East Antarctic sources of extensive Lower-Middle Ordovician turbidites in the Lachlan Orogen, of the southern Tasmanides, eastern Australia

R. A. Glen ${ }^{\text {a }}$, I. C. W. Fitzsimons ${ }^{\text {b }}$, W. L. Griffin ${ }^{\mathrm{a}, \mathrm{c}}$ and A. Saeed ${ }^{\text {a }}$
${ }^{\text {a }}$ National Key Centre for Geochemical Evolution and Metallogeny of Continents, Department of Earth \& Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia
${ }^{\mathrm{b}}$ Department of Applied Geology and the Institute for Geoscience Research, Western Australian School of Mines, Curtin University, GPO Box U1987, Perth, WA 6845, Australia ${ }^{\text {c }}$ ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS), Department of Earth \& Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia

SUPPLEMENTARY PAPERS

Australian Journal of Earth Sciences (2017) 64 (2),
http://dx.doi.org/10.1080/08120099. 2017.1273256

Copies of Supplementary Papers may be obtained from the Geological Society of Australia's website (www.gsa.org.au), the Australian Journal of Earth Sciences website (www.ajes.com.au) or from the National Library of Australia's Pandora archive (http://nla.gov.au/nla.arc-25194).

Supplementary Papers

Appendix $1 \mathrm{~T}_{\mathrm{DM}}$ plots for different clusters.
Appendix 2. Analytical procedures and methods.
Appendix 3. The basis for the model age data in Table 2, where they are shown as peak ages with 1σ spread.

Appendix 4. Use of terms late Panafrican and late Grenvillian). In order not to break up the whole Grenvillian population (ca $950-1250 \mathrm{Ma}$), we use ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages used for zircon ages up to 1250 Ma . For older ages we use ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$.

Appendix 5. Summary of detrital zircon age patterns of sedimentary sequences 2,3 and 4 of the Ross Orogen.

Appendix 6. U-Pb data. (Excel file)
Appendix 7. $\varepsilon_{\text {Hf }}$ data. (Excel file)

Appendix 1 Additional information on zircon populations

$06 E 1$ Scropes Range Formation (Figure 5)

The lone, zircon grain at 438 Ma has an $\varepsilon \mathrm{Hf}$ value of +10 and geochemistry consistent with growth from high-silica granitoid magma (Figure 5 g). This grain is younger than the host rock and may possibly represent metamorphic zircon growth, rather than Pb loss, since its $\varepsilon \mathrm{Hf}$ is higher than any other analysed grain.

Figure 5 i in Appendix 1 is a mean of four out of five youngest grains of $514 \pm 5 \mathrm{Ma}$ (95% confidence, MSWD $=0.72$, probability 0.54).

Figure 5 j in Appendix 1 is a mean of the oldest 10 grains in a 12 grain spread of $562 \mathrm{Ma} \pm 3 \mathrm{Ma}(95 \%$ confidence, MSWD $=0.99$, probability 0.44).

Figure 5 k in Appendix 1 is a mean of five grains of $590 \pm 5 \mathrm{Ma}$ (95% confidence, MSWD $=0.42$, probability 0.79).
Figure 5 I in Appendix 1 is a mean of 14 grains of $1183 \pm 8 \mathrm{Ma}(95 \%$ confidence, $\mathrm{MSWD}=1.4$, probability 0.15).

606 Yandaminta Quartzite (Figure 6)

Figure 6 i in Appendix 1 is a mean of five grains of $495 \pm 5 \mathrm{Ma}$ (95 \% confidence, MSWD $=0.78$, probability 0.54).

Figure 6 j is a mean from six grains of 514 ± 5 Ma (95 \% confidence, MSWD $=0.31$, probability 0.91).

Figure $6 k$ is a mean from seven grains between ca 1160-1190 Ma of 1176 ± 7 Ma (95 \% confidence, MSWD = 1.6, probability 0.14)

Ben2 Castlemaine Group (Figure 8)

Figure 8 i is a mean of the five youngest grains of $487 \pm$ 4 Ma (95 \% confidence level, MSWD $=0.21$, probability $=0.93$) .

Figure 8 j is a mean of four out of six grains of $1044 \pm$ $10 \mathrm{Ma}(95 \%$ confidence level, MSWD $=0.77$, probability $=0.51$).

Ben5 Castlemaine Group (Figure 9)

Figure 9 i shows a mean age from four youngest out of five grains (omitting the oldest) of $490 \pm 5 \mathrm{Ma}$ (95% confidence, $\mathrm{MSWD}=0.87$, probability $=0.46$).
Figure 9 j shows a mean age from all three grains between $1000-1040 \mathrm{Ma}$ of $1015 \pm 11 \mathrm{Ma}(95 \%$ confidence, $\mathrm{MSWD}=0.21$, probability $=0.81$).

Figure 9k shows a mean age from all three grains from ca 1050 to 1060 of $1062 \pm 13 \mathrm{Ma}(95 \%$ confidence, $M S W D=1.14$, probability $=0.32$).

Cob1 Castlemaine Group

Figure 10 i shows a mean age from four out of five older grains between ca $480-500 \mathrm{Ma}$ of $493 \pm 6 \mathrm{Ma}$ (95\% confidence, MSWD $=0.75$, probability $=0.52$).

Figure 10 j shows a mean age from all 10 grains of $552 \pm 3 \mathrm{Ma}(95 \%$ confidence, $\mathrm{MSWD}=0.77$, probability $=0.64$) .

Figure 10 k shows a mean age from all five grains between $1000-1040 \mathrm{Ma}$ of $1078 \pm 9 \mathrm{Ma}(95 \%$ confidence, $\mathrm{MSWD}=1.02$, probability $=0.40$) .

Te2 Girilambone Group

Figure $14 i$ shows a mean age from
all 13 grains of 555 ± 5 (95\% confidence, MSWD = 0.66 , probability $=0.62$).

Figure 14 j shows a mean age from all three grains of 1011 ± 11 (95\% confidence, MSWD = 0.0033 , probability $=0.997$).

Oggyc1 Girilambone Group

Figure 15i shows a weighted mean age from all five grains of $491 \pm 5 \mathrm{Ma}$ (95% confidence level, MSWD $=1.04$, probability $=0.38$)
Figure 15j shows a weighted mean age from five out of six oldest grains of $1060 \pm 9 \mathrm{Ma}(95 \%$ confidence level, MSWD $=0.85$, probability $=0.51$).

Figure 15k shows a weighted mean age from all three grains of $1115 \pm 15 \mathrm{Ma}(95 \%$ confidence level, MSWD $=0.55$, probability $=0.58$) .

Mum1 Adaminaby Group

Figure 20 g shows a weighted mean age from four grains of $579 \pm 7 \mathrm{Ma}(95 \%$ confidence level, MSWD $=0.15$, probability $=0.93$) .

Figure 20h shows a weighted mean age from four grains of $1044 \pm 1 \mathrm{Ma}(95 \%$ confidence level, MSWD $=0.78$, probability $=0.51$.

Bun8 Adaminaby Group

Figure 21 i shows a weighted mean age from six grains of $542 \pm 5 \mathrm{Ma}(95 \%$ confidence level, MSWD $=$ 0.21 , probability $=0.96$)

Figure 21 j shows a weighted mean age from four grains of $1024 \pm 11 \mathrm{Ma}$ (95% confidence level, MSWD $=0.25$, probability $=0.86$)

Appendix 2: Analytical procedures and methods

The mineral composition of selected sandstone samples was determined using the QEMSCAN technology system, invented by CSIRO and now owned by FEI. The system uses back-scattered electron imaging to map and locate individual grains. It then samples multiple points within each grain to produce an energy-dispersive X -ray spectrum that is analysed to give the chemical composition of the grain itself.
For zircon analysis, all samples except three were crushed at Geotrack International (Melbourne). Mum1 and Mwb1 and TrittonNE were disintegrated using the selFrag (electrostatic disaggregation) approach. Zircons were extracted from the resulting heavy mineral separates. U-Pb isotope analyses for individual grains were performed using a HP 7500 quadrupole ICP-MS, attached to a New Wave/Merchantek UP213 laser ablation system $(\varepsilon \lambda=213 \mathrm{~nm})$ with ablation carried out in He . This was done at GEMOC, Macquarie University, Sydney. Sample and analytical procedures have been described in detail by Belousova et al. (2002), Griffin et al. (2004) and Jackson et al. (2004). U-Pb ages were calculated from the raw signal data using the on-line software package GLITTER (www.mq.edu.au/GEMOC; Griffin et al. 2008); the common-lead correction of Andersen (2002) was used, but few grains required any common- Pb correction, and those requiring $>10 \%$ correction were rejected. Concordia diagrams, weighted means and probability density distribution plots were generated using Isoplot (versions 3.0 and 3.2) software (Ludwig 2003). Samples were analysed in "runs" of 16 analyses, which include 12 unknown points, bracketed beginning and end by pairs of analyses of the GEMOC GJ-1 zircon standard. Two other well-characterised zircons, 91500 (Wiedenbeck et al. 1995) and Mud Tank (Black \& Gulson 1978), were analysed frequently as an independent control on reproducibility and instrument stability. Analyses are included in Table 1. Age measurements are quoted in terms of errors of 1 sigma, with weighted means quoted at 95% confidence. Error bars in age plots are at 1 or 2 sigma as indicated. ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ ages are used for zircon ages up to 1250 Ma , in order to treat 950-1200 Ma populations as a whole. For older ages we have used ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages. We used cathodoluminescence (CL) microscopy and backscattered electron (BSE) imaging on the electron microprobe (EMP) to image the internal features of zircon grains.

Our interpretation of source magmas from which the zircons crystallised is based on trace element geochemical analysis of zircon grains following the methods of Belousova et al. (2002). Five magma types are present: granitoids $<65 \% \mathrm{SiO}_{2}$ (which we shorten to lowsilica); granitoids with $70-75 \% \mathrm{SiO}_{2}$ (which we shorten to high-silica); mafic, alkaline, and rarely syenitic.

Not all zircons analysed for U-Pb were analysed for Lu-Hf. Hf-isotope analyses were carried out in-situ using a New Wave/Merchantek UP213 laser-ablation microprobe, attached to a Nu Plasma multi-collector ICPMS. The analyses were done with a beam diameter of ca50 $\mu \mathrm{m}$, a 5 Hz repetition rate, 30% iris, 0 expander and 90% power output. This resulted in total Hf signals of $1-6 \times 10^{-11} \mathrm{~A}$, depending on conditions and the Hf contents. Typical ablation times were 100-120 seconds, resulting in pits $40-60 \mu \mathrm{~m}$ deep. He carrier gas transported the ablated sample from the laser-ablation cell via a mixing chamber to the ICPMS torch. Aside from the use of this laser system, the analytical techniques are those described in detail by Griffin et al. (2000) and Griffin et al. (2004). Analytical standard MT-08 was used as a control sample, and analyses are included in Table 1.

The measured ${ }^{176} \mathrm{Lu} /{ }^{177} \mathrm{Hf}$ ratios are used to calculate initial ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ ratios. The typical 2SE (Standard Error) uncertainty on a single analysis of ${ }^{176} \mathrm{Lu} /{ }^{177} \mathrm{Hf}$ is $\pm 1-2 \%$, reflecting both analytical uncertainties and the intra-grain variation of Lu/Hf typically observed in zircons; at the $\mathrm{Lu} / \mathrm{Hf}$ ratios considered here, this contributes an uncertainty of $<0.1 \varepsilon_{\text {Hf }} f$ unit. For the calculation of $\varepsilon_{H f}$ values, we have adopted the chondritic values of Blichert-Toft et al. (1997). To calculate model ages (T_{DM}) based on a depleted-mantle source, we have adopted a model with $\left.\left({ }^{176} \mathrm{Hf}\right){ }^{177} \mathrm{Hf}\right)_{\mathrm{i}}=0.279718$ at 4.56 Ga and ${ }^{176} \mathrm{Lu} /{ }^{177} \mathrm{Hf}=0.0384$; this produces a present-day value of ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}(0.28325)$, similar to that of average MORB (Griffin et al. 2000, 2004). There are currently three proposed values of the decay constant for ${ }^{176} \mathrm{Lu}: 1.93$ $\times 10^{-11} \mathrm{yr}^{-1}$ (Blichert-Toft et al. 1997); $1.865 \times 10^{-11} \mathrm{yr}^{-1}$ (Scherer et al. 2001); and $1.983 \times 10^{-}$ ${ }^{11} \mathrm{yr}^{-1}$ (Bizzarro et al. 2003); calculations using all three are provided in the data sheet (Table 1). $\varepsilon_{\mathrm{Hf}}$ values and model ages used in the figures have been calculated using the decay constant proposed by Blichert-Toft et al. (1997). T_{DM} C represents the time of separation of crustal rocks from the mantle and approximates to the age of crustal sources of the analysed zircon grains calculated from $\varepsilon_{\mathrm{Hf}}$ values. In this paper, $\mathrm{T}_{\mathrm{DM}} \mathrm{C}$ ages for each cluster of $\varepsilon_{\mathrm{Hf}}$ values for each sample are shown graphically in Appendix 3, and in Table 2. They approximate $T_{D M C}$ ages in individual and comparison Hf plots, which were estimated graphically by projecting line-of-sight enveloping evolution lines through zircon clusters to the Depleted Mantle.

Appendix 3: $\mathrm{T}_{\mathrm{DM}} \mathrm{C}$ graphic plots for different samples and clusters.

Figure 1. $\mathrm{T}_{\mathrm{DM}} \mathrm{C}$ plots for different clusters, Scropes Range Formation, sample 06E1.

Figure 2. T_{DM} plots for different clusters, Yandaminta Quartzite sample 606.

Figure 3. TDMC plots for different clusters, Ben2.

Figure 4. $\mathrm{T}_{\mathrm{DMC}}$ plots for different clusters, Ben5.

Figure 5. $\mathrm{T}_{\mathrm{DMC}}$ plots for different clusters, Cob1.

Figure 6. $\mathrm{T}_{\mathrm{DM}} \mathrm{C}$ plots for different clusters, Te2.

Figure 7. $\mathrm{T}_{\mathrm{DMC}}$ plots for different clusters, Oggyc1.

Figure 8. $\mathrm{T}_{\mathrm{DM}} \mathrm{C}$ plots for different clusters, Oww5.

Figure 10. $\mathrm{T}_{\mathrm{DM}} \mathrm{C}$ plots for different clusters, Bun8.

Figure 11. T_{DM} plot for different cluster 1, Bun9.

Figure 12. $\mathrm{T}_{\mathrm{DMC}}$ plots for different clusters, Bun4.

Appendix 4: Terminology of zircon age populations

Previous workers, beginning with Ireland et al. (1998), have shown that the ages of detrital zircons in Ordovician turbidites of the Lachlan Orogen are dominated by a 500-600 Ma population, which they called Ross-Delamerian, and a 1100-1200 Ma population, which they called Grenvillean. Meert (2003) recognised a Panafrican event that he divided into two parts. The older East African Orogeny comprises: (i) assembly and accretionary phases between ca 660-750 Ma; (ii) a ca 620-650 Ma orogenic phase involving collision of eastern Africa with parts of Madagascar, India, Sri Lanka and east Antarctica; and (iii) post-collisional extension between 620 and 580 Ma . The younger part, between ca 530550/570 Ma, was called the Kuunga Orogeny. Meert (2003) suggested it represented collision between Australia, parts of the previously assembled eastern African Orogen and parts of eastern Antarctica. Subsequently, Collins and Pisarevsky (2005) suggested that the term Kuunga Orogeny be restricted to events between ca 500-570 Ma. In an East Gondwana context, the Grenvillian metamorphism was subdivided by Fitzsimons (2000) into an oldest part (ca 1280-1330 and ca 1130-1200 Ma), resulting in the formation of the Albany-Fraser Orogen in western Australia; a youngest part (900-990 Ma) involving the Eastern Ghats of India and its Rayner Complex equivalent in Antarctica; and events of intermediate age (1030-1090 Ma) involving the Namqua-Natal province of southern Africa and its extension in Maud Belt of Antarctica, and coeval metamorphism in Pinjarra Orogen of Western Australia and its extensions in eastern Antarctica.

As discussed in the text, the two main populations of detrital zircons in our Ordovician turbidites fit with Panafrican (or Ross-Delamerian) and Grenvillian. Using plots of all the zircon ages in the Ordovician turbidites, we have calculated average upper and lower ranges of our two populations. Obviously in some turbidite sandstone the limit is a bit older or younger than the average. Calculated in this way, our average limits are 490-620 Ma and 950-1120 Ma. The first population overlaps with the later or younger part of the Panafrican Orogeny, and so we call those zircons late Panafrican. The secondary population overlaps with the two latest or youngest Grenvillian events and so is termed late Grenvillian.

Appendix 5: Summary of detrital zircon age patterns of sedimentary sequences 2, 3 and 4 of the Ross Orogen

Byrd Group (Sequences 3 and 4)

The syn-Ross deformation sedimentary sequence is best defined in the Central Transantarctic Mountains (lower Cambrian to Lower Ordovician Byrd Group). The lower Byrd Group of the Central Transantarctic Mountains includes carbonates and interbedded sandstones of Atdabanian-Botoman Shackleton Limestone that represents deposition on a deepening platform (Myrow et al., 2002; Goodge et al., 2004b). Corresponding ages are ca 521-513 Ma (Peng et al., 2012). Detrital zircons from the lower sandstone sample SLB in the Shackleton Limestone display a main population of $1300-1700 \mathrm{Ma}$, and a secondary population of 1100-1250 Ma (Goodge et al., 2004b), with small peaks at ca 970 and 17502000 Ma (see summary in Table 6). Detrital zircons have a similar age pattern to the Goldie Formation (upper Beardmore Group), with a dominant early Mesoproterozoic population (peak at 1515 Ma) and a smaller Grenvillian population (1050-1250 Ma, with peaks at 1135 and 1195 Ma) (Goodge et al., 2004b).

The base of the overlying upper Byrd Group defines the base of sequence 4 composed mainly of Starshot Formation and Douglas Conglomerate (Figure 33). It is 513 Ma . Its upper age is poorly known, constrained only by small crosscutting intrusions dated at 504 and 494 Ma in two locations (Goodge et al., 2004b). A possible minimum age as young as ?470 Ma (Goodge et al., 2004b) is based on detrital zircon patterns from 8 samples that are dominated by a main population between ca $470-600 \mathrm{Ma}$, a secondary population of ca 930-1160 Ma, and smaller populations around 650-800 and over 1160 Ma (Goodge et al., 2004b; Paulsen et al., 2015) (Table 6). Deposition of the upper Byrd Group was assigned to the syn- to late-orogenic phases of the Ross Orogeny (Myrow et al., 2002; Goodge et al., 2004b).

The upper Byrd Group appears to have mixed sources. Angular to subangular zircons, including some dated at $547 \pm 12 \mathrm{Ma}$, have been attributed to the now-eroded volcanic carapace of the continental margin arc (Goodge et al., 2004b). Sandstone petrography and detrital muscovites (see below) suggest an additional older provenance that includes lowgrade meta-sedimentary rock, granite and limestone either representing basement to the arc or from sediment recycling (Goodge et al., 2004a, b).

Two samples of the Starshot Formation (upper Byrd Group) from the Queen Maud Mountains have multiple detrital zircon populations, with the dominant being Panafrican, with ages from 539-630 (RAM1) or 517-696 (RAM2). Populations from 632 to 796 (RAM1) and 859-891 (RAM2) are more common than the Grenvillian population of 983-1215 (RAM1) and 939-1297 (RAM2) (Paulsen et al., 2015).

Detrital muscovite ages from sample RAM2 (sampled by Paulsen et al., 2015) from the northern part of the Queen Maud Mountains showed a dominant population of 527-579 Ma (mainly $540-570 \mathrm{Ma}$) derived from probable mixtures of metamorphic and igneous sources. The next two highest samples of the upper Byrd Group (HRS and by inference DSG of Goodge et al., 2004b, shown in Table 6 and Figure 34) are dominated by ca $490-750 \mathrm{Ma}$ and 525-645 Ma populations respectively. Sample HRS is almost unimodal with only minor older grains, whereas sample DSG has near equal 810-825 Ma and 1000-1250 Ma populations as well as a less common one of 1400-1900 Ma (Goodge et al., 2002) (Table 6). Sample DCS from the coeval, interfingering Douglas Conglomerate has almost a unimodal 500-600 Ma population (peak of 520 Ma) (Table 6). Stratigraphically higher up again, and inferred to be Ordovician in age by Goodge et al. (2004b), two samples of the Starshot Formation (USF and DIF) still possess the dominant Late Panafrican population (peaks of 520 , and 510 \& 555 Ma , Table 6), but also possess variable $900-1250 \mathrm{Ma}$ (Grenvillian) populations (Goodge et al., 2002, 2004b) (Table 6).

Liv Group and Patuxent Formation (Sequence 4)

In the Queen Maud Mountains south of the Shackleton Glacier, the Liv Group, with several formations, has been correlated with the Byrd Group (Paulsen et al., 2015). The Wyatt and Ackerman formations are the oldest dated constituents, containing 526 and 524 Ma volcanics (cited in the main text). The Taylor Formation is one of the youngest, containing a 505 Ma rhyolite (see main text). It is joined by the Fairweather Formation (with a unimodal zircon peak of 506 Ma), and the Greenlee Formation with a unimodal zircon peak of 503 Ma , both probably reflecting adjacent volcanism (Paulsen et al., 2015) (Table 6). Three samples from the Liv Group in the Queen Maud Mountains display unimodal or near unimodal age peaks of 529,506 and 503 Ma .
In the Pensacola Mountains, the Patuxent Formation (with its main population of 500-620 Ma and secondary population of ca $900-1200 \mathrm{Ma}$) is correlated with the upper part of the Byrd Group, and inferred to be late Cambrian to Ordovician (Goodge et al., 2004b) or middle to late Cambrian (Curtis et al., 2004). The Patuxent Formation contains mafic-felsic volcanic rocks and sills that are probable correlatives of the Gambacorta Formation, with an age of ca $501 \pm 3 \mathrm{Ma}$ (Millar \& Storey 1995). The Gorecki Felsite Member in the Patuxent Formation was dated at ca $500 \pm 8 \mathrm{Ma}$, while basaltic lavas and sills have transitional MORB-like geochemistry (Millar and Storey, 1995) (Table 6). These two relations suggest interfingering relations (e.g. Rowell et al., 2001).

Sequences 2 and 3

Sample KHF from the Hobbs Formation in the Skelton Group was dated by Goodge et al., (2004b), although they attributed it to the Koettlitz Group, a term which has been largely been abandoned (Cook and Craw, 2001). This sample is dominated (56\%), by ca 1000-

1150 Ma detrital zircons (peaks at $1080>1180>1000 \mathrm{Ma}$), with a secondary population of $500-650 \mathrm{Ma}$, containing a 675 Ma peak inferred to be derived from coeval rift-related volcanism (Table 6). Goodge et al. (2004b) also noted that apart from its 675 Ma peak, detrital ages in their sample were comparable with Goldie Formation rocks of the upper Beardmore Group and lower Byrd Group rocks of Central Transantarctic Mountains. The Beardmore Group (Sequence 2) comprises the older Cobham Formation (ca 675-690 Ma) and the younger Goldie Formation (ca ? $550-675 \mathrm{Ma}$), the latter constrained in part by the 668 Ma Golden Plateau Gabbro (Goodge et al., 2002, 2004b; Myrow et al., 2002). In both formations, the dominant detrital zircon population is ca 1400-1900 Ma with some older (ca $2500-3000 \mathrm{Ma}$) and younger (ca 1100-1300 Ma) grains. The youngest weighted mean detrital ages are 1096 to 1174 Ma , much older than the inferred Neoproterozoic depositional age range of ca 690-?550 Ma (Goodge et al., 2002, 2004b) (Table 6). The Skelton Group, which includes the Hobbs Formation, consists of both weakly and strongly metamorphosed units (with the latter previously differentiated as the Koettlitz Group; Cook and Craw, 2001). The age of the Skelton Group is constrained by ca 650 Ma rift volcanics (Cooper et al., 2011, and see above) and by metamorphism beginning at ca 615 Ma (Hagen-Peter et al., 2016). The best age range is $615-675 \mathrm{Ma}$, suggesting overlap with the Beardmore Group. The Skelton Group contains a dominant Grenvillian detrital zircon population of ca 900-1300 Ma (Cooper et al., 2011; Wysoczanski and Allibone, 2004; Stump et al., 2007). Both Cooper et al. (2011) and Stump et al. (2007) recorded a smaller detrital zircon population at ca 630900 Ma (absent from the Dry Valleys samples of Wysoczanski and Allibone, 2004). A variable 1500-2000 Ma population was recorded by Cooper et al. (2011). Small numbers of grains 2000-2500 Ma were also recorded by Stump et al. (2007).

In the Queen Maud Mountains, sedimentary units traditionally assigned to the Beardmore Group include the La Gorce and Duncan formations. The La Gorce Formation was deformed before intrusion of volcanics of the 526 Ma , sequence 4 Wyatt Formation of the Liv Group (Stump, 1995; Rowell et al., 2001). Its age is poorly controlled. Curtis et al. (2004) suggested a stratigraphic base at $? 550 \mathrm{Ma}$ and a top at $? 537 \mathrm{Ma}$, implying a younger age than the Beadmore Group. Two samples dated by Stump et al. (2007) showed approximately equal populations between ca 560 and 700 Ma and ca 1000-1200 Ma, with a few grains in one sample around 1250-1400 Ma, and only a few single grains older than that. The youngest age peaks in two samples are 581 and 618 Ma , with the youngest grains ca 560 Ma (Stump et al., 2007). Uncertainty about the youngest depositional age in the Duncan Formation precludes firm correlation with the Goldie Formation in the Beardmore Group in the Central Transantarctic Mountains, but it may also be younger. Detrital zircons in the Duncan Formation define a major population between ca 550-755, a secondary population ca 950-

1170 Ma , a small population between ca $780-850$ and only one grain (1282 Ma) older than 1 Ma (Paulsen et al., 2015).

The Hannah Ridge Formation occurs in the Neptune Range, part of the Pensacola Mountains. A sample from the Hanna Ridge Formation, correlated with the lower part of the Byrd Group has subequal 550-700 Ma and 1000-1200 Ma populations (Goodge et al., 2004b) (Table 6).

The best stratigraphic constraints are: i) the intrusive 505 Ma Serpan Granite above the unit (Curtis et al., 2004); ii) the overlying Nelson Limestone, with Botoman fossils (Rowell et al., 2001); and iii) the 501 Ma volcanic Gambacorta Formation that overlies the limestone (Rowell et al., 2001). The Hannah Ridge Formation does not have the young late Panafrican grains of the Patuxent Formation: its main detrital zircon population is ca $550-650 \mathrm{Ma}$, with the youngest grouping of 556 Ma , and its secondary population is ca $900-1200 \mathrm{Ma}$ (Goodge et al., 2004b).

Sequences in Northern Victoria Land

In northern Victoria Land, sedimentary units occur in the Wilson, Bowers and Robertson Bay terranes. Detrital zircon age data are available for two upper Neoproterozoic to Cambrian to ?lower Ordovician sedimentary units in the Wilson terrane: the Berg Group in the north and the Priestley Formation in the south, both metamorphosed to greenschist facies. The Berg Group has a dominant Panafrican (ca $500-700 \mathrm{Ma}$) population and a secondary Grenvillian (ca 1000-1200 Ma) population, with other grains from ca 800-900 Ma and large numbers of grains from 2030 $\rightarrow 3000 \mathrm{Ma}$ (Adams et al., 2014) (Table 6). Detrital muscovite grains in the Berg Group have several dominant peaks between 530-600 Ma and smaller peaks between 750-1170 Ma (Henjes-Kunst, 2003). The youngest grains (511 and 519 Ma , Henjes-Kunst, 2003) are close to (overlap within error) the metamorphic overprint with a Rb-Sr age of 515 $\pm 11 \mathrm{Ma}$ (Adams et al., 2014) and have been thus potentially reset. The Priestley Formation was divided into two parts by Estrada et al., (2016). Four samples from the older ca 590-560 Ma , part contained a dominant Grenvillian zircon population (900-1300 Ma) and a lesser Panafrican zircon population (within $550-700 \mathrm{Ma}$, with the youngest grains in two samples being 592 and 602 Ma) with 23% of grains lying within 1600-2500 Ma (Table 6). The upper part of the Priestley Formation according to Estrada et al. (2016), is ca $550-? 532 \mathrm{Ma}$, and corresponds with the Priestley Formation sample dated by Adams et al., (2014). That sample has a dominant zircon population of ca $900-1200 \mathrm{Ma}$, a secondary population of 450-700 Ma, plus large numbers of grains from 2000 to 3400 Ma (Adams et al., 2014) (Table 6). The youngest mean age is 546 Ma , older than the $\mathrm{Rb}-\mathrm{Sr}$ age of metamorphism of 512 Ma of Adams et al. (2014). From the Priestley Formation, Di Vincenzo et al. (2014) recorded single mica fusion ages mainly around 550-650 Ma (Table 6).

Northern Victoria Land also contains the middle-upper Cambrian strata of the Bowers Terrane and ?Cambrian-Ordovician strata of the Robertson Bay Terrane (see summary by Rocchi et al., 2011). Samples of the Molar Group, Bowers Terrane have a main detrital zircon population of ca 490-670 (youngest grain 498 Ma , youngest component 545 Ma) and a secondary population of ca 950-1250 Ma (Adams et al., 2014). Estrada et al. (2016) recorded a dominant population within a 900-1300 Ma bracket and a slightly less prominent one within a 495-700 Ma bracket, with zircons between 1600-2500 Ma making up $\sim 8 \%$ of the total population. The youngest components in two samples were 495 and 513 Ma . Di Vincenzo et al. (2014) recorded Ar-Ar detrital muscovite fusion ages mainly in the range $505-560$ Ma, with a minimum mean age of 506 Ma. Samples of the Robertson Bay Group have a dominant late Panafrican detrital zircon population within the range ca $450-700 \mathrm{Ma}$) and a lesser Grenvillian population within the range 900-1300 Ma (Fioretti et al., 2003, Adams et al., 2014 and Estrada et al., 2016) (Table 6). Estrada et al. (2016) recorded small age peaks within the range $1600-2500$ Ma making up ca 9% of the total population. The youngest significant zircon populations are 485 Ma (Estrada et al., 2016), 481 and 488 Ma (Fioretti et al., 2003) and 512 Ma (Adams et al., 2014), although the last authors pointed to grains between 408-491 Ma of questionable reliability. Estrada et al. (2016) also recorded small age peaks from 1600-2500 Ma (probably individual grains) making up ca 9% of the total population (Table 6). Analysis of single crystal detrital micas in the Robertson Bay Group produced ages mainly between 490-650 Ma (youngest ages being 489-493 Ma), with only 4 between 830-1120 Ma (Henjes-Kunst, 2003). The minimum mean age recorded by DiVincenzo et al. (2014) was 483 Ma (Table 6).

References

Adams, C. J., Bradshaw, J. D., \& Ireland, T. R. (2014). Provenance connections between late Neoproterozoic and early Paleozoic sedimentary basins of the Ross Sea Region, Antarctica, southeast Australia and southern Zealandia. Antarctic Science, 26, 173-182.
Allibone, A. H., Cox, S. C., Graham, I. J., Smellie, R. W., Johnstone, R. D., Ellery, S. G., \& Palmer, K. (1993). Granitoids of the Dry Valleys Area, Southern Victoria Land, Antarctica: Plutons, field relationships, and isotopic dating. New Zealand Journal of Geology and Geophysics, 36, 281297.

Andersen, T. (2002). Correction of common Pb in U-Pb analyses that do not report ${ }^{204} \mathrm{~Pb}$. Chemical Geology, 192, 59-79.
Bizzarro, M., Baker, J. A., Haack, H., Ulfbeck, D., \& Rosing, M. (2003). Early history of Earth's crustmantle system inferred from hafnium isotopes in chondrites. Nature, 421, 931-933.
Black, L. P., \& Gulson, B. L. (1978). The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. BMR Journal of Australian Geology and Geophysics, 3, 227-232.
Blichert-Toft, J., Chauvel, C., \& Albarède, F. (1997). The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letter, 148, 243-258, Erratum. 154, 349.
Cooper, A. F., Maas, R., Scott, J. M., \& Barber, A. J. W. (2011). Dating of volcanism and sedimentation in the Skelton Group, Transantarctic Mountains: Implications for the RodiniaGondwana transition in southern Victoria Land, Antarctica. Geological Society of America Bulletin, 123, 681-702.

Cook, Y. A., \& Craw, D. (2001). Amalgamation of disparate crustal fragments in the Walcott BayFoster Glacier area, Southern Victoria Land, Antarctica. New Zealand Journal of Geology \& Geophysics, 44, 403-416.

Curtis, M. L., Millar, I. L., Storey, B. C., \& Fanning, C. M. (2004). Structural and geochronological constraints of early Ross orogenic deformation in the Pensacola Mountains, Antarctica. Geological Society of America Bulletin, 116, 619-636.
Di Vincenzo, G., Grande, A., \& Rossetti, F. (2014). Paleozoic siliciclastic rocks from northern Victoria Land (Antarctica): Provenance, timing of deformation, and implications for the AntarcticaAustralia connection. Geological Society of America Bulletin, 126, 1416-1438.
Estrada, S., Läufer, A., Eckelmann, K., Hofmann, M., Gärtner, A., \& Linnemann, U. (2015). Continuous Neoproterozoic to Ordovician sedimentation at the East Gondwana margin Implications from detrital zircons of the Ross Orogen in northern Victoria Land, Antarctica. Gondwana Research, 37, 426-448.
Fioretti, A. M., Black, L. P., Henjes-Kunst, F., \& Visona, D. (2003). Detrital zircon age patterns from a large gneissic xenolith from Cape Phillips granite and from Robertson Bay Group metasediments, Northern Victoria Land, Antarctica. In D. K. Fütterer, D. Damaske, G. Kleinschmidt, H. Miller \& F. Tessensohn (Eds.) 9th International Symposium on Antarctic Earth Sciences (ISAES IX) Antarctic Contributions to Global Earth Sciences, Programme and Abstracts (pp. 94-95). Terra Nostra.
Fitzsimons, I. C. W. (2000). Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens. Geology, 28, 879-882.
Goodge, J. W., Myrow, P., Phillips, D., Fanning, C. M., \& Williams, I. S. (2004a). Siliciclastic record of rapid denudation in response to convergent-margin orogenesis, Ross Orogen, Antarctica. In M. Berne \& C. Spiegel (Eds.) Detrital Thermochronology - Provenance analysis, exhumation, and landscape evolution of mountain belts (pp. 101-122). Geological Society of America Special Paper 378. Boulder, Colorado:
Goodge, J. W., Myrow, P., Williams, I., \& Bowring, S. (2002). Age and provenance of the Beardmore Group, Antarctica: Constraints on Rodinia supercontinent breakup. Journal of Geology, 110, 393-406.
Goodge, J. W., Williams, I. S., \& Myrow, P. (2004b). Provenance of Neoproterozoic and lower Paleozoic siliciclastic rocks of the central Ross Orogen, Antarctica: Detrital record of rift-, passive- and active-margin sedimentation. Geological Society of America Bulletin, 116, 2531279

Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J., \& O'Reilly, S. Y. (2004). Archean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research, 131, 231-282.
Griffin, W. L., Pearson, N. J., Belousova, E. A., Jackson, S. R., Van Achterbergh, E., O'Reilly, S. Y., \& Shee, S. R. (2000). The Hf isotope composition of cratonic mantle: LAM-MCICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64, 133-147.
Griffin, W. L., Spetius, Z. V., Pearson, N. J., \& O'Reilly, S. Y. (2002). In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: new constraints on depletion events in the Siberian lithospheric mantle. Geochemistry, Geophysics, Geosystems, 3, doi:10.1029/2001GC000287.
Griffin, W. L., Powell, W. J., Pearson, N. J., \& O'Reilly, S. Y. (2008). GLITTER: data reduction software for laser ablation ICP-MS. In P. Sylvester (Ed.) Laser ablation-ICP-MS in the Earth Sciences (pp. 204-207). Mineralogical Association of Canada Short Course Series, 40, Appendix 2.
Hagen-Peter, G., Cottle, J. M., Smit, M., \& Cooper, A. F. (2016). Coupled garnet Lu-Hf and monazite U-Pb geochronology constrain early convergent margin dynamics in the Ross orogen, Antarctica. Journal of Metamorphic Geology, 34, 293-319
Jackson, S. E., Pearson, N. J., Griffin, W. L., \& Belousova, E.A. (2004). The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICPMS) to in situ UPb zircon geochronology. Chemical Geology, 211, 47-69.
Ludwig, K. R. (2003). Isoplot 3.0. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology, Center Special Publication 4.70 pp .
Meert, J. G. (2003). A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362, 1-40.

Millar, I. L., \& Storey, B. C. (1995). Early Paleozoic rather than Neoproterozoic volcanism and rifting within the Transantarctic Mountains. Journal of the Geological Society of London, 152, 417420.

Myrow, P. M., Pope, M. C., Goodge, J. W., Fischer, W., \& Palmer, A. R. (2002). Depositional history of pre-Devonian strata and timing of Ross orogenic tectonism in the central Transantarctic Mountains, Antarctica. Geological Society of America Bulletin, 114, 1070-1088.
Paulsen, T. S., Encarnaci_on, J., Grunow, A. M., Valencia, V. A., Layer, P. W., Pecha, M., ... Rasoazanamparany, C. (2015). Detrital mineral ages from the Ross Supergroup, Antarctica: Implications for the Queen Maud terrane and outboard sediment provenance on the Gondwana margin. Gondwana Research, 27, 377-391.
Rocchi, S., Bracciali, L., Di Vincenzo, G., Gemelli, M., \& Ghezzo, C. (2011). Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land. Gondwana Research, 19, 594-607.
Rowell, A. J., Van Schmus, W. R., Storey, B. C., Fetter, A. H., \& Evans, K. R. (2001). Latest Neoproterozoic to Mid-Cambrian age for the main deformation phases of the Transantarctic Mountains: New stratigraphic and isotopic constraints from the Pensacola Mountains, Antarctica. Journal of the Geological Society of London, 158, 295-308.
Scherer, E., Munker, C., \& Mezger, K. (2001). Calibration of the Lutetium-Hafnium clock. Science, 293, 683-687.
Stump, E. (1995). The Ross Orogen of the Transantarctic Mountains. Cambridge: Cambridge University Press, 284 pp.
Stump, E., Gehrels, G., Talarico, F., \& Carosi, R. (2007). Constraints from detrital zircon geochronology on the early deformation of the Ross orogen, Transantarctic Mountains, Antarctica. In A. K. Cooper \& C. R. Raymond (Eds.), Antarctica: A Keystone in a Changing World Antarctica: 4780 Abstract 166. Proceedings of the 10th ISAES. US Geological Survey Open File Report 2007-1047. Retrieved from https://pubs.usgs.gov/of/2007/1047.
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C., \& Spiegel, W. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf trace element and REE analyses. Geostandards Newsletter, 19, 1-24.
Wysoczanski, R. J., \& Allibone, A. H. (2004). Age, correlation, and provenance of the Neoproterozoic Skelton Group, Antarctica: Grenville age detritus on the margin of East Antarctica. The Journal of Geology, 112, 401-41.

