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I. Three realistic potential profiles and superlattice periodicity dependence 

   In the main text, our initial discussions are based on a simple form of potential, as defined in eq 

3. Here we give details of three realistic cases also considered – a conical potential mimicking the 

molecular assembly (Figure S1a), a rectangular potential which can be realized with patterned 

electrostatic gating (Figure S2a), and a harmonic potential (Figure S3a). A potential can in general 

be written as the superposition of its Fourier components, i.e., 𝑈(𝒓) = ∑ 𝑈(𝑮)𝑒𝑖𝑮⋅𝒓𝑮 . Since the 

potential is inversely designed from eqs 2–5 in the main text, the lowest 𝑮 components, which 

defines the size and shape of the superlattice, are similar to those defined in eq 3 in the main text. 

In the conical potential, a small deviation from eq 3 exists and effectively shifts the positions of the 

Dirac points away from the 𝑲𝑗 points. However, if the profile of the potential is very localized 

(such as in molecule assembly), the analysis in the main text can still be treated as a good 

approximation to the realistic situation. Therefore, our conclusions on the generation of massless 

Dirac fermions around 𝑲𝑗 points are valid, despite the fact that the detailed band structure in other 

regions away from k = 0 may vary depending on the higher 𝑮 components of the potential. The 

periodicity of the conical potential is 2.35 nm, which is quite accessible in experiments, e.g., the 

assembly of monoxide molecules on Cu (111) surface takes a periodicity of less than 2 nm. The 

periodicity of the rectangular potential is 7.84 nm, in the same order of magnitude of what has been 

achieved with current lithographic techniques that can usually reach 10 – 20 nm. The periodicity of 

the harmonic potential is 2.35 nm, and we use it to enrich the discussions. 

   Figure S1b and c, Figure S2b and c and Figure S3b and c show the band structures from the 

three types of potentials, respectively. The anisotropic linear dispersions are clearly seen. Note that 

for all potentials, the density of states (DOS) show the V-shape feature and a vanishing point. 

   We further discuss the dependence of superlattice periodicity in the electronic structures. As is 

shown in Figure S4, we consider the sinusoidal potential (eq 3) with different lattice constants. A 

smaller periodicity gives a wider energy window for the generated massless Dirac fermions, i.e., the 

range of linearity. 

 

II. Isolation of the new Dirac fermions within an energy window 

   Applying the external potential shifts and redistributes the DOS, creating an energy windows 

where only those newly generated anisotropic Dirac fermions exist. Tuning the Fermi level to such 

an energy window requires a carrier density in the order of 1012 – 1013 cm-2, which is quite 



achievable experimentally. Noticing that the DOS plotted in Figure 2d, Figure S1d, and Figure S2d 

only contain the effects of the external potential on the original lowest-energy conduction band, 

whereas in a real material, other bands need to be considered as well, because they may appear in 

the same energy window where the Dirac fermions exist, and therefore affect the experimental 

measurements. Previous ab initio calculations (Ref. 27 in the main text) show that in a monolayer 

black phosphorus, there are other bands ~ 0.2 eV higher in energy than the conduction band 

minimum and ~ 0.5 eV in energy lower than the valence band maximum. When the number of layers 

increases to four, other conduction band states almost reach the same energy as conduction band 

minimum, but those in the valence bands are still at ~ 0.5 eV away from the valence band maximum. 

Considering the energy of the new Dirac points and potentially interfering states, hole doping in 

few-layer black phosphorus should be more robust in the generation of isolated-in-energy 

anisotropic Dirac fermions. However, the ratio of the effective masses along two crystal axes in the 

hole doping regime varies a lot with number of layers (𝛾0 is ~ 1/6 in monolayer with hole doping), 

while it is almost a constant as a function of layer number in conduction bands; therefore, much care 

is needed in designing the external potential for a sample with a particular number of layers and the 

choice of electron or hole doping. Nevertheless, our analyses and calculations in the main text and 

above based on the conduction band states are quite general, and can be easily applied to the valence 

band and other systems having anisotropic two-dimensional electron gases. 

 

III. Solving for asymmetric Klein tunneling 

   The crystal axes of few-layer black phosphorus and the superlattices are defined in the x-y 

coordinate system, and the potential barrier is defined in the x’-y’ coordinate system. Vectors and 

angles in the x’-y’ coordinate system are denoted with a prime symbol. We consider group velocity 

𝒗 of the incident wave packet that can hit the potential barrier, so 𝜙𝒗
′ ∈ [−

𝜋

2
,
𝜋

2
]. With a given 𝜙𝒗

′  

(𝜙𝒗 = 𝜙𝒗
′ + 𝛼), because tan𝜙𝒌 =

𝑘𝑦

𝑘𝑥
 and tan𝜙𝒗 = 𝛾0

2 𝑘𝑦

𝑘𝑥
, 𝜙𝒌 can be determined (depending on 

𝜆 = ±1 ), and we can write the incident wavevector in region I as 𝒌 = (𝑘𝑥, 𝑘𝑦) =

(|𝑘| cos𝜙𝒌 , |𝑘| sin𝜙𝒌), satisfying 

 𝐸0 = 𝜆
ℏ

2
𝑣0√𝑘𝑥2 + 𝛾0

2𝑘𝑦2 = 𝜆
ℏ

2
𝑣0√𝑘2(cos2𝜙𝒌 + 𝛾0

2 sin2𝜙𝒌), (S1) 

and we then have  

 |𝑘| =
2|𝐸0|

ℏ𝑣0
(cos2𝜙𝒌 + 𝛾0

2 sin2 𝜙𝒌)
−
1
2, (S2) 

The same vector is represented in the x’-y’ coordinate system as 𝒌 = (|𝑘| cos𝜙𝒌
′ , |𝑘| sin𝜙𝒌

′ ) 

where 𝜙𝒌
′ = 𝜙𝒌 − 𝛼 . In region I, the reflected wavevector takes 𝒌𝑟 = (𝑘𝑥′

𝑟 , 𝑘𝑦′) in the x’-y’ 

coordinate system, because of 𝑘𝑦′  conservation. In the x-y coordinate system, the reflected 

wavevector reads 

 
𝑘𝑥
𝑟 = 𝑘𝑥′

𝑟 cos𝛼 − 𝑘𝑦′ sin𝛼, 

𝑘𝑦
𝑟 = 𝑘𝑥′

𝑟 sin𝛼 + 𝑘𝑦′ cos𝛼, 
(S3) 

satisfying 

 𝑘𝑥
𝑟2 + 𝛾0

2𝑘𝑦
𝑟2 =

4𝐸0
2

ℏ2𝑣0
2  , (S4) 

and we get the solution of 𝑘𝑥′
𝑟 , as well as the spinor angle 𝜙𝒔

𝑟. In region III, there is only one 



wavevector which is the same as 𝒌. 

   In region II, the wavevectors are denoted as 𝒒, 𝒒𝑟, with 𝑞𝑦′ = 𝑞𝑦′
𝑟 = 𝑘𝑦′, satisfying 

 𝐸0 = 𝜆
′
ℏ

2
𝑣0√𝑞𝑥

2 + 𝛾0
2𝑞𝑦

2 + 𝑉0. (S5) 

where 

 
𝑞𝑥 = 𝑞𝑥′ cos 𝛼 − 𝑘𝑦′ sin 𝛼, 

𝑞𝑦 = 𝑞𝑥′ sin𝛼 + 𝑘𝑦′ cos𝛼, 
(S6) 

and equivalently, by solving 

 𝑞𝑥
2 + 𝛾0

2𝑞𝑦
2 =

4(𝑉0 − 𝐸0)
2

ℏ2𝑣0
2 , (S7) 

we can have two solutions for 𝑞𝑥′, one for incident and the other for reflected wave in region II, 

depending on the group velocities they associated with. Therefore we obtain the spinor angles 𝜃𝒔 

and 𝜃𝒔
𝑟. Note that eqs 6 and 7 in the main text should be combined (i.e. considering 𝜆(𝜆′) = ±1) 

to determine which quadrant the wavevector and the group velocity lies in, and the spinor direction 

is determined by spinor angle and 𝜆 (𝜆′) together. In a word, to obtain the solutions, the defining 

equations of the three vectors should be used, coming from eq 6 in the main text. 

   In a general asymmetric Klein tunneling process, the normal incidence direction is different 

from the perfect transmission direction, and this difference can be maximized with given 𝑚𝑥
∗  and 

𝑚𝑦
∗ . The perfect transmission case corresponds to 𝒌 = (𝑘 cos 𝛼 , 𝑘 sin 𝛼), according to the main 

text. In this case, if we limit 0 < 𝛼 <
𝜋

2
, we can maximize (𝛼 − 𝜙𝒗), or equivalently tan(𝛼 − 𝜙𝒗). 

Together with eq 7 in the main text, we may solve for the maximum value (at 𝛼 = 𝛼𝑚) of the 

following function 

 tan(𝛼 − 𝜙𝒗) =
tan𝛼 − tan𝜙𝒗
1 + tan𝛼 tan𝜙𝒗

=
(1 − 𝛾0

2) tan𝛼

1 + 𝛾0
2 tan2 𝛼

. (S8) 

Finally, we have 

 tan𝛼𝑚 =
1

𝛾0
. (S9) 

The maximum (𝛼 − 𝜙𝒗) corresponds to tan𝜙𝒗,𝑚 = 𝛾0, and meanwhile tan𝜙𝒔,𝑚 = 1. Therefore, 

𝜙𝒗,𝑚
′ = 𝜙𝒔,𝑚 − 𝛼 = arctan 𝛾0 − arctan

1

𝛾0
. 

   With the alignment of the potential barrier and the solutions in the three regions determined, 

starting from eq 8, we can have the following set of equations from the boundary conditions, 

 

{
 
 

 
 1 + 𝑟 = 𝑎 + 𝑏,

𝜆𝑒𝑖𝜙𝒔 + 𝜆𝑟𝑒𝑖𝜙𝒔
𝑟
= 𝜆′𝑎𝑒𝑖𝜃𝒔 + 𝜆′𝑏𝑒𝑖𝜃𝒔

𝑟
 ,

𝑎𝑒𝑖𝑞𝑥′𝐷 + 𝑏𝑒𝑖𝑞𝑥′
𝑟 𝐷 = 𝑡𝑒𝑖𝑘𝑥′𝐷,

𝜆′𝑎𝑒𝑖𝜃𝒔+𝑖𝑞𝑥′𝐷 + 𝜆′𝑏𝑒𝑖𝜃𝒔
𝑟+𝑖𝑞

𝑥′
𝑟 𝐷 = 𝜆𝑡𝑒𝑖𝜙𝒔+𝑖𝑘𝑥′𝐷.

 (S10) 

With some algebra, eqs 9 and 10 in the main text can be reached. 

  



 

Figure S1. Generation of massless Dirac fermions from a superlattice of conical potentials 

mimicking the molecule assembly. (a) Real-space distribution of the conical potential of radius 0.3 

nm with 2.35 nm periodicity (left panel), along with two line profiles plotted (right two panels). (b) 

Band structures corresponding to the superlattice potential in (a). (c) Band structures along two 

normal directions passing through one Dirac point. (d) Density of states (DOS) showing V-shape 

feature with a vanishing point, with the real electron spin degree of freedom included. 

  



 

Figure S2. Generation of massless Dirac fermions from a superlattice of rectangular potentials 

mimicking the patterned electrostatic gating. (a) Real-space distribution of a rectangular potential 

of 2.67 nm long and 1.65 nm wide with 7.84 nm periodicity (left panel), along with two line profiles 

plotted (right two panels). (b) Band structures corresponding to the superlattice potential in (a). (c) 

Band structures along two normal directions passing through one Dirac point. (d) Density of states 

(DOS) showing V-shape feature with a vanishing point, with the real electron spin degree of freedom 

included. 

 

 

 

 

 

  



 

Figure S3. Generation of massless Dirac fermions from a superlattice of harmonic potentials. (a) 

Real-space distribution of a harmonic potential of radius 0.4 nm with 2.35 nm periodicity (left panel), 

along with two line profiles plotted (right two panels). (b) Band structures corresponding to the 

superlattice potential in (a). (c) Band structures along two normal directions passing through one 

Dirac point. (d) Density of states (DOS) showing V-shape feature with a vanishing point, with the 

real electron spin degree of freedom included. 

 

 

 

 

 

 

  



 

Figure S4. Superlattice periodicity dependence of the electronic band structure of the generated 

massless Dirac fermions. Three lattice constants are considered; smaller periodicity gives a wider 

energy window hosting the linearly dispersed Dirac states. Note that in this figure, the k-space and 

energy origin have been set to the K’ point and the Dirac point energy, respectively, for a direct 

comparison of the dispersion. 

 


