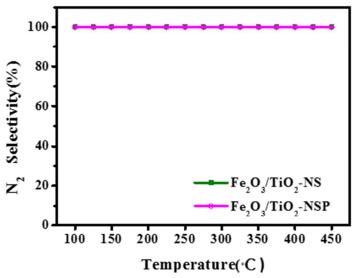
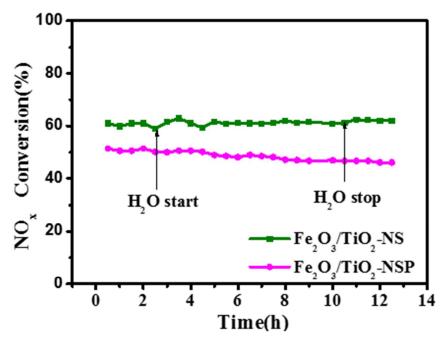
Supporting Information

Facet-activity Relationship of TiO₂ in Fe₂O₃/TiO₂ Nanocatalysts for Selective Catalytic Reduction of NO with NH₃: *In Situ* DRIFTs and DFT Studies


Jie Liu,[†] Jittima Meeprasert,[‡] Supawadee Namuangruk,[‡] Kaiwen Zha,[†] Hongrui Li,[†] Lei Huang,[†] Phornphimon Maitarad, [†] Liyi Shi, [†] Dengsong Zhang*,[†]

† Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444,


China

[‡] National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Pahonyothin Road,

Klong Luang, Pathum Thani 12120, Thailand

Figure S1. N_2 selectivity *versus* reaction temperature over the Fe_2O_3/TiO_2 -NS and Fe_2O_3/TiO_2 -NSP nanocatalysts. Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 3 vol %, N_2 balance, and GHSV= 25 000 h^{-1} .

Figure S2. NO_x conversion versus reaction time on stream in the presence of 8 vol%H₂O, Reaction conditions: [NO] = [NH₃] = 500 ppm, [O₂] = 3 vol %, N₂ balance, and GHSV= 25 000 h^{-1} .

The N₂ selectivity of Fe₂O₃/TiO₂-NS and Fe₂O₃/TiO₂-NSP nanocatalysts during the NH₃-SCR reaction was shown in **Figure S1**. It can be found that both Fe₂O₃/TiO₂-NS and Fe₂O₃/TiO₂-NSP nanocatalysts exhibited remarkable performance in N₂ selectivity during the NH₃-SCR reaction. The H₂O resistance of Fe₂O₃/TiO₂-NS and Fe₂O₃/TiO₂-NSP under 250 °C was evaluated in **Figure S2**. The values of NO_x conversion of the two catalysts remained unchanged in the presence of 8 vol. % H₂O, revealing that the catalytic performance of Fe₂O₃/TiO₂-NS and Fe₂O₃/TiO₂-NSP was slightly affected in the presence of H₂O.

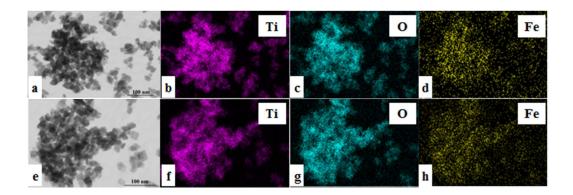
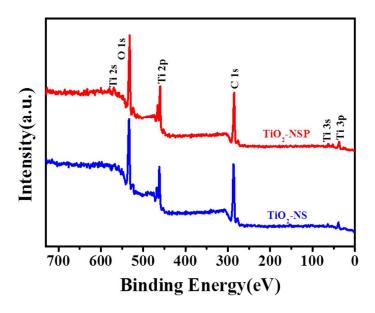
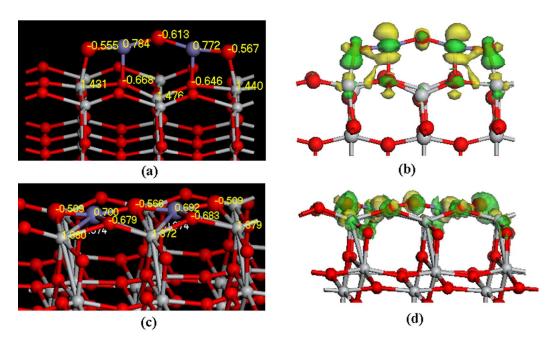




Figure S3. (a, b, c, d) STEM and EDS mapping images of Fe₂O₃/TiO₂-NSP nanocatalyst; (e, f, g,

h) STEM and EDS mapping images of Fe₂O₃/TiO₂-NS nanocatalyst.

Figure S4. Full scan XPS spectra of TiO₂-NS and TiO₂-NSP.

Figure S5. Charge on atoms (left) and electron density difference plot (right) of (\mathbf{a}, \mathbf{b}) Fe₂O₃/TiO₂{001} and (\mathbf{c}, \mathbf{d}) Fe₂O₃/TiO₂{101}.