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Abstract 
 

There are three fundamental classical theories which can be used to study the 

motion of dynamical systems: Newtonian mechanics (NM), special-relativistic 

mechanics (SRM) and general-relativistic mechanics (GRM). It is conventionally 

believed that (i) the predictions of SRM are well approximated by those of NM in 

the low-speed limit, (ii) the predictions of GRM are well approximated by those 

of SRM in the weak-gravity limit, and (iii) the predictions of GRM are well 

approximated by those of NM in the low-speed weak-gravity limit. In my 

research project, numerically-accurate predictions of the theories were compared 

in the three limits for chaotic dynamical systems to check the validity of the 

conventional beliefs. The results of this study have overturned the conventional 

beliefs: for each limit, I showed that the two predictions can rapidly disagree 

completely. This new conceptual understanding of the relationships between the 

predictions of the theories for low-speed, weak-gravity, and low-speed 

weak-gravity chaotic dynamical systems implies that physicists and engineers 

must replace the theories they have conventionally been using to study these 

systems with the more general theories. In particular, NM must be replaced by 

SRM for low-speed systems, SRM must be replaced by GRM for weak-gravity 
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systems, and NM must be replaced by GRM for low-speed weak-gravity systems. 

These paradigm shifts could potentially lead to new understanding and 

discoveries in these systems. 
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Chapter 1 

Introduction 

 

There are 3 fundamental classical theories in physics which can be used to 

study the motion of a dynamical system: Newtonian mechanics (NM), 

special-relativistic mechanics (SRM) and general-relativistic mechanics (GRM). 

Over the last one hundred years, physicists have conventionally believed that the 

3 fundamental theories are generally related as follows (Einstein,1961; Lapidus, 

1972b; Ford and Mantica, 1992; McComb, 1999; Hartle, 2003): 

(1) NM is the low-speed limit of SRM; 

(2) SRM is the weak-gravity limit of GRM; 

(3) NM is the low-speed weak-gravity limit of GRM. 

 

1.1 Low-speed chaotic dynamical system 

 

(Relationship #1:) It is conventionally believed (Einstein,1961; Ford and 

Mantica, 1992; Corben and Stehle, 1994; McComb, 1999) that if the speed of a 

dynamical system remains low, i.e. much less than the speed of light c, then the 

dynamics predicted by SRM stays well approximated by the dynamics predicted 
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by NM for the same parameter(s) and initial conditions. 

In recent times, much progress has been made in studying the 

special-relativistic dynamics of nonlinear systems, where gravity does not play a 

role in the dynamics of the system, for example, an electron in a time-varying 

electric field in a plasma (Chernikov et al., 1989; Nomura et al., 1992), the 

relativistic kicked harmonic oscillator (Longcope and Sudan, 1987; Karimabadi 

and Angelopoulos, 1989; Ashkenazy and Horwitz, 2000; Horwitz and Ashkenazy, 

2000), transport properties in the relativistic periodically kicked rotor (Matrasulov 

et al., 2005), the diffusive ionization of a relativistic hydrogen-like atom 

(Matrasulov, 1999), and the relativistic motion of a particle acted upon by a 

constant force (Lapidus, 1972a). The research work in (Lapidus, 1972a) compared 

the equations of the Newtonian and special-relativistic trajectories without 

studying the closeness between the two trajectories numerically. 

Although dynamical systems where gravity is not involved in the dynamics 

have been studied in the framework of SRM, the numerical comparison between 

the closeness of the Newtonian and special-relativistic predictions for low-speed 

chaotic dynamical systems has never been done before until the recent work of 

Lan (2006, 2007, 2008, 2009a, 2009b; Lan and Cheng, 2010; Lan and Borondo, 

2011). Since 2006, Lan (2006, 2007, 2008, 2009a, 2009b; Lan and Cheng, 2010; 
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Lan and Borondo, 2011) has showed numerically with three prototypical chaotic 

dynamical systems that, although the system is moving at a low speed, the 

Newtonian and special-relativistic trajectories of the same parameters and initial 

conditions can rapidly diverge and become completely different from each other if 

the trajectories are chaotic. 

The first counterexample chaotic dynamical system is (Lan, 2006, 2009b) a 

model Hamiltonian system – the periodically delta-kicked particle. Lan found that 

the Newtonian and special-relativistic trajectories eventually become completely 

different regardless of whether the trajectories are chaotic or non-chaotic. The 

breakdown of agreement between the two trajectories is, however, much faster in 

the chaotic case compared to the non-chaotic case because the difference between 

the two trajectories grows exponentially in the former case but linearly in the 

latter case. 

Similar rapid breakdown of agreement was also found numerically in the 

second counterexample: a model dissipative system (Lan, 2007, 2008, 2009a; Lan 

and Cheng, 2010), if the trajectories are chaotic. However, if the trajectories are 

non-chaotic, there is no breakdown of agreement between the two trajectories. 

The third counterexample is a model scattering system (Lan and Borondo, 

2011). Similar rapid breakdown of agreement was also found numerically in this 
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third counterexample. For this scattering system (Lan and Borondo, 2011), the 

rapid breakdown of agreement is due to a sufficiently-long exponential growth of 

the difference between the two trajectories in the scattering region when the 

scattering is chaotic. 

The surprising finding in (Lan, 2006, 2007, 2008, 2009a, 2009b; Lan and 

Cheng, 2010; Lan and Borondo, 2011) for Relationship #1 raises the fundamental 

question of whether, for low-speed chaotic dynamical systems, Relationship #1 is 

true for other predictions besides the trajectory. 

 

1.2 Weak-gravity and low-speed weak-gravity chaotic 

dynamical systems 

 

(Relationship #2:) When gravity plays a role in the dynamics of a system but 

only weakly, i.e. gravitational potential << c2 (Davies, 1992), it is conventionally 

believed (Einstein, 1961; Lapidus, 1972b) that the dynamical prediction of GRM 

is well approximated by the prediction of SRM for the same parameter(s) and 

initial conditions. 

(Relationship #3:) If the speed of a dynamical system is low, i.e., v << c, and 

gravity plays a role in the dynamics but is weak, it is conventionally believed 
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(Einstein, 1961; Lapidus, 1972b) that the dynamics predicted by GRM is well 

approximated by the dynamics predicted by NM for the same parameter(s) and 

initial conditions. 

In recent times, much progress has been made in studying the relativistic 

dynamics of nonlinear systems, where gravity plays a role in the dynamics of the 

systems. For example, the non-chaotic pendulum (Erkal, 2000) has been studied 

numerically in the context of SRM, where the special-relativistic period was close 

to the Newtonian period when the speed of the system was low. Another example 

is the study of the relativistic non-chaotic motion of a free particle in a uniform 

gravitational field (Lapidus, 1972b; Desloge, 1990) in the context of SRM and 

GRM. The research work in (Lapidus, 1972b; Desloge, 1990) compared the 

equations of the Newtonian, special-relativistic and general-relativistic trajectories 

without studying the closeness among the trajectories numerically. 

Although dynamical systems where gravity is involved in the dynamics have 

been studied in the frameworks of SRM and GRM, in my literature search, I have 

not found any research work which compares the closeness of the dynamical 

predictions of NM (SRM) and GRM for low-speed weak-gravity (weak-gravity) 

chaotic dynamical systems numerically. The finding in (Lan, 2006, 2007, 2008, 

2009a, 2009b; Lan and Cheng, 2010; Lan and Borondo, 2011) for Relationship #1 
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casts a long shadow of doubt on the validity of Relationship #3 (#2) for trajectory 

predictions for low-speed weak-gravity (weak-gravity) chaotic dynamical systems. 

Furthermore, the finding in (Lan, 2006, 2007, 2008, 2009a, 2009b; Lan and 

Cheng, 2010; Lan and Borondo, 2011) also raises the fundamental question of 

whether, for low-speed weak-gravity (weak-gravity) chaotic dynamical systems, 

Relationship #3 (#2) is true for other predictions besides the trajectory. 

 

1.3 Objectives of the research 

 

The objectives of my research is to determine whether 

(1) the statistical predictions of SRM for a low-speed system are always well  

approximated by the NM predictions, 

(2) the single-trajectory and statistical predictions of GRM for a weak-gravity 

system are always well approximated by the SRM predictions, 

(3) the single-trajectory and statistical predictions of GRM for a low-speed 

weak-gravity system are always well approximated by the NM predictions, 

if the system is chaotic. The statistical predictions which will be studied are the 

means, standard deviations and probability distributions of position and 

momentum, the momentum diffusion, the mean dwell time, and the reflection and 
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transmission coefficients - these quantities are determined from an ensemble of 

trajectories. 

 

1.4 Methodology 

 

To address the 3 objectives of the research, it is imperative that the 

predictions of the theories are numerically calculated accurately for comparison. 

The strategy I have adopted to achieve this is to only study chaotic dynamical 

systems where the equations of motion are reducible to mappings for the 

trajectory. 

To address objective #1, the chaotic dynamical system for my research must 

meet the following criteria:  

(1) gravity does not play a role in the dynamics of the system since gravity is not 

involved in Relationship #1 and, thus, objective #1, 

(2) the mapping for the trajectory should be simple and can be studied easily to 

obtain accurate numerical results. 

The chaotic kicked particle previously studied by Lan (2006, 2009b) meets the 

above criteria. For this spatially bounded Hamiltonian system, the Newtonian and 

special-relativistic maps are known as the standard map (Casati et al., 1979; 
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Chirikov, 1979) and the relativistic standard map (Chernikov et al., 1989; Nomura 

et al., 1992) respectively. 

I have also addressed objective #1 for the chaotic scattering system 

introduced by Beeker and Eckelt (1993). For this spatially unbounded system, the 

Newtonian map (Beeker and Eckelt, 1993) and special-relativistic map (Lan and 

Borondo, 2011) are also known. By studying the predictions for this chaotic 

scattering system, besides the mean, standard deviation and probability 

distribution, one can also study the predictions for other statistical quantities, such 

as mean dwell time, transmission and reflection coefficients, which cannot be 

studied for the chaotic kicked particle. 

To address objectives #2 and #3, the chaotic dynamical system for my 

research must meet the following criteria: 

(1) gravity plays a role in the dynamics of the system since gravity is involved in 

Relationships #2 and #3 and, thus, objectives #2 and #3, 

(2) the Newtonian, special-relativistic and general-relativistic mappings for the 

trajectory should not be too difficult to solve numerically. 

The bouncing ball system (Tufillaro et al., 1986; Tufillaro et al., 1992), where 

gravity governs the motion of the ball in between its impacts with a vertically 

oscillating ‘table’, meets the criteria above. The Newtonian map (Tufillaro et al., 
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1986) for this bounded system is known, but the special-relativistic map and 

general-relativistic map are not known and so I had to derive them in my research 

project. In order to derive the general-relativistic map, I had to study and derive 

and solve the general-relativistic equations of motion for a free particle in a 

gravitational field due to a uniform sphere, which is the most challenging part of 

my thesis. 

The accuracy of the single-trajectory and statistical quantity calculations 

were determined by the standard method (Lichtenberg and Lieberman, 1983) of 

comparing the less-accurate calculation with the more-accurate calculation. Each 

statistical quantity was calculated from an ensemble of trajectories.  

Table 1 gives a summary of the dynamical quantities and the chaotic 

dynamical systems that were studied in my research project. 
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Table 1. Summary of the dynamical quantities and the chaotic dynamical systems 

that are studied in my research project.  

Limit (i) Low-speed 
(ii) Weak-gravity 
(iii) Low-speed 

 weak-gravity 

Theories involved (i) NM vs. SRM 
(ii) SRM vs. GRM 
(iii) NM vs. GRM 

System 
Kicked 
particle 

Scattering 
system 

Bouncing ball 
system 

Single trajectory √ √ o 
Mean trajectory o o o 
Standard deviation o o o 
Probability 
distribution 

o o o 

Momentum 
diffusion 

o   

Mean dwell time  o  
Transmission 
coefficient 

 o  

Dynamical 
quantity 

Reflection 
coefficient 

 o  

Note: √ means that the dynamical quantity has already been studied by other 

researchers. o means that the dynamical quantity was studied in my research 

project. 
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Chapter 2 

Low-Speed Chaotic Dynamical System (I) - 

Kicked Particle 

 

2.1 Introduction 

 

In this chapter, I extend the Newtonian special-relativistic comparison for the 

low-speed periodically-delta-kicked particle from single-trajectory predictions 

(Lan, 2006) to statistical predictions – in particular, the mean, standard deviation 

and probability density function of the position and momentum – which are 

calculated from the same parameters and initial ensemble of trajectories. 

Calculating these statistical quantities directly from an ensemble of trajectories is 

far easier than solving the Newtonian and special-relativistic Liouville’s equations 

numerically to first obtain the phase-space probability density functions.  

Furthermore, momentum diffusion in Hamiltonian systems has been studied 

(Chirikov, 1979; Karney, 1983; Chernikov et al., 1990; Afanasiev et al., 1991; 

Chaĭkovsky and Zaslavsky, 1991; Ishizaki et al.,1991; Ishizaki et al., 1993; 

Ishizaki and Mori, 1997; Zaslavsky et al., 1997; Ishizaki and Mori, 1998; Lebœuf, 

1998; Zheng and Kobe, 2006) extensively using Newtonian mechanics and it is 
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known that it can be anomalous. Considerable effort has been made recently to 

understand anomalous diffusion in Hamiltonian systems – see, for example, the 

article by Altmann and Kantz (2008) and the review by Zaslavsky (2002). 

However, a comparison of Newtonian and special-relativistic predictions for 

low-speed momentum diffusion has not been done. In this chapter, I also compare 

the low-speed momentum diffusion predicted by the two theories for the 

periodically-delta-kicked particle. Details of the kicked particle and numerical 

calculation are presented next (Sec. 2.2), followed by the discussion of the results 

(Sec. 2.3). 

 

2.2 Calculation 

 

The model Hamiltonian system is a one-dimensional system where the 

particle is subjected to a sinusoidal potential which is periodically turned on for 

an instant. The Newtonian equations of motion for the periodically-delta-kicked 

particle are easily integrated exactly (Casati et al., 1979; Chirikov, 1979) to yield 

a mapping, which is known as the standard map, of the dimensionless scaled 

position X and dimensionless scaled momentum P from just before the nth kick to 

just before the (n+1)th kick: 
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 )2sin(
2 11   nnn XKPP 


           (2.1) 

 1 mod  )( 1 nnn PXX              (2.2) 

where n = 1,2,…, and K is a dimensionless positive parameter. For the standard 

map, the transition from weak (local) chaos to strong (global) chaos occurs at K ≈ 

0.917.  

The special-relativistic equations of motion are also easily integrated exactly, 

producing a mapping known as the relativistic standard map (Chernikov et al., 

1989; Nomura et al., 1992) for the dimensionless scaled position X and 

dimensionless scaled momentum P from just before the nth kick to just before the 

(n+1)th kick: 

 )2sin(
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1 221 
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where n = 1,2, …, and , like K, is a dimensionless positive parameter. Since 

 
 21

v P
c P







’             (2.5) 

βP << 1 implies v << c (i.e., low speed), where v is the particle speed and c is the 

speed of light. Ciubotariu et al. (2002) have studied a dissipative version of the 

relativistic standard map to see how weak damping changes the phase-space 

structure around the origin described by the relativistic standard map; they did not 
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however compare the dynamical predictions of their dissipative relativistic 

standard map with the predictions of the dissipative non-relativistic standard map. 

For both theories, the ensemble of trajectories is initially Gaussian 

distributed in position and momentum with means <X0> and <P0>, and standard 

deviations 
0X  and 

0P : 

     










 



 2

2
00

2

2
00

00

0000
22

exp
2

1,
PXPX

PPXX
PX


 .     (2.6) 

Each trajectory in the Newtonian (special-relativistic) ensemble is time-evolved 

using the standard map (relativistic standard map). For each theory, the mean 

trajectory, i.e., mean position and mean momentum, just before each kick is 

calculated from the ensemble of trajectories. First, the mean trajectory is 

calculated using 106 trajectories, where the accuracy of the double-precision 

calculation is determined by comparison with the quadruple-precision calculation. 

The mean trajectory is then recalculated using 107 trajectories with the same 

accuracy determination. Finally, the accuracy of the mean trajectory is determined 

by comparing the 106-trajectories calculation with the 107-trajectories calculation. 

The position and momentum standard deviations and probability density functions 

are calculated in the same manner. 

As for the momentum diffusion, the statistical quantity that is typically used 

to study momentum diffusion is (Chirikov, 1979; Chernikov et al., 1990; Ishizaki 
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et al., 1991; Ishizaki et al., 1993; Lebœuf, 1998; Zheng and Kobe, 2006) the mean 

square momentum displacement (MSMD)  

   2
0

2 PPP nn  ,            (2.7) 

where <…> is an average over an ensemble of trajectories. The MSMD [Eq. (2.7)] 

can be expressed as the following sum: 

     













1

1

1

0

1

0

2 20
n

i

in

j
j

n

j
jn iCCP ,         (2.8) 

where  

  ijjj uuiC                  

is the correlation of the momentum difference uj  Pj+1 – Pj and it is a function of 

kick i, and i, j = 0,1,…. For the Newtonian standard map [Eqs. (2.1) and (2.2)] 

and the relativistic standard map [Eqs. (2.3) and (2.4)] , the correlation function is 

given by  

      22 42sin2sin  ijjj XXKiC  .         (2.9) 

Eq. (2.8) can be rewritten as 

       



 

1

1
11

2
1

2 20
n

i
innnn iCCPP .      (2.10) 

Eq. (2.10) shows that the MSMD at kick n can be rewritten as the MSMD at kick 

(n-1) plus a sum involving correlation functions   111   ninin uuiC  where i = 

0,1,…, n-1. I will refer to Eq. (2.10) at the end of the results section. 

    In previous studies (Chirikov, 1979; Ishizaki et al., 1991; Zheng and Kobe, 
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2006) of momentum diffusion in the Newtonian standard map, an initially 

non-localized semi-uniform ensemble, where the initial positions are uniformly 

distributed and the initial momentums are all the same, is used in the numerical 

calculation of the MSMD. Previous studies (Ishizaki et al., 1991; Zheng and Kobe, 

2006) of the Newtonian standard map have shown that, for parameter K where 

accelerator mode islands exist, the MSMD has a power law dependence on the 

kick n: Dn where 1 <  < 2. In this case, the diffusion is termed anomalous. In 

contrast, for parameter K where there is no accelerator mode island, the diffusion 

is normal – the MSMD grows linearly (Chirikov, 1979; Ishizaki et al., 1991; 

Zheng and Kobe, 2006).  

In my calculations, besides the initially non-localized semi-uniform 

ensemble, I also use an initially localized ensemble where the initial positions and 

momentums are both Gaussian distributed (see Eq. (2.6)) with means <X0> and 

<P0>, and standard deviations 
0X  and 

0P . The accuracy of the MSMD is 

determined in the similar way to the mean trajectory, however, to obtain a higher 

accuracy for the MSMD, the 30-significant-figure calculation is used instead of 

the double-precision calculation. 
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2.3 Results - Statistical predictions 

2.3.1 Mean, standard deviation and probability distribution 

 

In this section, I will present three examples to illustrate the general results. 

In the first example, the map parameters are K = 7.0 and  = 10-7. The Newtonian 

and special-relativistic ensembles are both initially Gaussian distributed in phase 

space with means <X0> = 0.5 and <P0> = 99.9, and standard deviations 

0X =
0P = 10-10, and thus initially localized in the chaotic ‘sea’ in phase space. 

Fig. 2.1 shows that the Newtonian mean position and mean momentum agree with 

the special-relativistic mean position and mean momentum for the first 16 kicks 

only, the two mean trajectories are completely different from kick 17 onwards. 

The breakdown of agreement between the Newtonian and special-relativistic 

mean trajectories in Fig. 2.1 can be understood as follows. In either the 

Newtonian or special-relativistic case, the position and momentum standard 

deviations grow (Fox and Elston, 1994; Lan, 1994), on average, exponentially 

initially because the trajectories in the ensemble are chaotic. But as long as the 

position standard deviation remains small (<<1), the mean trajectory is (Fox and 

Elston, 1994; Lan, 1994) well-approximated by the single trajectory with the 
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Figure 2.1. Newtonian (squares) and special-relativistic (diamonds) mean 
positions (top plot) and mean momentums (bottom plot) for the first example. 
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same initial conditions as the mean trajectory. The agreement between the single 

trajectory and mean trajectory breaks down when the position standard deviation 

saturates (Fox and Elston, 1994; Lan, 1994), that is, when the position probability 

density becomes delocalized over the entire position interval, which triggers the 

delocalization of the momentum probability density. Fig. 2.2 shows that the 

Newtonian and special-relativistic position standard deviations saturate at kick 19. 

In each theory, before the saturation of the position probability density, the 

exponential growth constants of the standard deviations are about 1.0, which are 
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Figure 2.2. Natural-log of the Newtonian (squares) and special-relativistic 
(diamonds) position standard deviations for the first example. 
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close to the Lyapunov exponent of 1.27 for the single trajectory. Thus, in either 

the Newtonian (see Fig. 2.3) or special-relativistic (see Fig. 2.4) case, the mean 

trajectory is well-approximated by the single trajectory for the first 18 kicks only. 

The complete disagreement between the Newtonian and special-relativistic mean 

trajectories at kick 17 and kick 18 is therefore due to the complete disagreement 

of the Newtonian single trajectory and the special-relativistic single trajectory, 

which are both chaotic with Lyapunov exponent of 1.27, from kick 17 onwards. 

Since the position and momentum difference between the chaotic Newtonian and 

special-relativistic single trajectories grows exponentially at a rate approximately 

given by the Lyapunov exponent (Lan, 2006), we can estimate when the 

agreement between the two single trajectories breaks down and thus when the two 

mean trajectories breaks down. In particular, the position difference between the 

two single trajectories with the same initial conditions is 4.9910-9 after 1 kick 

and, assuming that the exponential growth constant is 1.27, it grows to 0.1 (the 

maximum possible position difference is 1) after 14 kicks, which is close to the 

actual 17 kicks. 

Furthermore, the difference between the Newtonian and special-relativistic 

mean trajectories grow exponentially up to kick 18 (see Fig. 2.5) because the 
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Figure 2.3. Newtonian single trajectory (circles), Newtonian mean trajectory for 
the first example (squares), and Newtonian mean trajectory for the second 
example (triangles): positions (top plot) and momentums (bottom plot). 
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Figure 2.4. Special-relativistic single trajectory (circles), special-relativistic mean 
trajectory for the first example (squares), and special-relativistic mean trajectory 
for the second example (triangles): positions (top plot) and momentums (bottom 
plot). 



      24 

-20

-15

-10

-5

0

0 5 10 15 20 25 30
kick

lo
g(

m
ea

n-
po

si
tio

n 
di

ffe
re

nc
e)

 

-20

-15

-10

-5

0

5

0 5 10 15 20 25 30

kick

lo
g(

m
ea

n-
m

om
en

tu
m

 d
iff

er
en

ce
)

 
Figure 2.5. Natural-log of the absolute value of the difference between the 
Newtonian and special-relativistic mean positions (top plot) and mean 
momentums (bottom plot) for the first example. The mean-position differences at 
kick 22 and 24 cannot be resolved with the accuracy I have for the Newtonian and 
special-relativistic mean positions at those kicks. 
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difference between the Newtonian and special-relativistic chaotic single 

trajectories grow (Lan, 2006) exponentially. Hence, the breakdown of agreement 

between the Newtonian and special-relativistic mean trajectories is rapid because 

of the exponential growth of the difference between the two mean trajectories. 

Figure 2.2 and Fig. 2.6 show that the position and momentum standard 

deviations predicted by the two theories also do not always agree. The breakdown 

of agreement occurs at kick 12. This rapid breakdown of agreement is, see Fig. 

2.7, due to the exponential growth of the difference between the Newtonian and 

special-relativistic standard deviations, for both position and momentum, up to 

kick 12. In Fig. 2.7, the exponential growth constants of the position and 

momentum standard-deviation differences, which are measured from kick 10 to 

kick 19 (the accuracy of the standard-deviation differences before kick 10 cannot 

be resolved with the accuracy I have for the standard deviations), are 1.36 and 

1.38 respectively. These growth constants are slightly larger than the Lyapunov 

exponents of 1.27 for the Newtonian and special-relativistic single trajectories. 

Together, Fig. 2.1, Fig. 2.2 and Fig. 2.6 show that the agreement between the 

statistical predictions of the two theories, Newtonian and special relativistic, for 

the position and momentum means and standard deviations breaks down from 



      26 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 5 10 15
kick

m
om

en
tu

m
 s

. d
.

 

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

15 20 25 30

kick

lo
g(

m
om

en
tu

m
 s

. d
.)

 
Figure 2.6. Newtonian (squares) and special-relativistic (diamonds) momentum 
standard deviations for the first example: first 15 kicks (top plot), kick 15 to 30 
(bottom plot). The Newtonian and special-relativistic momentum standard 
deviations in the bottom plot are completely different from each other - they 
appear to be close from kick 25 onwards because the natural log of the standard 
deviations is plotted. 
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Figure 2.7. Natural-log of the absolute value of the difference between the 
Newtonian and special-relativistic position standard deviations (top plot) and 
momentum standard deviations (bottom plot) for the first example. The 
standard-deviation differences from kick 1 to 9 cannot be resolved with the 
accuracy I have for the Newtonian and special-relativistic standard deviations at 
those kicks. 
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kick 12 onwards even though the mean particle speed is low, only 0.001% of the 

speed of light since  = 10-7. Fig. 2.8 shows the different Newtonian and 

special-relativistic position and momentum probability densities at kick 17. 

In the second example, the parameters and initial means are the same as 

those in the first example but the initial standard deviations are larger: 
0X =

0P = 

10-8. In this case, Fig. 2.9 shows there is no breakdown of agreement between the 

mean trajectory predictions of the two theories. In addition, Fig. 2.10 shows there 

is also no breakdown of agreement between the position and momentum standard 

deviations predicted by the two theories. 

The results in Fig. 2.9 and Fig. 2.10 for the second example can be 

understood as follows. Fig. 2.3 and Fig. 2.4 show that the single trajectory is close 

to the mean trajectory for the first 12 kicks only, in either the Newtonian or 

special-relativistic case. Thus, for the first 12 kicks, the Newtonian and 

special-relativistic mean trajectories are close because the Newtonian and 

special-relativistic single trajectories are close (recall, the agreement between the 

two single trajectories only breaks down at kick 17). Furthermore, the Newtonian 

and special-relativistic standard deviations are, like the means, still very close at 

kick 13 when the position standard deviations saturate. In other words, the 
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Figure 2.8. Newtonian (shaded grey) and special-relativistic (bold line) position 
(top plot) and momentum (bottom plot) probability densities for the first example 
at kick 17. 
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Figure 2.9. Newtonian (squares) and special-relativistic (diamonds) mean 
positions (top plot) and mean momentums (bottom plot) for the second example. 
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Figure 2.10. Natural-log of the Newtonian (squares) and special-relativistic 
(diamonds) position standard deviations (top plot) and momentum standard 
deviations (bottom plot) for the second example. 
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Newtonian and special-relativistic position and momentum probability densities 

are essentially the same at kick 13. I have found that the agreement between the 

statistical predictions of the two theories for the position and momentum means 

and standard deviations does not break down for an ensemble of trajectories 

which is initially uniformly distributed (delocalized) in position. Thus, in this 

example, because the Newtonian and special-relativistic position probability 

densities are essentially the same and delocalized at kick 13, the statistical 

predictions of the two theories continue to be close for subsequent kicks.  

The results illustrated by the two examples above were also found for other 

values of the K parameter: 0.9, 3.86, 6.4717, 6.9115 and 10.053. 

Recall, in the first example (with smaller initial standard deviations), the 

Newtonian and special-relativistic position standard deviations saturate after the 

agreement between the Newtonian and special-relativistic single trajectories 

breaks down. However, in the second example (with larger initial standard 

deviations), the Newtonian and special-relativistic position standard deviations 

saturate before the agreement between the Newtonian and special-relativistic 

single trajectories breaks down. The first and second examples therefore show 

that in order for the statistical predictions of the two theories to break down, the 

initial Gaussian ensemble must be sufficiently well-localized in phase space, that 
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is, the initial standard deviations must be sufficiently small such that the 

Newtonian and special-relativistic position standard deviations saturate after the 

agreement between the Newtonian and special-relativistic single trajectories 

breaks down.   

If the initial ensemble is localized in the chaotic ‘sea’ in phase space, in the 

first example for instance, the agreement between the Newtonian and 

special-relativistic single trajectories (the initial conditions of the two single 

trajectories are the same, equal to the initial mean position and mean momentum) 

breaks down rapidly because the difference between the single trajectories grows 

(Lan, 2006) exponentially. In contrast, if the initial ensemble is localized in the 

non-chaotic ‘island’ in phase space, the difference between the Newtonian and 

special-relativistic single trajectories only grows (Lan, 2006) linearly, and 

therefore it takes a very long time for the agreement between the single 

trajectories to break down. This means that the breakdown of agreement between 

the statistical predictions of the two theories, Newtonian and special-relativistic, is 

very fast in the chaotic case, as we saw in the first example, but very slow in the 

non-chaotic case. 

As an example of the non-chaotic case (this is my third example), for map 

parameters K = 0.9 and  = 10-7, the agreement between the Newtonian and 
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special-relativistic single trajectories with initial conditions X0 = 0.7 and P0 = 99.9 

takes about 108 kicks (Lan, 2006) to break down. The Newtonian and 

special-relativistic statistical predictions can thus agree for a very long time. 

Indeed, for initial standard deviations 
0X =

0P = 10-9, the means still agree to 6 

and 9 significant figures respectively for position and momentum at kick 1000. At 

the same kick, the accuracies I have for both the Newtonian and 

special-relativistic standard deviations are 3 and 4 significant figures respectively 

for position and momentum – the Newtonian and special-relativistic standard 

deviations are the same, 2.67×10-7 for position and 2.446×10-7 for momentum, 

within these accuracies. Similar results were found for other non-chaotic cases for 

other values of the parameter K, 0.5 and 1.5. 

Finally, the breakdown of agreement between the Newtonian and 

special-relativistic statistical predictions for the periodically-delta-kicked particle 

at low speed can be further understood from a broader perspective by comparing 

the Newtonian Liouville’s equation for the phase-space probability density 

function ρ(X,P,t) 
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with its special-relativistic counterpart 
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where the infinite sum in both equations is the series of periodic delta kicks with 

period T. For low speed, βP << 1, therefore 
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 
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          (2.13) 

in Eq. (2.12). The breakdown of agreement between the Newtonian and 

special-relativistic statistical predictions is therefore essentially due to the small 

β2P2/2 term in Eq. (2.12). 

 

2.3.2 Momentum diffusion 

 

In this section, I will present three examples to illustrate the general results. 

In all the examples presented here, the parameter  in the relativistic standard map 

[Eqs. (2.3) and (2.4)] is small, 10-7, and so the mean speed is low, at most about 

0.001% of the speed of light. 

If the initial ensemble is semi-uniformly distributed, where the initial 

positions X0 are uniformly distributed between 0 and 1 and all initial momentums 

are P0, then there is generally no breakdown of agreement between the Newtonian 
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and special-relativistic MSMD, which grow either linearly or as a power law from 

the outset. An example (this is my first example) is given in Fig. 2.11 for P0 = 

99.9 and K = 10.053, where the two MSMD grow linearly at close rates. 

In the second example, K is also 10.053, but the ensemble is initially 

Gaussian localized in phase space with means <X0> = 0.5 and <P0> = 99.9, and 

standard deviations 
0X =

0P = 10-12. Fig. 2.12 shows that the Newtonian and 

special-relativistic predictions for the MSMD are very close and fluctuating for 
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Figure 2.11. Newtonian (squares) and special-relativistic (diamonds) MSMD in 
the first example where the initial ensemble is semi-uniformly distributed. MSMD 
which cannot be resolved in accuracy is not plotted. 
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Figure 2.12. Newtonian (squares) and special-relativistic (diamonds) MSMD in 
the second example for the first 13 kicks (top plot) and from kick 13 to kick 53 
(bottom plot). MSMD which cannot be resolved in accuracy is not plotted. 
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the first 9 kicks, but, from kick 10 onwards, the MSMD predicted by the two 

theories disagree with each other completely. 

In the third example, the map parameter K and the means of the initial 

Gaussian ensemble are the same as those in the second example but the initial 

Gaussian ensemble is broader in both position and momentum with 

0X =
0P =10-7. In contrast to the result in the second example, Fig. 2.13 shows 

that there is no breakdown of agreement between the Newtonian and 

special-relativistic MSMD in this case. 

In the second example, the Newtonian and special-relativistic position 

probability densities are delocalized in the entire position interval at kick 13 and 

kick 15 respectively. In the third example, the position probability densities are 

both delocalized at kick 8. The MSMD results in the second and third examples 

before the position probability densities are delocalized can be understood as 

follows. In each theory, before the delocalization of the position probability 

density, the MSMD 

 
0

2 22 2 2
0 0 02

nn P n n PP P P P P P                (2.14) 

is dominated by 

2
00
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Figure 2.13. Newtonian (squares) and special-relativistic (diamonds) MSMD in 
the third example for the first 8 kicks (top plot) and from kick 8 to kick 53 
(bottom plot).  
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which is approximately  

2
00

2 2 PPPP nn          

since <PnP0>  <Pn><P0>. Moreover, the mean trajectory (<Xn>, <Pn>) of the 

ensemble is well-approximated by the central trajectory (Xn, Pn), that is, the single 

trajectory with the same initial conditions as the mean trajectory: X0 = <X0> and 

P0 = <P0>. Hence, the MSMD in each theory is approximately given by the 

square momentum displacement 

  2
00

22
0 2 PPPPPP nnn           (2.16) 

of the central trajectory, which is chaotic in the two examples, before the position 

probability density is delocalized – see Figs. 2.14 and 2.15. The initial 

fluctuations of the Newtonian and special-relativistic MSMD are therefore due to 

the fluctuations of the square momentum displacement of the corresponding 

chaotic central trajectory. Furthermore, the difference between the Newtonian and 

special-relativistic MSMD grows exponentially initially – see Figs. 2.16 and 

2.17 – because the difference between the Newtonian and special-relativistic 

central-trajectory square momentum displacements grows exponentially initially. 

In Fig. 2.16 (Fig. 2.17), the exponential growth constant of the MSMD difference 

(measured from kick 2 to kick 12 (7)) is 1.49 (1.97), which is slightly smaller 
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Figure 2.14. Newtonian (top plot) and special-relativistic (bottom plot) MSMD 
(squares), momentum variances (diamonds) and central-trajectory square 
momentum displacements (triangles) in the second example from initial until each 
ensemble is delocalized. 
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Figure 2.15. Newtonian (top plot) and special-relativistic (bottom plot) MSMD 
(squares), momentum variances (diamonds) and central-trajectory square 
momentum displacements (triangles) in the third example from initial until each 
ensemble is delocalized. 
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Figure 2.16. Difference between the Newtonian and special-relativistic MSMD in 
the second example. 
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Figure 2.17. Difference between the Newtonian and special-relativistic MSMD in 
the third example. Data which cannot be resolved in accuracy is not plotted. 
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(greater) than the Lyapunov exponents of 1.6 for the Newtonian and 

special-relativistic central trajectories. In the second example, the breakdown of 

agreement between the Newtonian and special-relativistic MSMD at kick 10 

before the delocalization of the position probability densities is therefore due to 

the breakdown of agreement between the Newtonian and special-relativistic 

central-trajectory square momentum displacements triggered by the breakdown of 

agreement between the Newtonian and special-relativistic central trajectories. In 

contrast, in the third example, there is no breakdown of agreement between the 

Newtonian and special-relativistic MSMD before the position probability 

densities are delocalized because the agreement between the Newtonian and 

special-relativistic central trajectories only breaks down at kick 10 after the 

position probability densities are both delocalized at kick 8. 

Generally, in each theory, after the position probability density is delocalized, 

the behavior of the MSMD calculated using an initially Gaussian ensemble is 

similar to the behavior of the MSMD calculated using an initially semi-uniform 

ensemble for the same parameter K, which is either linear growth or power-law 

growth. The linear growth rates or power-law exponents of the former MSMD 

and latter MSMD are close. In the second and third examples where K = 10.053, 

the growth is linear (see Figs. 2.11, 2.12 and 2.13). In the second example, 
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although the Newtonian and special-relativistic MSMD both grow linearly at 

close rates after the delocalization of the position probability densities, they start 

at different values and therefore the two MSMD remain different from one 

another. On the other hand, in the third example, the two MSMD remain close 

after the delocalization of the position probability densities because they grow 

linearly at close rates from close values. 

The second and third examples illustrate that, typically, the agreement 

between the MSMD predicted by the two theories breaks down if the initial 

Gaussian ensemble is well-localized (i.e., sufficiently localized) in phase space 

such that the Newtonian and special-relativistic position probability densities are 

delocalized after the breakdown of agreement between the Newtonian and 

special-relativistic central trajectories. The breakdown of agreement between the 

two MSMD occurs when the agreement between the two central trajectories 

breaks down and therefore is rapid if the two central trajectories are chaotic (as 

the second example shows) but very slow if the two central trajectories are 

non-chaotic (Lan, 2006). 

Since the MSMD can be written as, see Eq. (2.10), the MSMD at kick (n-1) 

plus a sum of correlation functions, if the MSMD predicted by the two theories 

agree with each other for the first (n-1) kicks and disagree completely from kick n 
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onwards, the Newtonian predictions for the sum of correlation functions and 

some/all of the correlation functions in the sum should disagree completely with 

the special-relativistic predictions for n, n+1, …. For instance, in the second 

example, since the two predictions for the MSMD disagree completely from kick 

10 onwards, the two predictions for the sum of correlation functions and some/all 

of the correlation functions in the sum should disagree completely for n  10. For 

example, the Newtonian and special-relativistic predictions for the sum of 

correlation functions for n = 10 are 0.31 and 0.11 respectively. In addition, Fig. 

2.18 shows, for example, that the Newtonian predictions for the correlation 

functions 

   999 uuiC ii   , where i = 0,…, 9, 

disagree completely with the special-relativistic predictions, except when i = 5 

and 9. 



      47 

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

i

C
9-
i(i

)

 
Figure 2.18. Comparison of Newtonian (squares) and special-relativistic 
(diamonds) correlation functions C9-i(i) versus kicks i for the second example. 
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Chapter 3 

Low-Speed Chaotic Dynamical System (II) – 

Scattering System 
 

3.1 Introduction  

 

In this chapter, I extend the comparison of the Newtonian and 

special-relativistic single-trajectory predictions for the low-speed model scattering 

system presented in (Lan and Borondo, 2011) to a comparison of statistical 

quantities which are calculated from the same parameters and initial ensemble of 

trajectories. In particular, I focus here on the position and momentum means, 

standard deviations and probability density functions, mean dwell time, and 

transmission and reflection coefficients. The dwell time is, for each trajectory in 

the ensemble, defined as (tout – tin) where tin is the time when the particle first 

enters the scattering region and tout is the time when the particle subsequently first 

exits the scattering region. The transmission coefficient (reflection coefficient) is 

defined as the ratio of the number of transmitted (reflected) particles to the total 

number of particles in the ensemble. A comparison of Newtonian and 
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special-relativistic statistical predictions has not yet been done for a low-speed 

scattering system. 

The model scattering system I have chosen to study allows 

sufficiently-accurate calculation of the statistical quantities because the 

time-evolution of each trajectory in the ensemble is described by an exact 

analytical map in both the Newtonian and special-relativistic frameworks. Details 

of the model scattering system and calculations are given next (Sec. 3.2), 

followed by the presentation and discussion of the results (Sec. 3.3). 

 

3.2 Calculation 

 

The scattering system consists of a particle of rest mass m0 moving in the 

one-dimensional potential well introduced by Beeker and Eckelt (1993): 

    220 1





 x
V

xV ,                         (3.1) 

which is periodically turned on only for an instant of time. The potential well is 

characterized by two parameters V0 and , where V0/ determines the depth of the 

well and  determines its asymptotic behavior. 

The Newtonian equations of motion for this periodically-delta-kicked 

scattering system are easily integrated exactly (Beeker and Eckelt, 1993) to yield 
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a mapping for the position x and momentum p from just before the nth kick to just 

before the (n+1)th kick:  

    222
01 1



 


nnnn xTxVpp ,                      (3.2) 

1
0

1   nnn p
m
Txx ,                                (3.3) 

where T is the kicking period. 

The corresponding special-relativistic equations of motion are also easily 

integrated exactly (Lan and Borondo, 2011) to produce a mapping for the position 

x and momentum p from just before the nth kick to just before the (n+1)th kick: 
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For both theories, I consider an initially Gaussian ensemble of trajectories 

centered in the mean values <x> and <p>, and with standard deviations x and p: 
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Each trajectory in the Newtonian (special-relativistic) ensemble is time-evolved 

using the map given by Eqs. (3.2) and (3.3) [Eqs. (3.4) and (3.5)]. For both 

theories, each statistical quantity is calculated by averaging over the ensemble of 

trajectories. First, the statistical quantity is calculated using 106 trajectories, where 

its accuracy is determined by comparing the 30-significant-figure calculation with 
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the quadruple-precision (35 significant figures) calculation. The statistical 

quantity is then recalculated using 107 trajectories where its accuracy is 

determined in the same manner. Finally, the accuracy of the statistical quantity is 

determined by comparing the 106-trajectories calculation with the 107-trajectories 

calculation. I used m0 = 1, T = 1, and c = 105 in all of our calculations. 

 

3.3 Results - Statistical predictions: Mean, standard 

deviation, probability distribution, mean dwell time, 

reflection and transmission coefficients 

 

In this section I present and discuss four examples illustrating the general 

results. In all cases, the mean speed is low, representing only 0.001% of the speed 

of light. 

In the first example, the parameters of the scattering potential well are taken 

as V0 = 8 and  = 4. The corresponding potential profile is plotted in Fig. 3.1. For 

these parameters, the scattering is chaotic, i.e., the scattering function has 

intertwining regular and irregular intervals down to all scales, from both the 

Newtonian (Beeker and Eckelt, 1993) and special-relativistic (Lan and Borondo, 
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Figure 3.1. Scattering potential well for V0 = 8 and  = 4 (solid line), and V0 = 2 
and  = 4 (dotted line). 

 

 

2011) perspectives. The means and standard deviations of the initially Gaussian 

ensemble are taken as <x> = -20, <p> = 1.2497 and x = p = 10-11. This initially 

localized ensemble is far from and to the left of the scattering region ranging from 

x = -4 to x = 4. 

Figure 3.2 shows that the Newtonian mean trajectory, i.e., mean position and 

mean momentum, agrees with the special-relativistic mean trajectory for the first 

35 kicks. The two mean trajectories are completely different, however, from kick 

36 onwards. This breakdown of agreement can be understood as follows. The  
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Figure 3.2. Newtonian (squares) and special-relativistic (diamonds) mean 
positions (top plot) and mean momentums (bottom plot) for the chaotic scattering 
case in the first example discussed in the text. 

 

 



      55 

Newtonian (special-relativistic) mean trajectory is well-approximated by the 

Newtonian (special-relativistic) single trajectory with the same initial conditions 

until the Newtonian (special-relativistic) ensemble is delocalized in phase space at 

kick 38 (kick 39). Since the agreement between the Newtonian and 

special-relativistic single trajectories breaks down earlier, at kick 36, the 

agreement between the Newtonian and special-relativistic mean trajectories 

therefore also breaks down at the same kick. Furthermore, the breakdown of 

agreement between the Newtonian and special-relativistic mean trajectories is 

rapid because the difference between them grows exponentially in the scattering 

region, like the growth of the difference between the Newtonian and 

special-relativistic single trajectories shown previously in (Lan and Borondo, 

2011). 

Figure 3.3 shows that the agreement between the Newtonian and 

special-relativistic standard deviations also breaks down at kick 36. Fig. 3.4 

shows that this rapid breakdown of agreement is due to the exponential growth of 

the difference between the Newtonian and special-relativistic standard deviations 

up to kick 38 while the ensembles are still in the scattering region. 

The mean dwell time, transmission coefficient and reflection coefficient  
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Figure 3.3. Newtonian (squares) and special-relativistic (diamonds) position 
standard deviations (top plot) and momentum standard deviations (bottom plot) 
for the chaotic scattering case in the first example. The Newtonian and 
special-relativistic standard deviations are not plotted before kick 33 because they 
are close to each other. 
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Figure 3.4. Difference between the Newtonian and special-relativistic standard 
deviations – for position (top plot), and momentum (bottom plot) – for the chaotic 
scattering case in the first example. The standard-deviation differences before 
kick 33 and at kick 34 are not shown because they cannot be resolved with the 
accuracy of our calculations. After the exponential growth, which ends at kick 38, 
the position-standard-deviation difference grows linearly from kick 50 onwards 
and the momentum-standard-deviation difference is essentially constant from kick 
60 onwards. 
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predicted by the two theories are also, remarkably, very different. Indeed, the 

Newtonian mean dwell time is 32.9 kicks, while the corresponding 

special-relativistic value is only 30.3 kicks. Even more striking is the difference in 

the transmission coefficients, since the Newtonian value of 0.57 is more than two 

times the special-relativistic one of 0.24. Similarly, for the reflection coefficient, 

the special-relativistic value of 0.75 is about two times the Newtonian value of 

0.42. Fig. 3.5 shows the different Newtonian and special-relativistic position 

 

 

 

Figure 3.5. Newtonian (shaded grey) and special-relativistic (bold line) position 
probability densities for the chaotic scattering case in the first example at kick 
160. 
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probability densities at kick 160 after the ensembles have exited the scattering 

region. 

In the second example, the scattering is also chaotic. All the parameters are 

the same as in the first example except that a broader initial Gaussian ensemble, 

both in position and momentum with x = p = 10-7, is used. In contrast to what 

happened in the previous example, there is no breakdown of agreement between 

the position and momentum means and standard deviations predicted by the two 

theories. In this example, when the Newtonian and special-relativistic ensembles 

delocalized in phase space at kick 32, the Newtonian and special-relativistic mean 

trajectories are still close to one another because the agreement between the 

Newtonian and special-relativistic single trajectories with the same initial 

conditions only breaks down sometime later at kick 36. The Newtonian and 

special-relativistic standard deviations at kick 32 are also still close to one another. 

Hence, since the Newtonian and special-relativistic delocalized phase-space 

distributions are close to one another at kick 32, the subsequent predictions of the 

means and standard deviations by the two theories continue to be close. 

Furthermore, the other statistical quantities predicted by the two theories are also 

close, in particular, they agree to at least 2 significant figures: the two theories 

predict 25 kicks for the mean dwell time, 0.39 for the transmission coefficient and 



      60 

0.60 for the reflection coefficient. 

These two examples of chaotic scattering illustrate that the statistical 

predictions of the two theories completely disagree if the initially Gaussian 

ensemble is well, i.e., sufficiently, localized in phase space, such that the 

Newtonian and special-relativistic ensembles delocalize after the agreement 

between the Newtonian and special-relativistic single trajectories, with the same 

initial conditions as the Newtonian and special-relativistic mean trajectories, 

breaks down. 

In the third example, the parameters of the scattering potential well are taken 

to be V0 = 2 and  = 4 – the corresponding potential profile has also been plotted 

in Fig. 3.1. For these values of the parameters, the scattering is non-chaotic, i.e., 

the scattering function varies regularly from both the Newtonian (Beeker and 

Eckelt, 1993) and special-relativistic (Lan and Borondo, 2011) perspectives. The 

means and standard deviations of the initially Gaussian ensemble are taken as <x> 

= -20, <p> = 1.2497 and x = p = 10-4. This choice initially localize the ensemble 

far from and to the left of the scattering region, which is in the range x = -3.5 to x 

= 3.5. In this case, the transmission and reflection coefficients predicted by the 

two theories are the same, and equal to 1 and 0, respectively. Both the Newtonian 

and special-relativistic ensembles are still localized in phase space when they are 
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far away from the scattering region on the other side at x 20 at kick 40. Fig. 3.6 

shows that when the Newtonian and special-relativistic ensembles are far away 

from the scattering region on the other side, the Newtonian and special-relativistic 

mean trajectories are still close to one another – this is because they are 

well-approximated by the corresponding single trajectories (with the same initial 

conditions) which are still also close to one another. The Newtonian and 

special-relativistic standard deviations are also close to one another – see Fig. 3.7. 

The mean dwell times from the two theories are also the same: 6 kicks. 

In the fourth and final example, the scattering is also non-chaotic. All the 

parameters are the same as in the third example except that the initial Gaussian 

ensemble is broader in both position and momentum with x = p = 10-2. In 

contrast to the previous example, the Newtonian and special-relativistic 

ensembles are already delocalized in phase space at kick 17 in the scattering 

region. The two ensembles are still close to one another when they delocalize, 

which means that there is no subsequent breakdown of agreement between the 

means and the standard deviations predicted by the two theories for the position 

and momentum. Furthermore, the transmission and reflection coefficients 

predicted by the two theories are the same, 1 and 0, respectively. The two 
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Figure 3.6. Newtonian (squares) and special-relativistic (diamonds) mean 
positions (top plot) and mean momentums (bottom plot) for the non-chaotic 
scattering case in the third example discussed in the text. 
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Figure 3.7. Newtonian (squares) and special-relativistic (diamonds) position 
standard deviations (top plot) and momentum standard deviations (bottom plot) 
for the non-chaotic scattering case in the third example. 
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predictions for the mean dwell time agree to at least 3 significant figures, they are 

both equal to 5.64 kicks. 

The third and fourth examples above illustrate that if the scattering is 

non-chaotic, there is no breakdown of agreement between the statistical 

predictions of the two theories. 
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Chapter 4 

Low-Speed Weak-Gravity Chaotic Dynamical 

System - Bouncing Ball System 

 

4.1 Introduction 

 

In this chapter, I study a low-speed weak-gravity system – the bouncing ball 

system (Tufillaro et al., 1986; Tufillaro et al., 1992) – to ascertain if the 

Relationships #2 and #3 in Sec. 1.2 are correct by comparing the Newtonian and 

special-relativistic single-trajectory and statistical predictions (in particular, the 

means, standard deviations and probability distributions for the position and 

velocity) with the corresponding general-relativistic predictions. Here, the 

gravitational field of the earth is modeled as the field due to a uniform sphere. 

Moreover, both elastic and inelastic collisions between the ball and table are 

considered. 

 The Newtonian map for the bouncing ball system is known (Tufillaro et al., 

1986; Tufillaro et al., 1992), however, the relativistic maps are unknown. To 

derive the general-relativistic map, I need to know the general-relativistic free fall 

motion of a particle – see the derivation in Sec. 4.2. The derivations of the 
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relativistic maps are given in Sec. 4.3. Details of the bouncing ball system, as well 

as the Newtonian and relativistic single-trajectory and statistical quantity 

calculations are given in Sec. 4.4, and the results are presented in Sec. 4.5. 

 

4.2 Newtonian and relativistic free-fall motion 

 

Here I consider the radial motion of a particle of mass m due to the 

gravitational field of a uniform sphere of mass M and radius R. 

In the Newtonian framework, the change in gravitational potential energy of 

the particle from an initial position r0 to a final position r is given by 

       0
0

1 1U U r U r GMm
r r
 

      
 

.         (4.1) 

If the distance travelled by the particle is small compared to r0, that is, |r - r0|/r0 

<<1, then 1/r is essentially given by 
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since higher-order terms involving (r - r0)/r0 are negligible. If the particle is 

initially near the surface of the sphere, that is, r0  R, then  

GM/r0
2  GM/R2 = g.             (4.3) 

Substituting Eqs. (4.2) and (4.3) into Eq. (4.1) reduces Eq. (4.1) to approximately 
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the change in gravitational potential energy of a particle in a uniform gravitational 

field 

    U  mgr- mgr0.             (4.4) 

The Newtonian position and velocity of the particle at time t are therefore given 

by the well-known equations: 

    2
0000 2

1 ttgttvrr  ,          (4.5) 

 00 ttgvv  .             (4.6) 

 In the special-relativistic framework, if |r - r0|/r0 <<1 and r0  R, Eqs. (4.2) 

and (4.3) reduce the change in gravitational potential energy of the particle to  
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.        (4.7) 

Solution of the special-relativistic equation of motion with the force derived from 

the gravitational potential energy U(r) in Eq. (4.7) yields (Srinivasa Rao, 1966; 

Lapidus, 1972a, 1972b) 
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for the position and velocity of the particle at time t. 

In the general-relativistic framework, the gravitational field outside the 

uniform sphere is described by the Schwarzschild metric (Landau and Lifshitz, 
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1975) in terms of the Schwarzschild coordinates (ct, r, θ, ) 
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where ds is the interval between neighboring events, τ is the proper time, and rs = 

2GM/c2 is the Schwarzschild radius. For purely radial motion (Srinivasa Rao, 

1966; Srinivasa Rao and Gopala Rao, 1974) along the line  = constant in the 

equatorial plane θ = π/2, the metric Eq. (4.10) is simplified, with d = dθ = 0, to 
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and the geodesic equations are reduced to 
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The local velocity (Landau and Lifshitz, 1975; Zel'dovich and Novikov, 1996) of 

the particle, measured by a local observer who is at rest at a particular 

Schwarzschild radial coordinate and is next to the particle, is 
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The integral of Eq. (4.12), which is given by 
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where k is a constant, and the integral of Eq. (4.13), which is given by Eq. (4.11), 
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together with the initial condition v = v0 at r = r0, lead to the following expression 

for dr/dt: 
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If |r - r0|/r0 <<1 and r0  R, substituting Eqs. (4.2) and (4.3) into Eq. (4.16) 

and integrating it with initial condition r = r0 at t = t0 yields the general-relativistic 

position of the particle at time t 
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                (4.17) 

In the limit of weak gravity (2gr/c2<<1 and 2gr0/c2<<1), Eq. (4.17) reduces to the 

special-relativistic Eq. (4.8). In the limit of weak gravity and low speed (v/c<<1, 

v0/c<<1 and g(t – t0)/c<<1), Eq. (4.17) reduces to the Newtonian Eq. (4.5). 

Substituting Eqs. (4.14), (4.2), (4.3) and (4.17) sequentially into Eq. (4.16) 

yields the general-relativistic velocity of the particle at time t, which is the same 

as the special-relativistic Eq. (4.9). In the limit of low speed, Eq. (4.9) reduces to 

the Newtonian Eq. (4.6). 
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4.3 Derivation of the Special-Relativistic and 

General-Relativistic Maps 

 

Following (Tufillaro et al., 1986; Tufillaro et al., 1992), the earth is assumed 

to be a uniform sphere of radius R. Furthermore, in between impacts with the 

table, the ball, which is initially close to the earth’s surface (r0  R), undergoes 

free-fall motion along the radial direction where the distance it travels |r - r0| is 

assumed small compared to its initial position r0 (|r - r0|/r0 <<1). The relativistic 

position and velocity of the ball between impacts (which are derived in Sec. 4.2) 

are needed in the derivations of the relativistic maps. In the derivations, it is 

convenient to transform the position r of the ball, which is measured relative to 

the center of the earth, to y: y = r - RTLP, where RTLP is the distance from the 

center of the earth to the table’s lowest position. The table’s position 

    1sin 0  tAts  is measured relative to RTLP. 

In between the kth and (k+1)th impacts, the ball moves with initial velocity 

vk and position yk just after the kth impact. The ball’s initial position yk is the same 

as the table’s position  sin 1kA      just after the kth impact, where 

0  kk t  is the table’s phase and tk is the time just after the kth impact. In the 

general-relativistic framework, the ball’s position at time t after the kth impact is 
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[based on Eq. (4.17) in Sec. 4.2] 
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(4.18) 

and the ball’s velocity at time t after the kth impact is [based on Eq. (4.9) in Sec. 

4.2] 
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Setting the difference between the ball’s position y(t) [Eq. (4.18)] and table’s 

position     1sin 0  tAts at the (k+1)th impact to zero yields the 

impact-phase map (the map is given in the next section).  

If the collision between the ball and table is inelastic, 1' kv  and 1kv , which 

are respectively the ball’s velocity just before and just after the (k+1)th impact in 

the table’s reference frame, are related through 

 ' 11   kk vv              (4.20) 

where α (0 < α < 1) is the coefficient of restitution. α = 1 if the collision is elastic. 

The ball’s velocity just before and just after the (k+1)th impact in the ground’s 

reference frame are respectively 
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where 1ku  is the table’s velocity at the (k+1)th impact in the ground’s reference 
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frame. Solving for  1' kv  and 1kv  from Eq. (4.21) and substituting into Eq. 

(4.20) yields the velocity map (the map is also given in the next section). The 

expression for 1' kv  is obtained by substituting 1kt t   into Eq. (4.19).  

In the derivation of the special-relativistic map, Eq. (4.18) is replaced by the 

special-relativistic position of the ball between the kth and (k+1)th impacts based 

on the special-relativistic Eq. (4.8) in Sec. 4.2. In the derivation (Tufillaro et al., 

1986; Tufillaro et al., 1992) of the Newtonian map, the Newtonian Eqs. (4.5) and 

(4.6) in Sec. 4.2 were utilized to obtain the position and velocity of the ball 

between the kth and (k+1)th impacts, and Eq. (4.21) is used without the terms 

involving c2. 

 

4.4 Calculation 

 

The bouncing ball system (Tufillaro et al., 1986; Tufillaro et al., 1992) 

consists of a ball bouncing repeatedly on a table which is oscillating sinusoidally 

with amplitude A and frequency ω. The impact between the ball and the table is 

instantaneous, where the coefficient of restitution α (0 ≤ α ≤ 1) measures the 

kinetic energy loss of the ball at each impact: the impact is elastic if α = 1, 

inelastic if α < 1. The table is not affected by the impact because the table’s mass 
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is much larger than the ball’s mass. In between impacts, the ball undergoes 

free-fall motion due to the gravitational field of the earth, which is assumed to be 

a uniform sphere.  

In the Newtonian framework, the dynamics of the bouncing ball is described 

by the two-dimensional map derived by Tufillaro and co-workers (1986, 1992). 

Following (Tufillaro et al., 1986; Tufillaro et al., 1992), I derive the 

special-relativistic map and general-relativistic map in terms of the ball’s velocity 

v and the table’s phase θ just after each impact. The table’s phase is given by (ωt 

+ θ0) modulus 2π. I will refer to the table’s phase just after each impact as the 

impact phase. My derivations (see Secs. 4.2 and 4.3) of the relativistic maps for 

the bouncing ball follow the same steps as the derivation (Tufillaro et al., 1986; 

Tufillaro et al., 1992) of the Newtonian map.  

In the Newtonian framework, the dynamics of the bouncing ball is (Tufillaro 

et al., 1986; Tufillaro et al., 1992) described by the impact-phase map 
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and the velocity map 
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where 2g GM R , M and R are respectively the mass and radius of the earth, 
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and G is the gravitational constant. 

 In the special-relativistic framework, the impact-phase map is 
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(4.24) 

where 
c
vk

k  . The velocity map is 
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where  11 cos   kk Au   is the table’s velocity just after the (k+1)th impact, 

and 
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is the ball’s velocity just before the (k+1)th impact. 

 In the general-relativistic framework, the impact-phase map is 
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where the constant RTLP is the distance between the table’s lowest position and the 
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center of the earth. The velocity map is also given by Eq. (4.25). 

The general-relativistic map [Eqs. (4.26) and (4.25)] is approximately the 

same as the special-relativistic map [Eqs. (4.24) and (4.25)] if gravity is weak 

[2g(RTLP + y)/c2<<1 and 2g(RTLP + y0)/c2<<1], where y is the ball’s position 

relative to RTLP. And the general-relativistic map is approximately the same as the 

Newtonian map [Eqs. (4.22) and (4.23)] if the ball’s speed and table’s speed are 

low [v/c<<1, v0/c<<1, g(t – t0)/c<<1 and u/c<<1] and gravity is weak. Furthermore, 

the special-relativistic map is approximately the same as the Newtonian map if the 

ball’s speed and table’s speed are low. 

To time-evolve the Newtonian and relativistic trajectories, the impact-phase 

maps Eq. (4.22), Eq. (4.24) and Eq. (4.26), which are implicit algebraic equations 

for θk+1, must be solved numerically by finding the zero of the function on the left 

side of the equation given θk and vk. I used Brent’s method for this purpose. First, 

each trajectory is calculated in quadruple precision (35 significant figures) with a 

tolerance of 10-30 for the zeros. The trajectory is then recalculated in quadruple 

precision but using a smaller tolerance of 10-32 for the zeros. Finally, the accuracy 

of the trajectory is determined by the standard method (Lichtenberg and 

Lieberman, 1983) of comparing the less-accurate calculation (10-30-tolerance) 

with the more-accurate calculation (10-32-tolerance). For example, if the 
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Newtonian velocity is 7.123456789… from the 10-30-tolerance calculation and 

7.123456799… from the 10-32-tolerance calculation, then it is accurate to 8 

significant figures, i.e., 7.1234567. I used g = 981 cm/s2, c = 31010 cm/s, and 

RTLP = 6.4108 cm (mean radius of the Earth). 

The trajectory generated by each of the three maps can be chaotic. A 

trajectory is defined (Sprott, 2003) as chaotic if it exhibits sensitive dependence 

on initial conditions, that is, the distance between the trajectory and another 

initially-nearby trajectory from the same theory grows, on average, exponentially 

for a short time, where the exponential growth constant is not exactly equal to but 

close to the Lyapunov exponent which is a long-time asymptotic quantity. To 

determine if a trajectory is chaotic, I inspect the trajectory in phase space, check 

for sensitivity of the trajectory to initial conditions and calculate (Sprott, 2003) 

the largest Lyapunov exponent to see if it is positive. 

As for the statistical quantities, they are calculated as follows. For each 

theory, the ensemble of trajectories is initially Gaussian distributed in position and 

velocity with means <y0> and <v0>, and standard deviations 
0y  and 

0v : 
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Each trajectory in the Newtonian (relativistic) ensemble is time-evolved using the 

Newtonian (relativistic) impact-phase map and velocity map. For each theory, the 
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mean trajectory, i.e., mean position and mean velocity, just after each impact is 

calculated from the ensemble of trajectories. First, the mean trajectory is 

calculated using 106 trajectories in quadruple precision, where the accuracy of the 

10-30-tolerance calculation is determined by comparison with the 10-32-tolerance 

calculation. The mean trajectory is then recalculated using 107 trajectories with 

the same accuracy determination. Finally, the accuracy of the mean trajectory is 

determined by comparing the 106-trajectories calculation with the 107-trajectories 

calculation. The position and velocity standard deviations and probability density 

functions are calculated in the same manner. 

In the following results section, instead of reporting the impact phase θ, i.e., 

the table’s phase just after each impact, I report the ball’s position (which is also 

the table’s position) y = A[sin(θ) + 1] just after each impact, together with the 

ball’s velocity v just after each impact, when comparing the predictions of the 

three theories. 

 

4.5 Results 

4.5.1 Single-trajectory predictions 

 

Three examples are presented and discussed to illustrate the general results. 
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In all three examples, the ball’s speed and table’s speed remained low (about 

10-10c), and gravity is weak (2g(RTLP + y) is about 10-9c2). 

In the first two examples, the system is dissipative with α = 0.5. In both 

examples, the initial conditions are 0.02022 cm for the ball’s position and 8.17001 

cm/s for the ball’s velocity. The table’s frequency (ω/2π) is 60 Hz, but the table’s 

amplitude A is slightly different: 0.0102 cm in the first example, 0.012 cm in the 

second example.  

 In the first example, the Newtonian, special-relativistic and 

general-relativistic trajectories are all non-chaotic. Fig. 4.1 shows that the three 

trajectories are close to one another and they converge to period-one fixed-point 

attractors which are almost identical.  

In the second example, the Newtonian, special-relativistic and 

general-relativistic trajectories, which are plotted in phase space in the top part of 

Figs. 4.2, 4.3 and 4.4 respectively, are all chaotic as evidenced by the sensitivity 

to initial conditions (shown in the bottom part of Figs. 4.2, 4.3 and 4.4 

respectively) and positive largest Lyapunov exponent of 0.34 for each trajectory. 

Fig. 4.5 shows that the agreement between the special-relativistic trajectory and 

general-relativistic trajectory breaks down very quickly at impact 55, and the 
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Figure 4.1. Comparison of the Newtonian (squares), special-relativistic 
(diamonds) and general-relativistic (triangles) positions (top plot) and velocities 
(bottom plot) for the non-chaotic first example. 
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Figure 4.2. Top: Chaotic Newtonian phase-space trajectory, plotted for the first 
210 impacts, from the second example. Bottom: Natural-log of the magnitude of 
the difference [position difference (squares), velocity difference (diamonds)] 
between the chaotic Newtonian trajectory and another Newtonian trajectory 
which differed initially by 10-14 in position and 10-12 in velocity. Straight-line fits 
up to impact 84 are also plotted. 
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Figure 4.3. Top: Chaotic special-relativistic phase-space trajectory, plotted for the 
first 1000 impacts, from the second example. Bottom: Natural-log of the 
magnitude of the difference [position difference (squares), velocity difference 
(diamonds)] between the chaotic special-relativistic trajectory and another 
special-relativistic trajectory which differed initially by 10-14 in position and 10-12 
in velocity. Straight-line fits up to impact 84 are also plotted. 
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Figure 4.4. Top: Chaotic general-relativistic phase-space trajectory, plotted for the 
first 1000 impacts, from the second example. Bottom: Natural-log of the 
magnitude of the difference [position difference (squares), velocity difference 
(diamonds)] between the chaotic general-relativistic trajectory and another 
general-relativistic trajectory which differed initially by 10-14 in position and 10-12 
in velocity. Straight-line fits up to impact 79 are also plotted. 
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Figure 4.5. Comparison of the Newtonian (squares), special-relativistic 
(diamonds) and general-relativistic (triangles) positions (top plot) and velocities 
(bottom plot) for the chaotic second example. 



      85 

agreement between the Newtonian trajectory and general-relativistic trajectory 

also breaks down at impact 55. The breakdown of agreement between the 

Newtonian and special-relativistic trajectories (not shown in Fig. 4.5) occurs later, 

at impact 95.  

Figures 4.6 and 4.7 show, respectively, that the rapid breakdown of 

agreement between the special-relativistic and general-relativistic trajectories and 

between the Newtonian and general-relativistic trajectories are due to the, on 

average, exponential growth – that is, exponential growth with small 

fluctuations – of the magnitude of the difference between the two trajectories for 

at least the first 61 impacts: 

 1
1

1  nc
n eyy                            (4.28) 

2 ( 1)
1

c n
nv v e                                       (4.29) 

where n = 1,2,… . In both cases, the exponential growth constants for the position 

difference in Eq. (4.28) and velocity difference in Eq. (4.29) are close to each 

other: c1 ≈ 0.360 and c2 ≈ 0.363. This exponential growth constant of about 0.36 is 

close to (i) the exponential growth constant for the magnitude of the difference 

(plotted in Figs. 4.2, 4.3 and 4.4) between the chaotic trajectory and another 

initially-nearby trajectory from the same theory – the growth constants are 0.31, 
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Figure 4.6. Natural-log of the magnitude of the difference between the 
special-relativistic and general-relativistic positions (squares) and velocities 
(diamonds) for the chaotic second example. Straight-line fits up to impact 61 are 
also plotted. 
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Figure 4.7. Natural-log of the magnitude of the difference between the Newtonian 
and general-relativistic positions (squares) and velocities (diamonds) for the 
chaotic second example. Straight-line fits up to impact 61 are also plotted. 
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0.31 and 0.34, respectively, for the Newtonian, special-relativistic and 

general-relativistic case, where the two nearby trajectories differed initially by 

10-14 in position and 10-12 in velocity, and (ii) the largest Lyapunov exponent of 

0.34 for the Newtonian, special-relativistic and general- relativistic chaotic 

trajectories. I note that the magnitude of the difference between the Newtonian 

and special-relativistic trajectories also grows exponentially on average, 

consistent with the results in (Lan, 2006, 2009a; Lan and Cheng, 2010; Lan and 

Borondo, 2011) for low-speed systems, with growth constants c1 ≈ 0.319 and c2 ≈ 

0.320. 

 In the non-dissipative case, where α = 1, the agreement between the 

special-relativistic and Newtonian chaotic trajectories with the general-relativistic 

chaotic trajectory also breaks down exponentially fast. The agreement also breaks 

down for non-chaotic trajectories but it takes a much longer time to occur because 

the difference between the trajectories only grows linearly. Fig. 4.8 illustrates this 

linear growth for the difference between the Newtonian and general-relativistic 

quasiperiodic trajectories (the trajectories are plotted in phase space in Fig. 4.9) – 

in this third example, the table’s frequency and amplitude are 60 Hz and 0.005 cm, 

and the ball’s initial position and velocity are 0.00991 cm and 8.17001 cm/s. The 
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Figure 4.8. Magnitude of the difference between the Newtonian and 
general-relativistic positions (top plot) and velocities (bottom plot) for the 
non-chaotic third example. Straight-line fits are also plotted. 
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Figure 4.9. Quasiperiodic Newtonian, special-relativistic and general-relativistic 
phase-space trajectories, plotted for the first 1000 impacts, from the non-chaotic 
third example. The three trajectories are still close to one another at impact 1000 
and thus they are indistinguishable in the plot. 

 

 

linear growth rates of the magnitude of the position difference and velocity 

difference are 210-15 cm and 410-12 cm/s, respectively, per impact. It would thus 

require 2.51010 (!) impacts for the magnitude of the velocity difference to grow 

to 0.1 cm/s. Similar linear growth rates were found for the difference between the 

special-relativistic and general-relativistic quasiperiodic trajectories in this 

example (the special-relativistic trajectory is also plotted in Fig. 4.9).  

In general, the breakdown of agreement between the special-relativistic and 
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general-relativistic trajectories for weak gravity, and between the Newtonian and 

general-relativistic trajectories for low speed and weak gravity can be further 

understood as follows. 

Firstly, rewriting the general-relativistic impact-phase map [Eq. (4.26)] and 

taking the natural logarithm on both sides yield 
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For weak gravity, we have 2g{RTLP + A[sin(θk) + 1]}/c2<<1 and this implies that 

the factor {1 – 2g[RTLP + A[sin(θk) + 1]]/c2}-1 in the logarithmic function on the 

left of Eq. (4.30) is approximately 1. Furthermore, for weak gravity, we have 

2g{RTLP + A[sin(θk+1) + 1]}/c2<<1, therefore we can use the expansion ln(1 + x) = 

x – x2/2 for the logarithmic function on the left of Eq. (4.30) since |x|<<1. 

Consequently, Eq. (4.30) becomes 
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               (4.31) 

The approximate general-relativistic impact-phase map given by Eq. (4.31) differs 

from the special-relativistic impact-phase map [Eq. (4.24)] by the last term which 
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involves 1/c2. The general-relativistic velocity map is exactly the same as the 

special-relativistic velocity map [Eq. (4.25)]. The breakdown of agreement 

between the special-relativistic and general-relativistic trajectories is thus 

essentially due to the small 1/c2 term in Eq. (4.31). 

Secondly, for weak gravity, the factor {1 – 2g[RTLP + A[sin(θk) + 1]]/c2} in 

the general-relativistic impact-phase map [Eq. (4.26)] is approximately 1. 

Additionally, for low speed, we have g(θk+1 – θk )/(cω)<<1, therefore we can use 

the expansion ex = 1 + x + x2/2 for the exponential functions in the term with 

exponent -2 in Eq. (4.26) since |x|<<1. Furthermore, for low speed, we have 

vk/c<<1, and hence we can expand the resulting (1 + x)-2 term as 1 – 2x + 3x2 

since |x|<<1. For low speed and weak gravity, Eq. (4.26) is thus approximately 
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Moreover, for low speed, v’k+1/c<<1 and uk+1/c<<1, and so the general-relativistic 

velocity map, which is exactly the same as the special-relativistic velocity map 

[Eq. (4.25)], is approximately 

  111 '1   kkk vuv  .          (4.33) 

Furthermore, for low speed, we can use the expansion ex = 1 + x + x2/2 for the 

exponential functions in v’k+1 (the expression for v’k+1 is given after Eq. 4.25) 
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since |x|<<1, and then expand the resulting (1 + x)-1 term as (1 – x) since |x|<<1. 

Substituting the resulting approximate expression for v’k+1 and uk+1 = Acos(θk+1) 

into Eq. (4.33) yields 
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,    (4.34) 

where terms involving 1/c4 are omitted since they are very small. The 

approximate general-relativistic velocity map given by Eq. (4.34) differs from the 

Newtonian velocity map [Eq. (4.23)] by the last term which involves 1/c2. 

Similarly, the approximate general-relativistic impact-phase map given by Eq. 

(4.32) differs from the Newtonian impact-phase map [Eq. (4.22)] by the last term 

which involves 1/c2. The breakdown of agreement between the Newtonian and 

general-relativistic trajectories is therefore essentially due to the small 1/c2 term in 

Eq. (4.32) and Eq. (4.34). 

 

4.5.2 Statistical predictions : Mean, standard deviation and 

probability distribution 

 

In this section, I will present four examples to illustrate the general results. In 

the numerical calculations, I also used g = 981 cm/s2, c = 31010 cm/s, and RTLP = 
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6.4108 cm (mean radius of the Earth). For all examples, the mean velocities of 

the ball and table remain low at about 10-10c, i.e., about 10-8 percent of the speed 

of light c, and the gravitational field is weak, about 10-9c2. 

In the first three examples, the system is dissipative with  = 0.5. In the first 

example, the ensemble in each theory is initially Gaussian distributed with means 

<y0> = 0.02022 cm and <v0> = 8.17001 cm/s, and standard deviations 
0y  = 10-6 

cm and 
0v  = 10-6 cm/s. The amplitude A and frequency /2 of the table’s 

oscillation are, respectively, 0.0102 cm and 60 Hz. For the choice of parameters 

and initial conditions in this example, the trajectories in the ensembles are 

non-chaotic. Fig. 4.10 shows that the mean trajectories (mean positions and mean 

velocities) predicted by the three theories agree with each other and converge to 

mean values which are almost identical. Similarly, there is no breakdown of 

agreement between the position and velocity standard deviations predicted by the 

three theories (see Fig. 4.11). This result is also true when initial Gaussian 

ensembles with smaller widths – for example, the position and velocity standard 

deviations are of the order 10-10 or 10-13 – are used in the numerical calculations. 

In the second example, all the parameters and initial conditions are the same 

as the first example except that the table’s amplitude is 0.012 cm and the position 
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Figure 4.10. Newtonian (squares), special-relativistic (diamonds) and 
general-relativistic (triangles) mean positions (top plot) and mean velocities 
(bottom plot) for the non-chaotic first example. 
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Figure 4.11. Natural-log of the Newtonian (squares), special-relativistic 
(diamonds) and general-relativistic (triangles) position standard deviations (top 
plot) and velocity standard deviations (bottom plot) for the non-chaotic first 
example. 
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and velocity standard deviations of the initial Gaussian ensemble are 10-13 cm and 

10-13 cm/s respectively. In this example, the trajectories in the ensembles are 

chaotic. Fig. 4.12 shows that the Newtonian, special-relativistic and 

general-relativistic mean trajectories are close to each other for the first 54 

impacts. However, the Newtonian and special-relativistic mean trajectories 

disagree completely with the general-relativistic mean trajectory from impact 55 

onwards. The breakdown of agreements can be understood as follows. In each 

theory, the mean trajectory is well-approximated by the central trajectory, that is, 

the single trajectory with the same initial conditions as the mean trajectory, until 

the velocity probability density is delocalized which triggers the delocalization of 

the position probability density. The Newtonian, special-relativistic and 

general-relativistic velocity probability densities are delocalized at, respectively, 

impact 70, 70 and 67 – see Figs. 4.13, 4.14 and 4.15 respectively. In each theory, 

before the delocalization, the position and velocity standard deviations grow, on 

average, exponentially with grow constants close to the largest Lyapunov 

exponent of 0.34 for the central trajectory. The agreement between the 

special-relativistic (Newtonian) and general-relativistic central trajectories breaks 

down at impact 55, and, therefore, the agreement between the special-relativistic 
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Figure 4.12. Newtonian (squares), special-relativistic (diamonds) and 
general-relativistic (triangles) mean positions (top plot) and mean velocities 
(bottom plot) for the chaotic second example. 
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Figure 4.13. Natural-log of the Newtonian position standard deviations (squares) 
and velocity standard deviations (diamonds) for the chaotic second example. 
Straight-line fits up to impact 70 are also plotted. 
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Figure 4.14. Natural-log of the special-relativistic position standard deviations 
(squares) and velocity standard deviations (diamonds) for the chaotic second 
example. Straight-line fits up to impact 70 are also plotted. 
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Figure 4.15. Natural-log of the general-relativistic position standard deviations 
(squares) and velocity standard deviations (diamonds) for the chaotic second 
example. Straight-line fits up to impact 67 are also plotted. 

 

 

(Newtonian) and general-relativistic mean trajectories also breaks down at impact 

55. Moreover, Fig. 4.16 (Fig. 4.17) shows that the difference between the 

special-relativistic (Newtonian) and general-relativistic mean trajectories grows, 

on average, exponentially, at least up to impact 61 because the difference between 

the special-relativistic (Newtonian) and general-relativistic central trajectories 

grows exponentially on average. All of the exponential growth constants of the 

mean-trajectory differences are also close to the largest Lyapunov exponent of 
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Figure 4.16. Natural-log of the magnitude of the difference between the 
special-relativistic and general-relativistic mean positions (squares) and mean 
velocities (diamonds) for the chaotic second example. Straight-line fits up to 
impact 61 are also plotted. 
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Figure 4.17. Natural-log of the magnitude of the difference between the 
Newtonian and general-relativistic mean positions (squares) and mean velocities 
(diamonds) for the chaotic second example. Straight-line fits up to impact 61 are 
also plotted. 
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0.34 for the central trajectory in each theory. The exponential growth of difference 

between the central trajectories caused the rapid breakdown of agreement between 

the mean trajectories. 

Furthermore, Fig. 4.18 shows that the Newtonian and special-relativistic 

standard deviations disagree completely with the general-relativistic standard 

deviations from impact 52 onwards. The rapid breakdown of agreement between 

the special-relativistic (Newtonian) and general-relativistic standard deviations is 

due to the, on average, exponential growth of the difference between the 

special-relativistic (Newtonian) and general-relativistic standard deviations at least 

up to impact 61, see Fig. 4.19 (Fig. 4.20). In both figures, the exponential growth 

constants of the position and velocity standard-deviation differences are, 

respectively, 0.74 and 0.72, which are measured from impact 32 to impact 61 (the 

standard-deviation differences before impact 32 cannot be resolved with the 

accuracy I have for the standard deviations). These exponential growth constants 

are about two times the largest Lyapunov exponent of 0.34 for the central trajectory 

in each theory. Fig. 4.21 (Fig. 4.22) shows the different special-relativistic 

(Newtonian) and general-relativistic probability densities at impact 55. 

In the second example, similar rapid breakdown of agreement occur between  
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Figure 4.18. Newtonian (squares), special-relativistic (diamonds) and 
general-relativistic (triangles) position standard deviations (top plot) and velocity 
standard deviations (bottom plot) for the chaotic second example. The Newtonian 
and relativistic standard deviations before impact 30 are not plotted because they 
are still close to each other. 



      103 

-35

-30

-25

-20

-15

-10

-5

0

30 40 50 60 70 80 90 100

impact

ln
(d

iff
er

en
ce

 in
 s

. d
.)

   

Figure 4.19. Natural-log of the absolute value of the difference between the 
special-relativistic and general-relativistic position standard deviations (squares) 
and velocity standard deviations (diamonds) for the chaotic second example. 
Straight-line fits up to impact 61 are also plotted. The standard-deviation 
differences before impact 32 cannot be resolved with the accuracy I have for the 
special-relativistic and general-relativistic standard deviations. 
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Figure 4.20. Natural-log of the absolute value of the difference between the 
Newtonian and general-relativistic position standard deviations (squares) and 
velocity standard deviations (diamonds) for the chaotic second example. 
Straight-line fits up to impact 61 are also plotted. The standard-deviation 
differences before impact 32 cannot be resolved with the accuracy I have for the 
Newtonian and general-relativistic standard deviations. 
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Figure 4.21. Special-relativistic (shaded grey) and general-relativistic (bold line) 
position probability densities (top plot) and velocity probability densities (bottom 
plot) for the chaotic second example at impact 55. 
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Figure 4.22. Newtonian (shaded grey) and general-relativistic (bold line) position 
probability densities (top plot) and velocity probability densities (bottom plot) for 
the chaotic second example at impact 55. 
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the Newtonian and special-relativistic mean trajectories and standard deviations. 

However, in order to see the breakdown of agreements, the initial Gaussian 

ensemble must be smaller in width, on the order of 10-17. 

In the third example, all the parameters and initial conditions are the same as 

in the second example, except that the position and velocity standard deviations of 

the initial Gaussian ensemble are larger, i.e., 10-10 cm and 10-10 cm/s respectively. 

The trajectories in the ensembles are also chaotic. However, in contrast to the 

second example, there is no breakdown of agreement between the 

special-relativistic (Newtonian) and general-relativistic mean trajectories and 

standard deviations. In this example, when the special-relativistic (Newtonian) 

and general-relativistic phase-space distributions are both delocalized at impact 

49 (the delocalization occurs first for the velocity at impact 48 followed by the 

position delocalization at the next impact), the special-relativistic (Newtonian) 

and general-relativistic mean trajectories are still close to each other, because, 

recall from the second example, the agreement between the special-relativistic 

(Newtonian) and general-relativistic central trajectories only breaks down later at 

impact 55. Similarly, at impact 49, the special-relativistic (Newtonian) and 

general-relativistic standard deviations are also still close to one another. The 

special-relativistic (Newtonian) and general-relativistic means and standard 
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deviations therefore remain close to each other at subsequent impacts since the 

special-relativistic (Newtonian) and general-relativistic delocalized phase-space 

distributions at impact 49 are close to each other.  

Recall, in the chaotic second example (with smaller initial standard 

deviations), the special-relativistic (Newtonian) and general-relativistic velocity 

probability densities delocalize after the agreement between the 

special-relativistic (Newtonian) and general-relativistic central trajectories breaks 

down. However, in the chaotic third example (with larger initial standard 

deviations), the special-relativistic (Newtonian) and general-relativistic velocity 

probability densities delocalize before the agreement between the 

special-relativistic (Newtonian) and general-relativistic central trajectories breaks 

down. The chaotic second and third examples therefore show that in order for the 

special-relativistic (Newtonian) and general-relativistic statistical predictions to 

break down, the initial Gaussian ensemble must be sufficiently well-localized, 

that is, the standard deviations must be sufficiently small such that the 

special-relativistic (Newtonian) and general-relativistic velocity probability 

densities delocalize after the agreement between the special-relativistic 

(Newtonian) and general-relativistic central trajectories breaks down. 

If the system is conservative ( = 1), the agreement between the 
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special-relativistic (Newtonian) and general-relativistic predictions for the means 

and standard deviations can break down in both the chaotic and non-chaotic case. 

For the breakdown of agreement to occur, the initial Gaussian ensemble must be 

sufficiently well-localized such that the velocity probability densities delocalize 

after the agreement between central trajectories breaks down. In the chaotic case, 

the breakdown of agreement is rapid because the difference between the central 

trajectories grows exponentially, like the dissipative chaotic second example. But 

in the non-chaotic case, the breakdown of agreement takes a very long time to 

occur because the difference between the central trajectories only grows linearly - 

the fourth example illustrate this result, where the table is oscillating with 

amplitude 0.005 cm and frequency 60 Hz, and the means and standard deviations 

of the initial Gaussian ensemble are: <y0> = 0.00991 cm, <v0> = 8.17001 cm/s, 

0y  = 10-6, 
0v  = 10-6 cm/s. In this example, the mean trajectories predicted by 

the three theories are still very close to one another at impact 500 – the three mean 

positions and mean velocities still agree to 6 and 6 significant figures respectively. 

Furthermore, at the same kick, the standard deviations predicted by the three 

theories are also very close to each other – the standard deviations still agree to 3 

and 2 significant figures, respectively, for position and velocity. 
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Chapter 5 

Summary and Discussion 
 

First, the Newtonian and special-relativistic statistical predictions for the 

mean, the standard deviation and the probability density function of the position 

and momentum, as well as the mean square momentum displacement were 

compared for the periodically-delta-kicked particle at low speed in Chapter 2. 

Contrary to expectation, I found that the statistical predictions, which were 

calculated from the same parameters and initial Gaussian ensemble of trajectories, 

do not always agree if the initial ensemble is sufficiently well-localized in phase 

space. Moreover, the breakdown of agreement is very fast if the trajectories in the 

ensemble are chaotic, but very slow if the trajectories in the ensemble are 

non-chaotic. 

Furthermore, I also compared the statistical dynamical quantities – position 

and momentum means, standard deviations and probability density functions, and 

the mean dwell time, and transmission and reflection coefficients – calculated 

from an initially Gaussian ensemble of trajectories using NM and SRM for a 

low-speed scattering system in Chapter 3. I also found that the statistical 

predictions made by the two theories do not always agree as conventionally 
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expected. In particular, the predictions are radically different if the scattering is 

chaotic and the initial ensemble is well localized in phase space. There is no 

breakdown of agreement between the two predictions if the scattering is 

non-chaotic. 

Finally, I showed, contrary to expectation, in Chapter 4 that the 

single-trajectory and statistical dynamical quantities (in particular, the mean, 

standard deviation and probability density function for position and velocity) 

predicted by GRM for a low-speed weak-gravity bouncing ball system are not 

always well-approximated by the corresponding quantities predicted by SRM and 

NM for the same parameters and initial conditions. If the system is dissipative, the 

breakdown of agreement occurs for chaotic trajectories only. If the system is 

non-dissipative, the breakdown of agreement occurs for chaotic trajectories and 

non-chaotic trajectories. The agreement breaks down slowly in the non-chaotic 

case but rapidly in the chaotic case.  

My finding raises three important fundamental questions in physics: When 

the 

i. Newtonian and special-relativistic statistical predictions are completely 

different for a low-speed system,  

ii. special-relativistic and general-relativistic single-trajectory and statistical 
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predictions are completely different for a weak-gravity system,  

iii. Newtonian and general-relativistic single-trajectory and statistical 

predictions are completely different for a low-speed weak-gravity system, 

which of the two predictions is empirically correct? Since special relativity and 

general relativity continue to be successfully tested (see (Ball, 2004; Pospelov and 

Romalis, 2004; Cho, 2005) and (Stairs, 2003; Will, 2005, 2006) for reviews of the 

experimental tests) in recent times, we expect the general-relativistic 

(special-relativistic) predictions to be empirically-correct for weak-gravity and 

low-speed weak-gravity (low-speed) systems. This implies that (i) 

special-relativistic mechanics must generally be used, instead of Newtonian 

mechanics, to correctly study the dynamics of a low-speed system, (ii) 

general-relativistic mechanics must generally be used, instead of 

special-relativistic mechanics, to correctly study the dynamics of a weak-gravity 

system, and (iii) general-relativistic mechanics must generally be used, instead of 

Newtonian mechanics, to correctly study the dynamics of a low-speed 

weak-gravity system. These paradigm shifts could potentially lead to new 

understanding and discoveries in these dynamical systems. 
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Text S1. Derivation of the special-relativistic and general-relativistic maps. 

Following [1,2], the earth is assumed to be a uniform sphere of radius R. 

Furthermore, in between impacts with the table, the ball, which is initially close to 

the earth’s surface (r0  R), undergoes free-fall motion along the radial direction 

where the distance it travels |r - r0| is assumed small compared to its initial position 

r0 (|r - r0|/r0 <<1). The relativistic position and velocity of the ball between impacts 

(which are derived in Text S2) are needed in the derivations of the relativistic maps. 

In the derivations, it is convenient to transform the position r of the ball, which is 

measured relative to the center of the earth, to y: y = r - RTLP, where RTLP is the 

distance from the center of the earth to the table’s lowest position. The table’s 

position     1sin 0  tAts  is measured relative to RTLP. 

In between the kth and (k+1)th impacts, the ball moves with initial velocity vk 

and position yk just after the kth impact. The ball’s initial position yk is the same as 

the table’s position  sin 1kA      just after the kth impact, where 0  kk t  

is the table’s phase and tk is the time just after the kth impact. In the 

general-relativistic framework, the ball’s position at time t after the kth impact is 

[based on Eq. (B17) in Text S2] 
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and the ball’s velocity at time t after the kth impact is [based on Eq. (B9) in Text S2] 
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Setting the difference between the ball’s position y(t) [Eq. (A1)] and table’s 

position     1sin 0  tAts at the (k+1)th impact to zero yields the 

impact-phase map Eq. (5).  

Since the collision between the ball and table is inelastic, 1' kv  and 1kv , 

which are respectively the ball’s velocity just before and just after the (k+1)th impact 

in the table’s reference frame, are related through 

 ' 11   kk vv              (A3) 

where α is the coefficient of restitution. The ball’s velocity just before and just after 

the (k+1)th impact in the ground’s reference frame are respectively 
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where 1ku  is the table’s velocity at the (k+1)th impact in the ground’s reference 

frame. Solving for  1' kv  and 1kv  from Eq. (A4) and substituting into Eq. (A3) 

yields the velocity map Eq. (4). The expression for 1' kv  is obtained by substituting 

1kt t   into Eq. (A2).  

In the derivation of the special-relativistic map, Eq. (A1) is replaced by the 

special-relativistic position of the ball between the kth and (k+1)th impacts based on
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the special-relativistic Eq. (B8) in Text S2. In the derivation [1,2] of the Newtonian 

map, the Newtonian Eqs. (B5) and (B6) in Text S2 were utilized to obtain the 

position and velocity of the ball between the kth and (k+1)th impacts, and Eq. (A4) 

is used without the terms involving c2. 
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Text S2. Newtonian and relativistic free-fall motion. 

Here we consider the radial motion of a particle of mass m due to the 

gravitational field of a uniform sphere of mass M and radius R. 

In the Newtonian framework, the change in gravitational potential energy of the 

particle from an initial position r0 to a final position r is given by 
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If the distance travelled by the particle is small compared to r0, that is, |r - r0|/r0 <<1, 

then 1/r is essentially given by 
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since higher-order terms involving (r - r0)/r0 are negligible. If the particle is initially 

near the surface of the sphere, that is, r0  R, then  

GM/r0
2  GM/R2 = g.            (B3) 

Substituting Eqs. (B2) and (B3) into Eq. (B1) reduces Eq. (B1) to approximately the 

change in gravitational potential energy of a particle in a uniform gravitational field 

    U  mgr- mgr0..            (B4) 

The Newtonian position and velocity of the particle at time t are therefore given by 

the well-known equations: 
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 In the special-relativistic framework, if |r - r0|/r0 <<1 and r0  R, Eqs. (B2) and 

(B3) reduce the change in gravitational potential energy of the particle to  
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Solution of the special-relativistic equation of motion with the force derived from 

the gravitational potential energy U(r) in Eq. (B7) yields [1-3] 
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for the position and velocity of the particle at time t. 

In the general-relativistic framework, the gravitational field outside the uniform 

sphere is described by the Schwarzschild metric [4] in terms of the Schwarzschild 

coordinates (ct, r, θ, ) 
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where ds is the interval between neighboring events, τ is the proper time, and rs = 

2GM/c2 is the Schwarzschild radius. For purely radial motion [3,5] along the line  

=constant in the equatorial plane θ = π/2, the metric Eq. (B10) is simplified, with d 

= dθ = 0, to
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and the geodesic equations are reduced to 
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The local velocity [4,6] of the particle, measured by a local observer who is at rest at a 

particular Schwarzschild radial coordinate and is next to the particle, is 
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The integral of Eq. (B12), which is given by 
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where k is a constant, and the integral of Eq. (B13), which is given by Eq. (B11), 

together with the initial condition v = v0 at r = r0, lead to the following expression for 

dr/dt: 
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If |r - r0|/r0 <<1 and r0  R, substituting Eqs. (B2) and (B3) into Eq. (B16) and 

integrating it with initial condition r = r0 at t = t0 yields the general-relativistic 

position of the particle at time t
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In the limit of weak gravity (2gr/c2<<1 and 2gr0/c2<<1), Eq. (B17) reduces to the 

special-relativistic Eq. (B8). In the limit of weak gravity and low speed (v/c<<1, 

v0/c<<1 and g(t – t0)/c<<1), Eq. (B17) reduces to the Newtonian Eq. (B5). 

Substituting Eqs. (B14), (B2), (B3) and (B17) sequentially into Eq. (B16) yields 

the general-relativistic velocity of the particle at time t, which is the same as the 

special-relativistic Eq. (B9). In the limit of low speed, Eq. (B9) reduces to the 

Newtonian Eq. (B6). 
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