmol) in 71% yield as white solid: m.p. $130-132{ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 91\% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=99 / 1+0.5 \% \mathrm{Et}_{2} \mathrm{NH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, t_{R} (major) $=30.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=25.7 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=-89.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.01-5.99(\mathrm{~m}, 2 \mathrm{H})$, $5.90-5.87(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.51$
$(\mathrm{m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.0,146.8,146.7,145.8,128.0$, $127.2,125.4,120.2,117.3,108.6,108.5,107.3,101.6,100.8,82.0,74.2,54.7,52.9,44.6,28.9$. IR (KBr) 3290.6, 2898.3, 2821.7, 2245.2, 1602.2, 1504.2, 1483.1, 1454.4, 1257.9, 1224.9, 1040.4, 930.8, 733.2 $\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 414.0341$; found 414.0320.

4 f
$4 f(391 \mathrm{mg})$ was obtained by using General Procedure B from THIQ 1b ($195 \mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde 2b ($245.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 $\mathrm{mg}, 2.0 \mathrm{mmol}$) in 91% yield as white solid: m.p. $138-140{ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 94\% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=100 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=46.6$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $\left.)=26.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=-108.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.27(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}$, $1 \mathrm{H}), 3.88-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.12-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.47$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.3,149.4,146.7,145.8,132.7,128.3,127.8$, $127.4,116.9,112.6,108.5,107.3,100.7,82.4,73.8,61.5,55.9,54.5,53.1,44.5,29.1$. IR (KBr) 3286.2, $2935.7,2903.4,2836.0,2248.3,1693.0,1573.9,1504.1,1472.1,1285.7,1264.1,1224.3,1039.0,1009.8$, $804.0 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 430.0654$; found 430.0651 .

$4 g$
$\mathbf{4 g}(310 \mathrm{mg})$ was obtained by using General Procedure B from THIQ 1b $(195 \mathrm{mg}, 1.1 \mathrm{mmol})$, aldehyde 2c ($229.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 mg , 2.0 mmol) in 75% yield as yellow oil: 94% ee (HPLC conditions: Chiralcel $\mathrm{AD}-\mathrm{H}$ column, hexane $/ i-\mathrm{PrOH}=100 / 1+0.5 \% \mathrm{Et}_{2} \mathrm{NH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ major $)=32.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=24.5 \mathrm{~min}\right) ;\left[\alpha{ }^{25}{ }_{\mathrm{D}}=-112.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}\right.$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.07(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.54(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.47$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.38,147.34,146.8,145.9,130.8,127.8,127.2$, $114.8,112.7,110.3,108.5,107.3,101.6,100.8,81.8,74.4,58.4,53.9,45.2,29.0$. IR (KBr) 3442.6, 1641.6, 1502.3, 1479.1, 1236.7, 1114.6, 1038.5, $732.2 \mathrm{~cm}^{-1}$; HRMS ($\left.\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 414.0341$; found 414.0357 .

4h

4h (301 mg) was obtained by using General Procedure B from THIQ 1b $(195 \mathrm{mg}, 1.1 \mathrm{mmol})$, aldehyde $\mathbf{2 d}(245.0 \mathrm{mg}, 1.0 \mathrm{mmol})$, alkyne $\mathbf{3 a}(196 \mathrm{mg}$, 2.0 mmol) in 70% yield as yellow oil: 96% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=100 / 1+0.5 \% \mathrm{Et}_{2} \mathrm{NH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ major $)=33.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=27.4 \mathrm{~min}\right) ;\left[\alpha{ }^{25} \mathrm{D}=-120.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}\right.$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.11(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.81-$ $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.5,148.4$, $146.8,145.9,129.5,127.9,127.3,115.5,114.5,113.1,108.5,107.3,100.8,81.9,74.4,58.2,56.14,56.08$, 54.1, 45.0, 29.0. IR (KBr) 3285.8, 2902.5, 2838.3, 2254.2, 1602.2, 1504.6, 1483.1, 1255.3, 1221.5, 1158.9, 1009.8, $731.7 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}^{+}\right)(\mathrm{m} / z)$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 430.0654$; found 430.0653.

$4 i$

4i (424 mg) was obtained by using General Procedure B from THIQ 1c (296 $\mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde 2a ($229.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a(196 mg, 2.0 mmol) in 84% yield as yellow oil: 96% ee (HPLC conditions: Chiralcel ODH column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=31.1$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $\left.)=20.8 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-125.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.47-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.75(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.01-5.98(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 3.92-$ $3.80(\mathrm{~m}, 5 \mathrm{H}), 3.06-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=147.98,147.97,147.4,146.6,137.2,128.5,127.7,127.5,127.2,126.0$, $125.3,120.2,117.3,114.0,110.7,108.5,101.5,82.1,74.2,70.9,56.1,54.3,52.9,44.7,28.4$. IR (KBr) $3445.5,2086.8,1644.6,1467.4,1284.9,1239.5,1080.4,702.6 \mathrm{~cm}^{-1}$; HRMS (CI') (m / z) calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$506.0967; found 506.0979.

4j
$\mathbf{4 j}$ (444 mg) was obtained by using General Procedure B from THIQ 1c ($296 \mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde 2b ($245.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 mg , 2.0 mmol) in 85% yield as yellow oil: 97% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=17.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=23.7 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=-93.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m} .2 \mathrm{H}), 6.74(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$, $5.08(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 9 \mathrm{H}), 3.03-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.65(\mathrm{~m}, 2 \mathrm{H})$, $2.54-2.44(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=152.3,149.3,148.0,147.4,137.3,132.8,128.5$, $127.9,127.7,127.5,127.2,126.1,117.0,114.1,112.5,110.8,82.6,73.7,71.0,61.5,56.1,55.9,54.1$, 53.1, 44.8, 28.6. IR (KBr) 3450.8, 2096.7, 1625.8, 1518.5, 1473.8, 1269.7, 1212.3, 1069.9, 1012.7, 736.5 cm^{-1}; HRMS $\left(\mathrm{CI}^{+}\right)(m / z)$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 522.1280$; found 522.1263.

4k

4k (410 mg) was obtained by using General Procedure B from THIQ 1d ($296 \mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde 2a ($229.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 mg , 2.0 mmol) in 81% yield $\mathbf{4 k}$ as yellow oil: 98% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\operatorname{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}($ major $)=17.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=13.7 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=-88.0\left(c=0.1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.05-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.9-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=149.0,148.0,146.7,146.6,137.2,128.5$, $127.8,127.4,127.0,126.7,125.4,120.2,117.3,113.1,112.0,108.5,101.6,82.1,74.1,71.3,56.0,54.3$, 52.9, 44.8, 28.6. IR (KBr) 3442.6, 2084.9, 1641.6, 1453.4, 1264.9, 1229.3, 1089.5, $697.7 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(m / z)$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 506.0967$; found 506.0989.

41

41 (454 mg) was obtained by using General Procedure B from THIQ 1d ($296 \mathrm{mg}, 1.1 \mathrm{mmol}$), aldehyde 2b ($245.0 \mathrm{mg}, 1.0 \mathrm{mmol}$), alkyne 3a (196 mg , 2.0 mmol) in 87% yield as yellow oil: 98% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=87.5 / 12.5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}($ major $)=30.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=36.2 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=-85.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8$
$\mathrm{Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.10-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.3,149.3,148.8,146.5,137.2,132.8,128.4,127.8,127.7,127.5,127.3,126.8$, $116.9,113.0,112.5,112.0,82.5,73.7,71.2,61.5,56.0,55.8,54.1,53.1,44.7,28.7$. IR (KBr): 3442.9 , 2095.0, 1634.0, 1517.5, 1471.4, 1268.4, 1222.3, 1074.8, 1010.9, $732.4 \mathrm{~cm}^{-1}$; HRMS (CI^{+}) (m / z) calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BrNO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$522.1280; found 522.1293 .

2.3. Pd-catalyzed Reductive Heck exo-Carbocyclization

General Procedure C (Reductive Heck): To a solution of $\mathbf{4 a}(215 \mathrm{mg}, 0.5 \mathrm{mmol})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL} / 4$ mL) was added $\mathrm{HCO}_{2} \mathrm{Na}(68 \mathrm{mg}, 1 \mathrm{mmol})$. The solution was bubbled with a stream of dry nitrogen gas for 15 min before addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(29 \mathrm{mg}, 0.025 \mathrm{mmol})$. The reaction mixture was heated at 100 ${ }^{\circ} \mathrm{C}$ in an oil bath and stirred for 2 h under the nitrogen atmosphere. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The organic phase was collected and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3$ x 10 mL). The combined organic fractions were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc $=1: 1$) to provide the cyclization product $\mathbf{5 a}(137 \mathrm{mg}, 78 \%$ yield) as yellow oil. $[\alpha]^{25} \mathrm{D}=+103\left(c=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H})$, $4.51(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.05$ (m, 1H), 2.93-2.79 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.9,146.7,146.6,143.6,141.9,128.6$, $127.0,126.4,117.8,116.1,111.7,111.6,110.8,107.0,101.4,62.0,56.0,55.8,50.5,47.6,27.9$. IR (KBr) $3442.6,1639.5,1518.7,1465.7,1360.3,1262.5,1127.1,1044.8,729.2 \mathrm{~cm}^{-1}$; HRMS (CI ${ }^{+}$) (m / z) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 352.1549$; found 352.1544 .

5b (134 mg) was obtained by using General Procedure C from 4b (223 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in 73% yield as yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+93.3\left(c=0.1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H})$, $4.21(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.20-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.9,147.8,146.6,145.0$, $142.3,128.2,127.8,127.3,126.5,120.1,111.8,111.6,110.9,109.9,62.0,60.1,56.0,55.84,55.77,51.9$, 47.9, 28.2. IR (KBr) 3419.0, 2918.5, 1697.9, 1558.7, 1518.7, 1285.5, 1116.6, $1021.6 \mathrm{~cm}^{-1}$; HRMS (CI ${ }^{+}$) (m / z) calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 368.1862$; found 368.1867.

5c (128 mg) was obtained by using General Procedure C from $\mathbf{4 c}(215 \mathrm{mg}$, $0.5 \mathrm{mmol})$ in 73% yield as yellow oil: $[\alpha]^{25} \mathrm{D}=+121.0\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.07$ (s, 1H), 6.64 (s, 1H), 6.63 (s, 1H), 6.52 $(\mathrm{s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H})$, $4.27(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.92-$
$2.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.9,147.7,146.7,146.6,142.1,127.7,127.2,126.9$, $126.5,111.8,111.6,110.5,105.9,104.1,100.9,62.0,56.1,56.0,55.8,47.3,27.9$. IR (KBr) 3443.1, $1635.8,1518.8,1455.9,1356.3,1262.5,1107.2,1054.6,725.5 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 352.1549$; found 352.1558 .

5d (143 mg) was obtained by using General Procedure C from 4d (223 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in 78% yield as yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+124.0\left(c=0.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.09(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H})$, $5.58(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, 4 H), $3.87(\mathrm{~s}, 6 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 1 \mathrm{H}), 2.97-2.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=149.5$, $147.8(\times 2), 146.5,142.1,127.0,126.7,126.4,126.0,111.8,111.6,110.1,108.5,106.9,61.9,55.99,55.95$ $(\times 2), 55.86,55.83,47.2,28.1 . \mathrm{IR}(\mathrm{KBr}) 3442.6,1635.8,1518.3,1465.9,1259.0,1217.2,1023.1,668.6$ cm^{-1}; HRMS $\left(\mathrm{CI}^{+}\right)(m / z)$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 368.1862$; found 368.1866.

5e

5e (119 mg) was obtained by using General Procedure C from $\mathbf{4 e}$ (207 mg , $0.5 \mathrm{mmol})$ in 71% yield as yellow oil: $[\alpha]^{25} \mathrm{D}=+90.0\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09-3.19 (m, 1H), 2.96-2.81 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=146.7,146.5,145.3,143.6$, $141.5,128.4,128.1,127.6,117.8,116.0,111.1,108.8,108.6,107.0,101.4,100.7,62.3,50.0,47.4,28.1$. IR (KBr) 3442.7, 1636.3, 1481.9, 1262.7, 1035.9, 799.12, $731.3 \mathrm{~cm}^{-1}$; $\mathrm{HRMS}\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$336.1236; found 336.1231.

$5 f(126 \mathrm{mg})$ was obtained by using General Procedure C from $\mathbf{4 f}(215 \mathrm{mg}$, $0.5 \mathrm{mmol})$ in 72% yield as yellow oil: $[\alpha]^{25} \mathrm{D}=+91.5\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.71$ $(\mathrm{s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 3.19-3.08 (m, 1H), 2.92-2.80 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.9,146.4,145.3,145.0$, 141.6, 128.1, 127.8, 127.4, 127.3, 120.2, 111.0, 110.5, 108.8, 108.6, 100.7, 62.1, 60.1, 55.8, 51.1, 47.6, 28.1. IR (KBr) 3443.1, 2078.5, 1636.3, 1485.2, 1285.4, 1279.5, 1033.7, $728.5 \mathrm{~cm}^{-1} ;$ HRMS (CI $\left.{ }^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 352.1549$; found 352.1538 .

$5 g$
$\mathbf{5 g}(132 \mathrm{mg})$ was obtained by using General Procedure C from $\mathbf{4 g}(207 \mathrm{mg}$, $0.5 \mathrm{mmol})$ in 79% yield as yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+95.0\left(c=0.2, \mathrm{CHCl}_{3}\right) ; \quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.08(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.50$ $(\mathrm{s}, 1 \mathrm{H}), 5.94-5,89(\mathrm{~m}, 4 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=147.7,146.7,146.4,145.2,141.7,128.0,127.7(\times 2), 127.0,110.8,108.8,108.7,105.9,104.1$, $100.9,100.7,62.2,55.6,47.0,28.1$. IR (KBr) 3442.7, 2075.7, 1635.5, 1485.2, 1242.6, 1035.1, $727.5 \mathrm{~cm}^{-}$ ${ }^{1}$; $\mathrm{HRMS}\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 336.1236$; found 336.1240.

5h (133 mg) was obtained by using General Procedure C from 4h (215 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in 76% yield as yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+103.5\left(c=0.2, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.09(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H})$, $5.91(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J$ $=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.82(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.6,147.9,146.5,145.2,141.5,127.9,127.6,126.1,125.5,110.6,108.8,108.7$, 108.5, 106.9, 100.7, 62.2, 56.0, 55.9, 55.2, 46.9, 28.1. IR (KBr) 3442.7, 1636.7, 1516.9, 1258.7, 1034.8, $723.0 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / z)$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 352.1549$; found 352.1574

$5 \mathbf{i}(149 \mathrm{mg})$ was obtained by using General Procedure \mathbf{C} from $\mathbf{4 i}(253 \mathrm{mg}$, $0.5 \mathrm{mmol})$ in 70% yield as yellow oil: $[\alpha]^{25} \mathrm{D}=+162.0\left(c=0.1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H})$, $4.51(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.96-$ $2.70(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.3,147.1,146.6,143.6,141.8,137.2,128.6,128.5$, $127.8,127.3,127.1,127.0,117.7,116.1,114.4,112.4,110.9,107.0,101.4,71.0,62.0,56.2,50.5,47.6$, 27.8. IR (KBr) 3445.5, 1629.4, 1536.5, 1445.7, 1324.3, 1258.6, 1122.1, 1037.6, 733.1; HRMS (CI ${ }^{+}$) (m / z) calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 428.1862$; found 428.1852 .

5j (170 mg) was obtained by using General Procedure C from $\mathbf{4 j}$ (261 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in 77% yield as yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+153.0\left(c=0.1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}$, $3 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.67$ $(\mathrm{s}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83$ $(\mathrm{s}, 6 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.75(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.9,147.3,147.1$, $145.0,142.1,137.3,128.5,128.1,127.8,127.7,127.3,127.19,127.16,120.1,114.4,112.5,110.9,110.1$, $71.1,61.9,60.1,56.2,55.8,51.7,47.8,28.0$. IR (KBr) 3445.5, 1629.4, 1536.5, 1445.7, 1324.3, 1258.6, 1122.1, 1037.6, 733.1; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / z)$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 443.2097$; found 443.2045 .

5k

5k (158 mg) was obtained by using General Procedure C from $\mathbf{4 k}$ (253 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in 74% yield as yellow oil: $[\alpha]^{25} \mathrm{D}=+100.0(c=0.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ (t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.51$ $(\mathrm{s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (s, 3H), 3.19-3.02 (m, 1H), 2.92-2.74 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.7,146.6,145.5$, $143.5,141.6,137.2,128.53,128.45,127.7,127.4$ ($\times 2$), 126.4, 117.8, 116.1, 115.0, 112.2, 110.7, 107.0, $101.4,71.2,61.9,56.0,50.4,47.7,27.9$. IR (KBr) 3453.5, 1634.3, 1527.5, 1448.6, 1353.3, 1256.6, 1134.1, $731.1 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / z)$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 428.1862$; found 428.1850.

51 (170 mg) was obtained by using General Procedure C from 41 (261 $\mathrm{mg}, 0.5 \mathrm{mmol})$ in 77% yield as yellow oil: $[\alpha]^{25} \mathrm{D}=+112.0(c=0.1$, CHCl_{3}) ; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.20-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.72(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.8,148.6$, $145.5,145.0,141.9,137.3,128.4,128.0,127.9,127.7,127.6,127.4,126.4,120.1,115.1,112.2,110.9$, $109.9,71.2,61.8,60.1,56.0,55.8,51.7,47.9,28.1$. IR (KBr) 3679.4, 3622.5, 2937.0, 1580.2, 1494.9, 1283.3, $1025.1 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{4}[\mathrm{M}]^{+} 443.2097$; found 443.2003.

2.4. PtO_{2}-catalyzed Hydrogenation

General Procedure D: To a solution of compound 5a ($35 \mathrm{mg}, 0.1 \mathrm{mmol}$) in acetic acid (2.0 mL) was added $\mathrm{PtO}_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ and the reaction suspension was stirred under an atmosphere of hydrogen (1 atm) for 12 h . The solvent (acetic acid) was removed by rotary evaporation under reduced pressure. The residue was dissolved in DCM (5 mL) and washed with saturated aqueous sodium carbonate ($2 \times 5 \mathrm{~mL}$). The organic layer was collected, dried over MgSO_{4}, and concentrated. The residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc $=5: 1$) to provide cavidine ${ }^{1}$ ($\mathbf{6 a}, 33.9 \mathrm{mg}, 96 \%$ yield) as white solid: m.p. $180-182^{\circ} \mathrm{C}$ (hexane/dichloromethane); 94\% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{R}}($ major $)=9.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=18.4 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=+242.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}$, $1 \mathrm{H}), 4.07(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ $(\mathrm{dt}, J=24.4,12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.57(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.7,147.2,144.7,143.0,135.9,128.4,128.3,121.2,116.8,111.2,108.6,106.7$, 101.0, 63.1, 56.1, 55.8, 53.3, 51.3, 38.6, 29.3, 18.4. IR (KBr) 2927.2, 2788.6, 1610.7, 1515.5, 1256.8, 1043.2, $808.6 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 354.1705$; found 354.1722 .

Corydaline ${ }^{2} \mathbf{6 b}$ (33.5 mg) was obtained by using General Procedure D from 5b ($36.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 91% yield as white solid: m.p. $138-140^{\circ} \mathrm{C}$ (hexane/dichloromethane); 93\% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}$ (major) $=10.0$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $\left.)=18.9 \mathrm{~min}\right) ;[\alpha]_{\mathrm{D}}^{25}=+249.0\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.91(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}$, $6 \mathrm{H}), 3.862(\mathrm{~s}, 3 \mathrm{H}), 3.858(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.71-2.50$ $(\mathrm{m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=150.0,147.6,147.1,144.8,134.9$, $128.5,128.45,128.35,124.0,111.1,110.9,108.7,63.0,60.1,56.1,55.9,55.8,54.4,51.4,38.3,29.3,18.3$. IR (KBr) 2933.6, 2806.1, 2755.3, 1622.5, 1531.2,1462.1, 1259.8, 1064.0, $1028.3 \mathrm{~cm}^{-1} ; \mathrm{HRMS}_{\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z}) ~}^{\text {(}}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 370.2018$; found 370.2055.

[^0]

Pseudocavidine ${ }^{3,4} \mathbf{6 c}(33.2 \mathrm{mg})$ was obtained by using General Procedure D from 5c ($35.1 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 94% yield as white solid: m.p. 183-185 ${ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 94\% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=10.0$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $\left.)=18.4 \mathrm{~min}\right) ;[\alpha]^{25}=+270.0\left(c=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.68(\mathrm{~s}$, $1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.879(\mathrm{~s}, 3 \mathrm{H}), 3.872$ $(\mathrm{s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.00(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=147.7,147.2,146.0,145.7,134.4,128.34,128.27,127.0,111.2$, 108.63, 108.56, 105.8, 100.6, 63.2, 58.9, 56.1, 55.8, 51.2, 38.8, 29.2, 18.1. IR (KBr) 2933.5, 2800.6, 1635.9, 1512.8, 1483.5, 1257.0, 1037.6, $730.1 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+$ $\mathrm{H}]^{+} 354.1705$; found 354.1735 .

Pseudocorydaline 6d (35.4 mg) was obtained by using General Procedure D from $\mathbf{5 d}$ ($36.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 96% yield as white solid: m.p. 143-145 ${ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 93.5\% ee (HPLC conditions: Chiralcel ODH column, hexane $/ i-\mathrm{PrOH}=97.5 / 2.5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $28.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=36.9 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+259.0\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.70$ $(\mathrm{s}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 9 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.73$ $(\mathrm{s}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.63(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.62,147.56,147.3,147.1,133.3,128.5,128.3,126.0$, $111.5,111.1,108.8,108.6,63.3,58.6,56.0,55.9(\times 2), 55.8,51.3,38.4,29.2,18.0$. IR (KBr) 2929.5, $1610.5,1511.2,1227.0,1028.4,749.6 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 370.2018$; found 370.2028 .

Tetrahydrocorysamine ${ }^{5}$ 6e (31.3 mg) was obtained by using General Procedure D from 5e ($33.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 93% yield as white solid: m.p. 200-202 ${ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 91% ee (HPLC conditions: Chiralcel $\mathrm{AD}-\mathrm{H}$ column, hexane $/ i-\mathrm{PrOH}=200 / 1,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=$ $12.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=20.7 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=+226.0\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.71$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.98-5.90(\mathrm{~m}, 4 \mathrm{H}), 4.06(\mathrm{~d}, J=$ $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.16-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J$ $=15.2,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=146.3,145.6,144.7$, $143.0,135.9,129.6,129.3,121.3,116.7,108.3,106.8,105.6,101.0,100.7,63.5,53.3,51.2,38.7,29.8$, 18.4. IR (KBr) 3459.5, 2933.5, 2866.7, 1637.3, 1484.7, 1265.7, 1040.9, $637.5 \mathrm{~cm}^{-1}$; HRMS (CI ${ }^{+}$) $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 338.1392$; found 338.1385.

Thalictricavine ${ }^{6,7} \mathbf{6 f}(34.5 \mathrm{mg})$ was obtained by using General Procedure D from $5 \mathbf{f}$ ($35.1 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 98% yield as white solid: m.p. 204-206 ${ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 93\% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=250 / 1+0.5 \% \mathrm{Et}_{2} \mathrm{NH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}$,

[^1]$\mathrm{t}_{\mathrm{R}}($ major $)=25.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=21.8 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+261\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.19(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.66(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.00-$ $3.12(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.0$, $146.3,145.6,144.8,134.9,129.7,129.3,128.4,124.0,111.0,108.3,105.6,100.7,63.4,60.1,55.9,54.4$, 51.3, 38.4, 29.8, 18.2. IR (KBr) 3445.7, 2926.1, 2745.9, 1683.8, 1457.1, 1220.8, 1039.0, $796.3 \mathrm{~cm}^{-1}$; $\operatorname{HRMS}\left(\mathrm{CI}^{+}\right)(\mathrm{m} / z)$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 354.1705$; found 354.1710.

Tetrahydroworenine ${ }^{8} \mathbf{6 g}(31.0 \mathrm{mg})$ was obtained by using General Procedure D from 5 g ($33.5 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 92% yield as white solid: m.p. 208-209 ${ }^{\circ} \mathrm{C}$ (hexane/dichloromethane); 94\% ee (HPLC conditions: Chiralcel $\mathrm{AD}-\mathrm{H}$ column, hexane $/ i-\mathrm{PrOH}=100 / 1+0.5 \% \mathrm{Et}_{2} \mathrm{NH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=214$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ major $)=20.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=17.7 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+240.0\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=6.68(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-2.94(\mathrm{~m}, 3 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 146.3,146.0,145.7,145.6,134.4,129.5,129.3$, $126.9,108.6,108.3,105.8,105.5,100.7,100.6,63.6,58.9,51.1,38.9,29.7,18.1$. IR (KBr) 3444.3 , $2956.5,2876.6,1635.3,1384.6,1260.9,1033.9,669.5 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 338.1392$; found 338.1385 .

Pseudothalictricavine ${ }^{9}$ 6h (33.5 mg) was obtained by using General Procedure D from $\mathbf{5 h}(35.1 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 95% yield as white solid: m.p. $168-169^{\circ} \mathrm{C}$ (hexane/dichloromethane); 95.5\% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=100 / 1+0.5 \% \mathrm{Et}_{2} \mathrm{NH}, 1.0 \mathrm{~mL} / \mathrm{min}, \lambda=230$ $\mathrm{nm}, \mathrm{t}_{\mathrm{R}}($ major $)=25.2 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=21.8 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+246.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=6.69(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-3.20(\mathrm{~m}, 2 \mathrm{H})$, $2.51-2.61(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.6,147.3,146.3,145.6$, 133.3, 129.7, 129.3, 125.9, 111.6, 108.8, 108.3, 105.6, 100.7, 63.7, 58.5, $55.9(\times 2), 51.2,38.5,29.7,18.0$. IR (KBr) 3414.4, 2929.3, 1611.1, 1388.3, 1037.5, $750.1 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 354.1705$; found 354.1721 .

2.5. Pd-catalyzed Hydrogenation and Debenzylation:

General Procedure E: To a solution of $\mathbf{5 i}(43 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added $\mathrm{Pd} / \mathrm{C}(10.6$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{wt} \%)$. The suspension was stirred under an atmosphere of hydrogen (1 atm) for 12 h . After completion of the reaction, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added to the solution and the reaction mixture was washed with saturated aqueous brine. The organic layer was collected and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 4 \mathrm{~mL}$). The combined fractions were dried over anhydrous magnesium sulfate

[^2]and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel using eluents (hexane/EtOAc $=5: 1$) to provide isoapocavidine ($\mathbf{6 i}, 28.7 \mathrm{mg}, 85 \%$ yield) as colorless oil: 95.5% ee (HPLC conditions: Chiralcel AD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=16.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=20.6 \mathrm{~min}\right) ;\left[\alpha{ }^{25} \mathrm{D}=+265.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}\right.$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.96$ $(\mathrm{s}, 1 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22(\mathrm{qt}, J=16.4,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.49(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=145.4,144.7,143.6,143.0,135.9,129.1,127.9,121.2$, $116.8,114.0,107.8,106.7,101.0,63.2,56.1,53.4,51.2,38.7,29.1,18.4$. IR (KBr) 2933.2, 2764.6, $1620.5,1462.3,1358.7,1256.8,1143.2,864.6 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4}[\mathrm{M}]^{+}$ 339.1471; found 339.1474.

Corybulbine ${ }^{10} \mathbf{6 j}$ (32 mg) was obtained by using General Procedure E from $5 \mathbf{j}$ ($44.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 90% yield as colorless oil: 96% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=97.5 / 2.5,1.0$ $\mathrm{mL} / \mathrm{min}, \lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=24.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=34.1 \mathrm{~min}\right) ;[\alpha]^{25}$ $=+277.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}$, $1 \mathrm{H}), 3.49(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.47(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.0,145.4,144.9,143.6,134.9,129.2,128.5,128.0$, $123.9,114.0,110.9,107.9,63.1,60.1,56.1,55.9,54.5,51.4,38.4,29.1,18.3$. IR (KBr) 2944.3, 1637.9, 1532.2, 1247.0, 1068.4, $755.7 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}]^{+} 355.1784$; found 355.1779 .

Apocavidine ${ }^{11} \mathbf{6 k}(28.8 \mathrm{mg})$ was obtained by using General Procedure E from $5 \mathbf{k}(42.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 85% yield as colorless oil: 95.5% ee (HPLC conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=$ $214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=13.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=18.0 \mathrm{~min}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+211.0(c=$ $\left.0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.77(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.48$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.41(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=144.7,144.6,144.1,143.0,136.0,129.2,127.5,121.3,116.7$, $111.4,110.4,106.7,101.0,63.0,55.8,53.3,51.4,38.3,29.3,18.5$. IR (KBr) 2929.5, 2778.3, 1643.7, $1535.5,1235.7,1144.3,1067.9,877.6 \mathrm{~cm}^{-1} ;$ HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 340.1549$; found 340.1552 .

Isocorybulbine $61(32.3 \mathrm{mg})$ was obtained by using General Procedure E from $5 \mathbf{5}$ ($44.3 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 91% as colorless oil: $94.5 \% ~ e e ~(H P L C$ conditions: Chiralcel OD-H column, hexane $/ i-\mathrm{PrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=214 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}($ major $)=10.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $\left.)=17.5 \mathrm{~min}\right) ;[\alpha]^{25} \mathrm{D}=+225.0(c$ $\left.=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77$ ($\mathrm{s}, 1 \mathrm{H}$), $6.59(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.65(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=15.6$

[^3]$\mathrm{Hz}, 2 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=12.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.0,144.8,144.7,144.0,135.0,129.3,128.4,127.6,124.1,111.4$, $110.9,110.4,62.9,60.1,55.8(\times 2), 54.4,51.5,38.1,29.4,18.3$. IR (KBr) 2935.3, 1622.9, 1544.4, 1253.0, 1124.5, 1069.8, $743.6 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}]^{+} 355.1784$; found 355.1786.

2.6. Preparation of Compounds $9 \mathrm{a}-9 \mathrm{c}$ and 10 via Cascade Heck-Suzuki Reaction

General Procedure F (Heck-Suzuki): To a solution of compound $\mathbf{4 a}(86 \mathrm{mg}, 0.2 \mathrm{mmol})$ and boronic acid (0.3 mmol) in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{~mL} / 2.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(55.2 \mathrm{mg}, 0.4 \mathrm{mmol})$. The solution was bubbled with a stream of dry nitrogen gas for 15 min before the addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.5 \mathrm{mg}, 0.01$ mmol). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 2 h and then the mixture was diluted with EtOAc, washed with water and brine. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel to afford the corresponding compounds $\mathbf{9 a}-\mathbf{9} \mathbf{c}$ and 9k.

9a

9a (78.5 mg) was obtained by using General Procedure F from 4 (86 mg , $0.2 \mathrm{mmol})$ in 92% as colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+121.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.20-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H})$, 5.97 (s, 2H), $4.50(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.88(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.0,146.9,146.1,143.3,138.0,135.7,129.1,128.1,127.8,127.6,126.8$, $126.6,126.2,122.6,117.8,111.6,111.5,106.0,101.3,63.4,56.1,55.8,50.9,48.0,28.0$. IR (KBr) 2922.8, 1645.1, 1607.4, 1512.2, 1463.1, 1363.1, 1258.7, 1128.8, 1043.8, 914.9, 811.6, 731.4, 646.5, 582.4, 476.8 cm^{-1}. HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 428.1862$; found 428.1825 .

9b (87.0 mg) was obtained by using General Procedure \mathbf{F} from $\mathbf{4 a}(86 \mathrm{mg}$, $0.2 \mathrm{mmol})$ in 95% as colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+137.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.16-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-5.92(\mathrm{~m}, 3 \mathrm{H}), 4.47$ $(\mathrm{s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.0,146.9$, $146.3,143.4,136.7,136.4,132.2,130.4,128.3,127.6,127.5,125.8,125.1,122.4,117.7,111.4(\times 2)$, 106.1, 101.4, 63.4, 56.1, 55.8, 51.0, 48.1, 28.1. IR (KBr) 3005.0, 2923.7, 2837.2, 1605.0, 1510.2, 1463.1, 1363.2, 1130.9, 1045.7, 913.1, 821.3, 731.8, 644.1, $512.4 \mathrm{~cm}^{-1}$. HRMS (CI^{+}) (m/z) calcd. for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{ClNO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 462.1472$; found 462.1422 .

9c

9c $(92.0 \mathrm{mg})$ was obtained by using General Procedure \mathbf{F} from $\mathbf{4 a}(86 \mathrm{mg}$, $0.2 \mathrm{mmol})$ in 93% as colorless oil: $[\alpha]^{25} \mathrm{D}=+123.0\left(c=0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.61(\mathrm{~m}, 2 \mathrm{H}), 6.44(\mathrm{~d}, J=8.3,1 \mathrm{H}), 5.99$ ($\mathrm{s}, 3 \mathrm{H}$), $4.49(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=17.4,1 \mathrm{H}), 3.89$ $(\mathrm{s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{ddd}, J=9.2 \mathrm{~Hz}, 6.2,3.7,1 \mathrm{H}), 3.00-2.83(\mathrm{~m}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=148.1,147.0,146.6,143.5,138.7,137.9,132.5,130.6,130.3,128.4$, $127.7,127.2,126.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 125.7,125.4,124.6,123.2(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 122.7,122.4,117.9,111.5$, $106.0,101.4,63.4,56.1,55.8,51.2,48.1,28.2$. IR (KBr) 2924.4, 1608.2, 1513.7, 1464.9, 1329.6, 1258.6, 1163.0, 1125.6, 1043.9, 915.8, 808.6, 731.6, 652.3, 587.0, $472.2 \mathrm{~cm}^{-1} . \mathrm{HRMS}\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 496.1376$; found 496.1376 .

9k (86.0 mg) was obtained by using General Procedure F from $\mathbf{4 e}(82.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 90% as colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+87.0\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.48(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H})$, $7.39(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.64-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}$, 2H), 5.97 (s, 2H), $5.97-5.92(\mathrm{~m}, 2 \mathrm{H}), 4.49$ (s, 2H), 4.28 (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.01$ (d, $J=16.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.38-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=146.7,146.5,145.6,143.5$, $138.8,137.5,132.5,130.7,130.4,128.7,128.4,128.1$ ($q, J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 126.8,125.98,126.0,125.4$ (q, $J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 124.9,123.23,123.19,122.7(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 122.5,120.0(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{C})$ $117.8,108.7,108.3,106.1,101.34,100.78,63.7,50.4,47.9,28.20$. IR (KBr) 2899.0, 1637.0, 1383.3, $1328.8,1253.2,1167.6,1126.0,1043.5,996.7,915.2,812.5,733.2,653.8,590.6,523.2,465.1 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 480.1423$; found 480.1379 .
$10^{12}(41.4 \mathrm{mg})$ was obtained by using General Procedure D from 9k ($47.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 86% yield as colorless oil: $[\alpha]^{25} \mathrm{D}=+261.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=7.47-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.17(\mathrm{~d}, J=7.2 \mathrm{HZ}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0,1 \mathrm{H}), 6.02-5.96(\mathrm{~m}$, $2 \mathrm{H}), 5.95-5.90(\mathrm{~m}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=15.6,1 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 4.8,1 \mathrm{H}), 2.66-2.54(\mathrm{~m}, 2 \mathrm{H})$, $2.50-2.41(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta=145.9,145.41,144.7,142.7,142.4,133.3,132.7$, $129.0,128.65,128.61,128.56,128.3(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 125.6(\mathrm{q}, J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 122.9$ (q, $J=10.8$ $\mathrm{Hz}, 1 \mathrm{C}), 122.2,122.1,121.7,120.2$ (q, $J=10.8 \mathrm{~Hz}, 1 \mathrm{C}), 116.2,108.0,105.9,105.6,100.9,100.5,62.9$, 52.67, 50.4, 45.2, 38.5, 29.1. IR (KBr) 2917.9, 1648.3, 1473.8, 1370.7, 1329.2, 1261.6, 1165.4, 1123.2, 1069.1, 1038.8, 931.2, 806.3, 737.6, 702.0, $660.00 \mathrm{~cm}^{-1}$; HRMS (CI^{+}) (m/z) calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{4}[\mathrm{M}]^{+}$ 482.1579; found 482.1547.

[^4]
2.7 Preparation of Compounds $9 \mathrm{e}-9 \mathrm{~g}$ via Cascade Heck-Heck reaction

General Procedure G (Heck-Heck): To a solution of compound $\mathbf{4 a}(86 \mathrm{mg}, 0.2 \mathrm{mmol})$ and olefin (1 $\mathrm{mmol})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{~mL} / 2.0 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(55.2 \mathrm{mg}, 0.4 \mathrm{mmol})$. The solution was bubbled with a stream of dry nitrogen gas for 15 min before the addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.5 \mathrm{mg}, 0.01 \mathrm{mmol})$. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 3 h and then the mixture was diluted with EtOAc, washed with water and saturated brine. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel to afford compounds $\mathbf{9 e - 9 g}$.

$\mathbf{9 e}(72.0 \mathrm{mg})$ was obtained by using General Procedure G from $\mathbf{4 a}$ (86 $\mathrm{mg}, 0.2 \mathrm{mmol})$ in 83% yield as colorless oil: $[\alpha]^{25} \mathrm{D}=+261.0(c=0.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.79(\mathrm{dd}, J=16.0 \mathrm{~Hz}, 12.0,1 \mathrm{H})$, $6.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}$, $1 \mathrm{H}), 6.02(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.77(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=167.7,148.1,147.6,147.0,145.2,141.9,128.3,127.8,125.1,123.3,123.1,121.9,117.6$, $111.5,111.2,106.5,101.6,63.2,56.1,55.8,51.4,51.3,48.3,28.4$. IR (KBr) 2938.9, 2841.6, 1709.3, 1615.6, 1514.2, 1460.7, 1366.7, 1262.8, 1135.2, 1043.4, 912.9, 815.5, 731.0, 646.0, $567.3 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+} 436.1760$; found 436.1739.

9f (71.0 mg) was obtained by using General Procedure \mathbf{G} from $\mathbf{4 a}(86 \mathrm{mg}$, $0.2 \mathrm{mmol})$ in 85% yield as colorless oil: $[\alpha]^{25} \mathrm{D}=+135.0\left(c=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.65(\mathrm{dd}, J=8.0,4.0,1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05-6.0(\mathrm{~m}, 2 \mathrm{H}), 5.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.78(\mathrm{~m}$, 3H), $2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=198.6,148.2,147.7,146.4,143.8,140.6,131.5$, $128.4,127.8,125.0,123.4,123.1,117.8,111.5,111.3,106.5,101.7,63.3,56.1,55.9,51.5,48.5,28.4$, 27.5. IR (KBr) 2922.1, 1663.9, 1597.0, 1513.1, 1463.4, 1365.0, 1139.7, 1043.8, 993.0, 913.8, 816.9, $729.8,646.0 \mathrm{~cm}^{-1}$. $\mathrm{HRMS}\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 420.1811$; found 420.1700.

$\mathbf{9 g}(70.0 \mathrm{mg})$ was obtained by using General Procedure G from $\mathbf{4 a}$ (86 $\mathrm{mg}, 0.2 \mathrm{mmol})$ in 78% yield as colorless oil: $[\alpha]^{25} \mathrm{D}=+117.0(c=0.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.01$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.97 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.20-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.76(\mathrm{~m}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=169.1,148.1$, 101.6, 63.56, 56.1, 55.8, 51.8, 51.4, 48.6, 28.4, 12.9. IR (KBr) 2925.6, 1704.5, 1608.2, 1513.1, 1464.5, $1353.3,1258.4,1114.4,1042.9,915.1,816.5,736.4,646.7 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{6}$ $[\mathrm{M}+\mathrm{H}]^{+} 450.1917$; found 450.1893.

2.8. Preparation of Compounds $\mathbf{9 h} \mathbf{- 9 j}$ via Cascade Heck-Sonogashira Reaction

General Procedure H (Heck-Sonogashira): To a solution of compound $\mathbf{4 a}(86 \mathrm{mg}, 0.2 \mathrm{mmol})$ and alkyne $(1 \mathrm{mmol})$ in DMF/ $\mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{~mL} / 2.0 \mathrm{~mL})$ were added $\mathrm{K}_{2} \mathrm{CO}_{3}(55.2 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{CuI}(3.8 \mathrm{mg}, 0.02$ $\mathrm{mmol})$. The solution was bubbled with a stream of dry nitrogen gas for 15 min before the addition of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.5 \mathrm{mg}, 0.01 \mathrm{mmol})$. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then diluted with EtOAc, washed with water and saturated brine. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by column chromatography on silica gel to afford compounds $\mathbf{9 h} \mathbf{- 9 j}$.

9h

9h (71 mg) was obtained by using General Procedure H from $\mathbf{4 a}(86 \mathrm{mg}$, $0.2 \mathrm{mmol})$ in 79% yield as colorless oil: $[\alpha]^{25} \mathrm{D}=+91.5\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.07-$ $5.96(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=148.2,147.0,146.9,144.9,143.4,131.3,128.3,128.0,127.7,127.4,125.8,123.7,121.7$, $117.1,111.7,111.5,106.2,105.6,101.5,95.1,88.9,62.7,56.0,55.9,51.0,47.5,28.1$. IR (KBr) 2923.3, $2847.5,1712.9,1648.3,1602.0,1511.7,1465.0,1361.6,1260.1,1124.6,1045.5,912.8,808.9,729.5$, 644.4, $532.7 \mathrm{~cm}^{-1}$. HRMS $\left(\mathrm{CI}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 452.1862$; found 452.2018 .

9 i

9i (77 mg) was obtained by using General Procedure \mathbf{H} from $\mathbf{4 a}$ (86 mg , $0.2 \mathrm{mmol})$ in 80% yield as colorless oil: $[\alpha]^{25} \mathrm{D}=+77.5\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.35(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.25-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.80$ $(\mathrm{m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=159.5,148.1,146.9,143.8,143.3$, $132.7,127.8,127.4,125.9,121.5,117.1,115.9,114.0,111.7,111.50,106.2,105.9,101.4,95.2,87.6$, 62.7, 56.0, 55.9, 55.3, 50.9, 47.4, 28.1. IR (KBr) 3003.5, 2925.2, 2837.6, 2189.3, 1604.5, 1511.1, 1465.0,
1363.7, 1254.0, 1178.9, 1121.9, 1042.2, 912.1, 824.1, 732.8, 648.3, 536.7, $\left.472.4 \mathrm{~cm}^{-1} . \mathrm{HRMS}_{(\mathrm{CI}} \mathrm{H}^{+}\right)(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+} 482.1967$; found 482.1891.

9j

9j (67 mg) was obtained by using General Procedure H from $\mathbf{4 a}$ (86 mg , $0.2 \mathrm{mmol})$ in 75% yield as colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+134\left(c=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0,1 \mathrm{H})$, $6.63(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.23-$ $3.10(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{td}, J=7.0 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-$ $1.45(\mathrm{~m}, 2 \mathrm{H}) 1.44-1.22(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=148.1,146.8$, $146.6,143.2,142.6,127.7,127.3,126.0,121.2,116.9,111.6,111.5,106.5,106.0,101.3,79.3,62.7,56.0$, $55.9,50.7,47.4,31.1,28.3,28.0,22.2,19.9,14.0$. IR (KBr) 2928.1, 2863.3, 1644.9, 1605.4, 1512.7, 1464.8, 1363.6, 1257.4, 1126.3, 1046.7, 992.8, 915.5, 808.1, 730.8, $637.4 \mathrm{~cm}^{-1}$. HRMS (CI+) (m/z) calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{4}[\mathrm{M}]^{+} 445.2253$; found 445.2254.

2.9. Screening of Chiral ligands for CuI-catalyzed Redox-A ${ }^{3}$ Reaction (Table 1).

To a flame-dried bottom-rounded flask (25 mL) were added CuI ($1.2 \mathrm{mg}, 0.01 \mathrm{mmol}$), Pybox (0.022 mmol), and newly activated $4 \AA$ molecular sieves (300 mg). To the reaction flask under nitrogen atmosphere were sequentially added toluene (10 mL), 1a ($270 \mathrm{mg}, 1.4 \mathrm{mmol}$), 2a($320.0 \mathrm{mg}, 1.4 \mathrm{mmol}$), and $\mathbf{3 a}\left(98 \mathrm{mg}, 1.0 \mathrm{mmol}\right.$). The reaction mixture was heated with an oil bath at $40^{\circ} \mathrm{C}$ for 12 h . After TLC analysis indicated the completion of the reaction, the solvent was removed by evaporation, and the residue was purified by chromatography (hexane/EtOAc $=10: 1$) on silica gel to afford $\mathbf{4 a 0}$. The HPLC spectra of different entries are shown in pages S-21-24.

2.10. Copies of HPLC Chromatograms for Screening of Chiral ligands

Project Name Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE		NFORMAT	1 O
Sample Name:	zsq6-90-1-a(90/10)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/2/2016 3:31:53 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 10:24:59 AM HKT
Injection Volume:	5.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

Project Name Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

Project Name Defaults
Reported by User: Breeze user (Breeze)

Project Name	Defaults
Reported by User:	Breeze user (Breeze)

SAMPLE		INFORMATION	
Sample Name:	5-185-1	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	7/14/2016 2:38:18 AM HKT
Vial:	1	Acq. Method:	ZSQ_INDOL
Injection \#:	1	Date Processed:	12/18/2016 1:02:24 PM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	30.00 Minutes	Sample Set Name	

SAMPLE INFORMATION			
Sample Name:	2-99-1-A	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	7/13/2016 2:28:50 AM HKT
Vial:	1	Acq. Method:	ZSQ_INDOL
Injection \#:	1	Date Processed:	12/15/2016 10:21:39 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	30.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} *$ sec $)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	6.402	6505087	54.14	331809	77.78
2	15.564	5509594	45.86	94812	22.22

Table 1 Crystal data and structure refinement for qiang5CuLT.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ} \quad 90.0050(10)$
γ°
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Completeness to theta $=66.5^{\circ}$
qiang5CuLT
$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNO}_{4}$
430.29
173.15
monoclinic
P2 1
9.4538(2)
8.19410(10)
12.3501(2)

90

90
956.71(3)

2
1.494
3.155
440.0
$0.2 \times 0.2 \times 0.18$
$\operatorname{CuK} \alpha(\lambda=1.54178)$
7.158 to 133.56
$-11 \leq \mathrm{h} \leq 11,-9 \leq \mathrm{k} \leq 9,-14 \leq 1 \leq 14$
12931
$3352\left[\mathrm{R}_{\text {int }}=0.0216, \mathrm{R}_{\text {sigma }}=0.0163\right]$
3352/1/246
98.7\%

Goodness-of-fit on F^{2}
1.003

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
Flack parameter
$\mathrm{R}_{1}=0.0245, \mathrm{wR}_{2}=0.0650$
$\mathrm{R}_{1}=0.0248, \mathrm{wR}_{2}=0.0653$
0.36/-0.36
$-0.024(5)$

Crystal structure determination of [qiang5CuLT]

Crystal Data for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrNO}_{4}(M=430.29 \mathrm{~g} / \mathrm{mol})$: monoclinic, space group $\mathrm{P} 2_{1}$ (no. 4), $a=$ $9.4538(2) \AA, b=8.19410(10) \AA, c=12.3501(2) \AA, \beta=90.0050(10)^{\circ}, V=956.71(3) \AA^{3}, Z=2, T=$ $173.15 \mathrm{~K}, \mu(\mathrm{CuK} \alpha)=3.155 \mathrm{~mm}^{-1}$, Dcalc $=1.494 \mathrm{~g} / \mathrm{cm}^{3}, 12931$ reflections measured $\left(7.158^{\circ} \leq 2 \Theta \leq\right.$ $\left.133.56^{\circ}\right), 3352$ unique $\left(R_{\text {int }}=0.0216, R_{\text {sigma }}=0.0163\right)$ which were used in all calculations. The final R_{1} was $0.0245\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.0653 (all data).
4. Copies of NMR Spectra

	1	1	1	,	1	,	1	1	1	1	1	1	1	1	1	1	1
8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	ppm
	Mor	$\stackrel{1}{8}$	$\left\|\begin{array}{c} 8 \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 0 \\ \mathrm{~N} \end{array}\right\|$		$\left\|\begin{array}{c} \circ \\ \underset{\sim}{2} \end{array}\right\|$		$\left\|\frac{n}{i}\right\|$		$\|\underset{r}{\hat{N}}\|$							

160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE INFORMATION			
Sample Name:	6-63-1-g	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	8/20/2016 7:32:55 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 9:44:11 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	40.00 Minutes	Sample Set Name	

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	4.979	71781	2.39	5603	2.50
2	7.745	2932952	97.61	218319	97.50

Project Name Defaults
Reported by User: Breeze user (Breeze)

Breeze 2
HPLC System

SAMPLE			
Sample Name:	6-63-1-racimic	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	8/20/2016 7:10:57 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 9:47:24 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	40.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	4.711	4632083	49.66	240965	49.89
2	7.939	4695830	50.34	242015	50.11

Project Name Defaults Breeze user (Breeze)

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	8.099	28370375	50.95	1146175	58.33
2	10.349	27307421	49.05	818770	41.67

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE		INFORMATION	
Sample Name:	6-71-2a-racimic(500:1)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	8/25/2016 4:10:59 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	4	Date Processed:	12/15/2016 10:04:25 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	50.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	11.521	17917791	50.12	532033	72.34
2	16.346	17829169	49.88	203424	27.66

Project Name Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE		INFORMATION	
Sample Name:	Yzsq2-105-1c2 (90/10 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	11/18/2016 11:29:09 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	5	Date Processed:	12/15/2016 8:14:01 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

SAMPLE		INFORMATION	
Sample Name:	zsq6-120-1 ((95/5 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/20/2016 7:50:36 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 7:35:52 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	20.745	571581	2.94	9169	5.46
2	34.720	18893146	97.06	158800	94.54

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE INFORMATION			
Sample Name:	zsq2-104-1 new made ((95/5 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/20/2016 6:40:31 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	1	Date Processed:	12/15/2016 7:37:16 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	20.762	10237587	49.96	168427	65.26
2	35.008	10252371	50.04	89651	34.74

SAMPLE		INFORMATION	
Sample Name:	Yzsq6-125-1 up (90/10 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/21/2016 5:36:01 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	4	Date Processed:	12/15/2016 8:23:45 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height 1 14.715
23142231	98.64	491402	99.00		
2	23.469	318052	1.36	4961	1.00

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)

SAMPLE			
Sample Name:	zsq3-45-2 up (90/10 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/21/2016 4:55:12 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 8:22:31 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Namt	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height
1	14.848	12390424	51.39	260432	60.82
2	23.261	11718759	48.61	167800	39.18

Project Name
Defaults
Breeze 2
HPLC System
Reported by User: Breeze user (Breeze)

SAMPLE		INFORMATION	
Sample Name:	Yzsq2-105-2 ((80/20 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/20/2016 12:49:16 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	1	Date Processed:	12/15/2016 7:57:02 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	10.513	29862365	50.07	1000742	65.50
2	17.344	29779848	49.93	527000	34.50

SAMPLE INFORMATION			
Sample Name:	Yzsq6-134-1C(99/1 Et2NH AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/6/2016 11:01:46 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 5:44:41 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch4 210nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

Project Name Defaults

Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE			
Sample Name:	Yzsq2-106-2C(99/1 Et2NH AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/6/2016 10:01:07 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 5:46:02 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch4 210nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	25.526	11829054	49.70	119619	57.22
2	31.898	11971513	50.30	89441	42.78

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE INFORMATION			
Sample Name:	Yzsq2-106-1f (100/1 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/5/2016 7:52:35 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	4	Date Processed:	12/15/2016 6:20:06 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	90.00 Minutes	Sample Set Name	

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	26.657	8912785	51.04	73628	69.17
2	47.321	8547995	48.96	32821	30.83

SAMPLE INFORMATION			
Sample Name:	Yzsq6-137-1(100/1+Et2NH AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/7/2016 4:53:03 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 7:27:04 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Namt	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	24.491	376056	2.83	4858	5.06
2	32.742	12896314	97.17	91191	94.94

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE INFORMATION			
Sample Name:	Yzsq3-93-2b(100/1+Et2NH AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/7/2016 3:52:08 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 7:28:23 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	24.373	9144380	50.32	100896	60.17
2	32.758	9029440	49.68	66778	39.83

SAMPLE INFORMATION			
Sample Name:	Yzsq6-141-1a4 (99/1 Et2NH OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/23/2016 10:43:18 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	9	Date Processed:	12/15/2016 6:55:29 AM HKT
Injection Volume:	$20.00 \mathrm{ul}$	Channel Name:	2998 Ch3 230nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height 1 27.378
236498	1.93	1777	2.92		
2	33.196	6929670	98.07	59165	97.08

Project Name

Defaults

Breeze 2
Reported by User: Breeze user (Breeze)

SAMPLE			
Sample Name:	zsq2-107-1d2 (99/1 Et2NH OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/23/2016 9:42:07 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	8	Date Processed:	12/15/2016 6:57:23 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch3 230nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	26.923	5366776	49.40	63837	56.80
2	33.358	5497782	50.60	48545	43.20

Project Name
Reported by User: Breeze user (Breeze)

SAMPLE INFORMATION			
Sample Name:	zsq4-120-2b (95/5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/11/2016 9:50:33 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	5	Date Processed:	12/15/2016 9:35:45 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	$R T$ $(\mathrm{~min})$	Area $(\mu \mathrm{V}$ *ec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	20.379	8477724	49.88	132661	63.24
2	31.403	8517374	50.12	77123	36.76

SAMPLE			
Sample Name:	zsq6-146-1a (95/5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/10/2016 4:34:51 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	8	Date Processed:	12/15/2016 9:14:15 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	50.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	17.218	58169883	98.51	993001	98.72
2	23.673	882463	1.49	12841	1.28

SAMPLE INFORMATION			
Sample Name:	zsq4-94-2d (95/5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/10/2016 3:43:55 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	7	Date Processed:	12/15/2016 9:17:00 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	50.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *ec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	17.499	15357856	50.10	270105	59.07
2	23.422	15297733	49.90	187190	40.93

SAMPLE INFORMATION			
Sample Name:	zsq4-93-1a1 ((90/10 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/16/2016 1:28:02 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	12	Date Processed:	12/15/2016 9:06:42 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	13.539	2694388	49.51	64174	56.67
2	17.494	2747913	50.49	49069	43.33

SAMPLE		INFORMATION	
Sample Name:	zsq6-149-1a ((875/125 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/15/2016 5:19:34 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	1	Date Processed:	12/15/2016 8:48:35 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	80.00 Minutes	Sample Set Nam	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	30.576	6023778	97.95	63143	98.29
2	36.222	126337	2.05	1101	1.71

Project Name
Defaults
Breeze 2
HPLC System
Reported by User: Breeze user (Breeze)

SAMPLE		NFORMAT	$\bigcirc \mathrm{N}$
Sample Name:	zsq4-89-1a ((875/125 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/15/2016 6:22:28 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 8:50:41 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	30.401	11381724	50.13	119767	55.00
2	36.060	11322054	49.87	97994	45.00

SAMPLE INFORMATION			
Sample Name:	Yzsq6-130-1a (95/5 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	11/5/2016 4:58:49 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 8:16:04 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	9.796	19267790	96.81	694007	98.25
2	18.449	633947	3.19	12370	1.75

SAMPLE		I NFORMATION	
Sample Name:	Yzsq2-120-1a (95/5 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	11/5/2016 5:31:24 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	4	Date Processed:	12/15/2016 8:17:22 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	9.850	3158595	51.22	116275	67.14
2	18.502	3007599	48.78	56914	32.86

SAMPLE INFORMATION			
Sample Name:	zsq6-121-1-b(95/5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/25/2016 12:09:47 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	1	Date Processed:	12/15/2016 7:49:43 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	40.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	9.969	36316295	96.43	1198317	98.51
2	18.943	1346398	3.57	18101	1.49

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE INFORMATION			
Sample Name:	zsq2-109-1-b(95/5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/25/2016 1:39:02 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 7:51:09 AM HKT
Injection Volume:	5.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	40.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	10.274	6134925	50.85	204635	74.71
2	18.604	5929826	49.15	69256	25.29

Project Name Defaults

Breeze 2
Reported by User: Breeze user (Breeze)
HPLC System

SAMPLE			
Sample Name:	zsq3-174-1f(90/10 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/30/2016 5:17:10 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	6	Date Processed:	12/15/2016 8:33:55 AM HKT
Injection Volume:	15.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	40.00 Minutes	Sample Set Name	

Project Name	Defaults
Reported by User: Breeze user (Breeze)	Breeze- 2
HPLC System	

SAMPLE		INFORMATION	
Sample Name:	Yzsq2-127-1b(97.5/2.5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	9/28/2016 10:36:36 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	5	Date Processed:	12/15/2016 8:07:25 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	28.550	1826027	50.34	16354	64.79
2	34.818	1801592	49.66	8889	35.21

Project Name Defaults

Breeze 2
HPLC System
Reported by User: Breeze user (Breeze)

SAMPLE		NFORMAT	$1 \bigcirc N$
Sample Name:	zsq2-130-1b3 (200/1 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	11/19/2016 6:02:08 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	6	Date Processed:	12/15/2016 5:33:55 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

	RT (min)	Area $\left(\mu V^{*}\right.$ sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	12.094	3832575	50.40	91808	69.39
2	20.455	3771173	49.60	40506	30.61

SAMPLE INFORMATION			
Sample Name:	Yzsq6-135-1a10 (250/1Et2NH	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/26/2016 5:53:47 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	10	Date Processed:	12/15/2016 6:41:55 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch3 230nm@1.2nm
Run Time:	50.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	21.811	173006	3.59	1875	4.63
2	25.175	4640033	96.41	38618	95.37

Project Name Defaults
Reported by User: Breeze user (Breeze)

Breeze 2 HPLC System

SAMPLE INFORMATION			
Sample Name:	Yzsq2-112-1a11 (250/1Et2NH	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/26/2016 6:42:26 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	11	Date Processed:	12/15/2016 6:40:53 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch3 230nm@1.2nm
Run Time:	50.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	21.481	4192186	47.91	43446	54.11
2	25.464	4557091	52.09	36848	45.89

SAMPLE INFORMATION			
Sample Name:	zsq6-144-1a(100/1+Et2NH AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/8/2016 11:18:41 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	4	Date Processed:	12/15/2016 7:20:08 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	45.00 Minutes	Sample Set Name	

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	$\%$ Height 1 17.733
716144	3.08	11560	4.27		
2	20.153	22517632	96.92	259235	95.73

Project Name
Reported by User: Breeze user (Breeze)

SAMPLE INFORMATION			
Sample Name:	Yzsq3-96-1c(100/1+Et2NH AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/8/2016 9:27:12 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 7:21:45 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	50.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	17.622	5807591	49.02	84969	52.50
2	20.384	6038713	50.98	76879	47.50

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)

SAMPLE		INFORMATION	
Sample Name:	zsq2-130-2 (99/1+Et2NH AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/9/2016 7:09:29 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 7:06:37 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	25.795	11225243	49.94	95877	58.35
2	35.449	11252716	50.06	68449	41.65

Project Name Defaults
Reported by User: Breeze user (Breeze)

Breeze 2
HPLC System

Sample Name:	zsq4-121-2a3 (95/5 AD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	11/18/2016 4:00:09 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	5	Date Processed:	12/15/2016 9:31:14 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	40.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \vee *$ sec $)$	\% Area	Height $(\mu \vee)$	\% Height
1	16.135	3661828	50.42	76854	56.73
2	20.696	3600902	49.58	58620	43.27

SAMPLE		INFORMATION	
Sample Name:	Yzsq6-152-1a (97.5/2.5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/12/2016 7:16:12 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 9:25:47 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	24.087	9613188	97.93	114839	98.48
2	34.058	202788	2.07	1777	1.52

Project Name
Defaults

Reported by User: Breeze user (Breeze)

SAMPLE		INFORMATION	
Sample Name:	Yzsq4-96-2a (97.5/2.5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/12/2016 8:16:15 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 9:23:50 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	60.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	24.402	2528143	51.77	31608	63.41
2	33.051	2354978	48.23	18241	36.59

SAMPLE INFORMATION			
Sample Name:	zsq6-157-1a ((95/5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/19/2016 4:48:53 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 9:08:59 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)

SAMPLE INFORMATION			
Sample Name:	zsq4-95-2 ((95/5 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/19/2016 5:28:11 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 9:10:32 AM HKT
Injection Volume:	10.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Name	

SAMPLE		INFORMATION	
Sample Name:	Yzsq6-156-1c ((90/10 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/18/2016 4:28:03 PM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	3	Date Processed:	12/15/2016 9:00:02 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	35.00 Minutes	Sample Set Nam	

	RT (min)	Area $(\mu \mathrm{V}$ *ec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	10.369	3186626	97.25	94205	98.34
2	17.489	90048	2.75	1586	1.66

Project Name
Defaults
Breeze 2
Reported by User: Breeze user (Breeze)

SAMPLE INFORMATION			
Sample Name:	zsq4-92-2a ((90/10 OD)	Acquired By:	Breeze
Sample Type:	Unknown	Date Acquired:	10/18/2016 11:35:45 AM HKT
Vial:	1	Acq. Method:	zsq project 2
Injection \#:	2	Date Processed:	12/15/2016 9:02:41 AM HKT
Injection Volume:	20.00 ul	Channel Name:	2998 Ch2 214nm@1.2nm
Run Time:	40.00 Minutes	Sample Set Name	

	RT (min)	Area $(\mu \mathrm{V}$ *sec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	10.405	4928479	50.05	145459	63.81
2	17.238	4919345	49.95	82506	36.19

[^0]: ${ }^{1}$ Kitsiou, C.; Unsworth, W. P.; Coulthard, G.; Taylor, R. J. Tetrahedron, 2014, 70, 7172-7180.
 2 Yu, L. L.; Li, R. T.; Ai, Y. B.; Liu, W.; Deng, Z. S.; Zou, Z. M. Molecules 2014, 19, 13332-13341.

[^1]: ${ }^{3}$ Shamma, M.; Jones, C. D.; Weiss, J. A. Tetrahedron 1969, 25, 4347-4355.
 ${ }^{4}$ Pai, B. R.; Nagarajan, K.; Suguna, H.; Natarajan, S. Heterocycles 1978, 9, 1287-1288.
 ${ }^{5}$ Hanaoka, M.; Hirasawa, T.; Cho, W. J.; Yasuda, S. Chem. Pharm. Bull. 2000, 48, 399-404.
 ${ }^{6}$ Hanaoka, M.; Yoshida, S.; Mukai, C. Chem. Pharm. Bull. 1989, 37, 3264-3267.
 7 Takao, N.; Iwasa, K.; Kamigauhi M.; Sugiura, M. Chem. Pharm. Bull. 1977, 25, 1426-1435.

[^2]: ${ }^{8}$ Govindachari, T. R.; Nagarajan, K.; Natarajan, S.; Pai, B. R. Indian J. Chem. 1971, 9, 1313-1315.
 ${ }^{9}$ Cushman, M.; Gentry, J.; Dekow, F. W. J. Org. Chem. 1977, 42, 1111-1116.

[^3]: 10 Saito, S. Y.; Tanaka, M.; Matsunaga, K.; Li, Y.; Ohizumi, Y. Biol. Pharm. Bull. 2004, 27, 1270-1274.
 11 Yu, C. K.,; MacLean, D. B.; Rodrigo, R. G. A.; Manske, R. H. F. Can. J. Chem. Eng. 1970, 48, 3673-3678.

[^4]: 12 Zhang, Z. H.; Zhang, H. J.; Deng, A. J.; Wang, B.; Li, Z. H.; Liu, Y.; Wu, L. Q.; Wang, W. J.; Qin, H. L. J. Med.Chem.2015, 58, 7557-7571.

