## **Supporting Information**

# **Boosting up Performance of Inverted Photovoltaic Cells from** Bis(alkylthien-2-yl)dithieno[2,3-d:2',3'-d'] benzo[1,2-b:4,5-b'] dithiophene-based Copolymers by Advantageous Vertical Phase **Separation**

Pengzhi Guo, GuopingLuo, Qiang Su, Jianfeng Li, Peng Zhang, Junfeng Tong, Chunyan Yang, Yangjun Xia, and Hongbin Wu

### **Table of Contents**

| 1. Synthesis of copolymers of PDTBDT-BT and PDTBDT-FBT                                                                             | 2   |
|------------------------------------------------------------------------------------------------------------------------------------|-----|
| 1.1. Synthesis of PDTBDT-BT                                                                                                        | 2   |
| 1.2. Synthesis of PDTBDT-FBT                                                                                                       | 3   |
| 2. Photovoltaic properties of the PDTBDT-BT and PDTBDT-FBT                                                                         | 3   |
| 3. AFM topography images of the PDTBDT-BT/PC <sub>71</sub> BM and PDTBDT-FBT/PC <sub>71</sub> BM (W: W, 1:2)                       |     |
| 4. Dark current density-voltage characteristics of the optimal photovoltaic cells from the copolymers and PC <sub>71</sub> BM.     | 7   |
| 5. Optical refractive and extinction characteristics of the copolymer and PC <sub>71</sub> BM blend films with weight ratio of 1:2 | 8   |
| 6. Charge transporting properties of the copolymer/PC <sub>71</sub> BM (W: W, 1:2) blend films                                     | 9   |
| 7. Distribution of the copolymers and $PC_{71}BM$ on the top and bottom surface by XPS                                             | l 1 |

#### 1. Synthesis of copolymers of PDTBDT-BT and PDTBDT-FBT

$$C_{10}H_{21} \xrightarrow{C_{10}H_{21}} \\ S = S \\ S = S$$

Scheme S1. Synthesis routes of the PDTBDT-BT and PDTBDT-FBT

#### 1.1. Synthesis of PDTBDT-BT

2,7-Di(trimethylstannyl)-5,10-bis(4,5-didecylthien-2-yl)dithieno[2,3-d:2',3'-d]benzo[1,2-b: 4,5b'|dithiophene (0.20 mmol, 270.9 mg) and 4,7-dibromobenzothiadiazole (0.20 mmol, 58.4 mg) were dissolved into the mixture solution 6 mL of toluene and 0.7 mL of DMF in a monomicrowave reaction tube. After being purged with argon 20 min, tris(dibenzylideneacetone)dipalladium (0) $(Pd_2(dba)_3)$ (2.0)mg) and tris(3-methoxyphenyl)phosphine (4.0 mg) was added. Then the tube was transferred into a glove box with moisture and oxygen under 1 ppm, and the mixture was purged with argon for another 10 min. The screwed-up tube was subjected to the following reaction conditions in a microwave reactor: 120 °C for 5 min, 140 °C for 5 min and 160 °C for 20 min. At the end of polymerization, the polymers were end-capped with 2-(tributylstannyl)thiophene and 2-bromothiophene to remove bromo and trimethylstannyl end groups. The mixture was then poured into methanol. The precipitated material was collected and extracted with ethanol, acetone, hexane and toluene in a Soxhlet extractor. The solution of the copolymer in toluene was condensed to 20 mL and then

S 2

poured into methanol (500 mL). The precipitation was collected and dried under vacuum overnight (yield: 71%).  $M_n = 46,830$  g/mol with a polydispersity index (PDI) of 2.36.

#### 1.2. Synthesis of PDTBDT-FBT

The PDTBDT-FBT was synthesized as the procedure of PDTBDT-BT, except that the polymerization was carried out with 2,7-di(trimethylstannyl)-5,10-bis(4,5-didecylthien-2-yl)dithieno[2,3-d:2',3'-d]benzo[1,2-b:4,5-b]dithiophene (0.20 mmol, 270.9 mg) and 4,7-dibromo-5,6-difluorobenzothiadiazole (0.2 mmol, 65.6 mg). Yield: 68%.  $M_n = 53,320$  g/mol with PDI of 2.13.

#### 2. Photovoltaic properties of the PDTBDT-BT and PDTBDT-FBT

Table S1 Parameters of the regular photovoltaic cells from PDTBDT-BT and PDTBDT-FBT with devices configuration as ITO/PEDOT: PSS/active layer/Ca/Al.

| Active layer            | Weight ratio of copolymer toPC <sub>71</sub> BM | Additive | $V_{\rm OC}(V)$ | $J_{\rm SC}$ (mA/cm <sup>2</sup> ) | <i>FF</i> (%) | PCE (%) |
|-------------------------|-------------------------------------------------|----------|-----------------|------------------------------------|---------------|---------|
|                         | 1:1                                             | 0% DIO   | 0.80            | 6.48                               | 53.51         | 2.77    |
| PDTBDT-                 | 1:1.5                                           | 0% DIO   | 0.80            | 7.15                               | 54.76         | 3.13    |
| BT/PC <sub>71</sub> BM  | 1:2                                             | 0% DIO   | 0.81            | 9.43                               | 56.53         | 4.31    |
|                         | 1:3                                             | 0% DIO   | 0.80            | 8.52                               | 56.38         | 3.84    |
|                         | 1:2                                             | 3% DIO   | 0.80            | 10.32                              | 60.20         | 4.97    |
|                         | 1:1                                             | 0% DIO   | 0.88            | 9.77                               | 57.62         | 4.93    |
| PDTBDT-                 | 1:1.5                                           | 0% DIO   | 0.88            | 10.08                              | 57.28         | 5.31    |
| FBT/PC <sub>71</sub> BM | 1:2                                             | 0% DIO   | 0.88            | 10.43                              | 62.70         | 5.74    |
|                         | 1:3                                             | 0% DIO   | 0.89            | 9.33                               | 60.30         | 5.01    |
|                         | 1:2                                             | 3% DIO   | 0.88            | 10.98                              | 61.25         | 5.92    |

# 3. AFM topography images of the PDTBDT-BT/PC $_{71}$ BM and PDTBDT-FBT/PC $_{71}$ BM (W:W, 1:2)



Figure S1. AFM topography images of the PDTBDT-BT/PC<sub>71</sub>BM (W:W, 1:2) with (a) and without DIO as solvent additives (b).





Figure S2. AFM topography images of the PDTBDT-FBT/PC<sub>71</sub>BM (W:W, 1:2) with (a) and without DIO as solvent additives (b).

Table S2. The Root-mean-squares (RMS) of the blend films from the copolymers/PC71BM (W:W; 1:2) with and without DIO as solvent additives.

| Blend films                              | Solvent additives | RMS (nm) |
|------------------------------------------|-------------------|----------|
| DDTDDT DT/DC DM (W.W. 1.0)               | DIO 0%            | 7.04     |
| PDTBDT-BT/PC <sub>71</sub> BM (W:W; 1:2) | DIO 3%            | 3.78     |
| DDTDDT DT/DC DM (WWW 1.0)                | DIO 0%            | 1.91     |
| PDTBDT-BT/PC <sub>71</sub> BM (W:W; 1:2) | DIO 3%            | 1.15     |
|                                          |                   |          |

4. Dark current density-voltage characteristics of the optimal photovoltaic cells from the copolymers and PC<sub>71</sub>BM.



Figure S3. Dark current density curves of the PVCs from PDTBDT-BT/PC71BM and PDTBDT-FBT/PC<sub>71</sub>BM with weight ratio of 1:2

5. Optical refractive and extinction characteristics of the copolymer and PC<sub>71</sub>BM blend films with weight ratio of 1:2.



Figure S4. The refractive index (n) and extinction coefficient (k) of PDTBDT-FBT/PC $_{71}$ BM (a) and PDTBDT-FBT/PC $_{71}$ BM (b) with weight ratios of 1:2 casting from o-dichlorobenzene+3% DIO solution.

6. Charge transporting properties of the copolymer/PC<sub>71</sub>BM (W:W, 1:2) blend films.



Figure S5. *J-V* curves of the electron-only (a) and hole-only (b) devices of PDTBDT-BT/PC<sub>71</sub>BM (W:W, 1:2) and PDTBDT-FBT/PC<sub>71</sub>BM (W:W, 1:2).

Table S3. Electron mobility of PDTBDT-BT/PC<sub>71</sub>BM and PDTBDT-FBT/PC<sub>71</sub>BM with weight ratios of 1: 2 in different thickness.

| Active layer                               | Thickness (nm) | SCLC Electron<br>mobility<br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) |
|--------------------------------------------|----------------|---------------------------------------------------------------------------------|
| DDTDDT DT. DC. DM (WWW. 1.2)               | 110            | $1.02 \times 10^{-4}$                                                           |
| PDTBDT-BT: PC <sub>71</sub> BM (W:W; 1:2)  | 230            | $3.04 \times 10^{-4}$                                                           |
| DOTDOT FOT: DC DM (W.W. 1.2)               | 110            | $1.40 \times 10^{-4}$                                                           |
| PDTBDT-FBT: PC <sub>71</sub> BM (W:W; 1:2) | 230            | $1.49 \times 10^{-3}$                                                           |

Table S4 Hole mobilities of PDTBDT-BT/PC<sub>71</sub>BM and PDTBDT-FBT/PC<sub>71</sub>BM with weight ratios of 1:2 in different thickness.

| Active layer                                | Thickness (nm) | SCLC Hole mobility (cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) |
|---------------------------------------------|----------------|-----------------------------------------------------------------------|
| DDTDDT DT. DC. DM (W.W. 1.2)                | 110            | $8.87 \times 10^{-4}$                                                 |
| PDTBDT-BT: PC <sub>71</sub> BM (W:W; 1:2) - | 220            | $1.63 \times 10^{-4}$                                                 |
| DOTDOT FOT. DC DM (W.W. 1.2)                | 110            | $5.62 \times 10^{-4}$                                                 |
| PDTBDT-FBT: PC <sub>71</sub> BM (W:W; 1:2)  | 220            | $1.19 \times 10^{-3}$                                                 |

### 7. Distribution of the copolymers and $PC_{71}BM$ on the top and bottom surface

Table S5. Integrated area of the C 1s, N 1s, O 1s, S 2p and F 1s peaks of the XPS measurements from the copolymers and PC<sub>71</sub>BM (W: W, 1:2) blend films on the substrates like of ITO/PEDOT: PSS and ITO/PFN.

| Blend                                            | Substrate      | Surface | Area of C<br>1s Peaks | Area of<br>N 1s<br>Peaks | Area of<br>O 1s<br>Peaks | Area of F<br>1s Peaks | Area of S<br>2p Peaks |
|--------------------------------------------------|----------------|---------|-----------------------|--------------------------|--------------------------|-----------------------|-----------------------|
|                                                  | ITO/PEDOT:PSS  | Top     | 7276.18               | 320.56                   | 1879.80                  | 0                     | 1143.75               |
| PDTBDT-<br>BT/PC <sub>71</sub> BM<br>(W:W, 1:2)  |                | Bottom  | 78562.51              | 1937.11                  | 54970.93                 | 0                     | 10369.95              |
|                                                  | ITO/PFN/       | Тор     | 154133.49             | 7214.90                  | 44743.24                 | 0                     | 27674.02              |
|                                                  |                | Bottom  | 4494.02               | 141.62                   | 3048.82                  | 0                     | 614.70                |
| PDTBDT-<br>FBT/PC <sub>71</sub> BM<br>(W:W, 1:2) | ITO/PEDOT: PSS | Тор     | 213729.39             | 9007.14                  | 21390.98                 | 14949.23              | 37505.08              |
|                                                  |                | Bottom  | 137268.23             | 5838.49                  | 24173.27                 | 8076.38               | 19893.59              |
|                                                  | ITO (DEN)      | Top     | 9480.63               | 437.70                   | 994.38                   | 685.40                | 1744.28               |
|                                                  | ITO/PFN        | Bottom  | 198372.25             | 5714.32                  | 22441.79                 | 7476.64               | 18738.71              |

Table S6. PDTBDT-FBT to PC<sub>71</sub>BM weight ratios at the top surfaces of the blend films on the substrates of ITO/PEDOT: PSS and ITO/PFN calculated from XPS investigation

| Top Surface                                                       | Conten<br>t of C<br>atom<br>(%) | Conten<br>t of N<br>atom<br>(%) | Conten<br>t of O<br>atom<br>(%) | Conten<br>t of S<br>atom<br>(%) | Conten<br>t of F<br>atom<br>(%) | Ratio of S/F determine d by XPS results | Copolyme r to PC <sub>71</sub> BM weight ratio by C/S | Copolyme r to PC <sub>71</sub> BM weight ratio by C/F |
|-------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| ITO/PEDOT:PSS/<br>PDTBDT-<br>BT/PC <sub>71</sub> BM<br>(W:W, 1:2) | 85.60                           | 2.27                            | 3.68                            | 1.87                            | 6.58                            | 2/6.96                                  | 4.13:1                                                | 4.03:1                                                |
| ITO/PFN/PDTBDT<br>-FBT/PC <sub>71</sub> BM (W:<br>W, 1:2)         | 86.13                           | 2.11                            | 3.17                            | 1.90                            | 6.69                            | 2/7.04                                  | 4.23:1                                                | 4.19:1                                                |