Self-enhancement of rotating magnetocaloric effect in anisotropic

 2-D cyanido-bridged $\mathbf{M n}^{\text {II }}-\mathrm{Nb}^{\text {IV }}$ molecular ferrimagnetPiotr Konieczny, ${ }^{\text {a } *}$ Łukasz Michalski, ${ }^{\text {a,b }}$ Robert Podgajny, ${ }^{\mathrm{c} *}$ Szymon Chorazy, ${ }^{\mathrm{c}}$ Robert Pełka, ${ }^{\text {a }}$ Dominik Czernia, ${ }^{\text {a,b }}$ Szymon Buda, ${ }^{\text {c }}$ Jacek Mlynarski, ${ }^{\text {c }}$ Barbara Sieklucka, ${ }^{\text {c }}$ Tadeusz Wasiutyński ${ }^{\text {a }}$
${ }^{a}$ Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland (4812) 6628019. Email: piotr.konieczny@ifj.edu.pI
${ }^{b}$ Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland
${ }^{\text {c}}$ Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland. Tel.: (4812) 6632051. E-mail: podgajny@chemia.uj.edu.pl.

Figure S1. Photograph of the single crystals lying on a plastic plate coved by a thin layer of Apiezon grease. All crystals are in the same orientation.

Figure S2. Isothermal magnetization of $\mathbf{1}$ at 2.0 K . Red diamonds - $b c / / \mathrm{H}$, blue circles $-a^{*} / / \mathrm{H}$ geometry.

Figure S3. Temperature dependence of $\chi \mathrm{T}$ product for 1 in $b c / / H$ (red diamonds) and $a^{*} / / H$ (blue circles) geometry at $H=500$ Oe.

Figure S4. Plots of χT versus T for 1 as measured in the easy plane (red diamond) and in the hard axis (blue circles) direction at $H=5000$ e.

Figure S5. The ac susceptibility as a function of temperature for crystals oriented in bc // H (red diamonds) and $a^{*} / / \mathrm{H}$ (blue circles) geometry measured at frequency of $F=120 \mathrm{~Hz}$ and amplitude $H_{a c}=3.0$ Oe. Insert: The same data for small values of $\chi_{a c}$ to emphasize the contribution of out-of-phase component.

Figure S6. The first derivative of ac susceptibility real part as a function of temperature for $b c / / H$ (red circles) and $a^{*} / / H$ (blue squares) geometry. Temperatures of phase transition to ordered magnetic phase are pointed in the figure. Dashed lines are guides for the eyes.

Figure S7. Isothermal magnetization of $\mathbf{1}$ for $b c / / H$ (left) and $a^{*} / / H$ (right) geometry collected for temperatures varying from 2.0 K to 80.0 K and fields ranging from 0 to 5.0 T .

Figure S8. Isothermal magnetization of $\mathbf{1}$ for $b c / / H$ (left) and $a^{*} / / H$ (right) geometry collected for the same temperatures as in Figure S6 and field range 0-0.3 T.

Figure S9. Temperature dependence of Inverse MCE for $\mathbf{1}$ in $a^{*} / / H$ geometry. Solid lines are guides for the eyes.

Figure S10. Field dependence of $T_{\text {min, }}$, which is the temperature where the inverse part MCE posses a minimum. The data represents only the $a^{*} / / H$ geometry, because there was no inverse MCE for the second geometry.

Figure S11. Ratio of ΔS_{R} and $\Delta S_{m-b c}$ as a function of temperature for different magnetic fields. Values above 100% indicate the excess of RMCE over the MCE in $b c / / H$ geometry.

