Self-enhancement of rotating magnetocaloric effect in anisotropic 2-D cyanido-bridged Mn^{II}-Nb^{IV} molecular ferrimagnet

Piotr Konieczny,^a* Łukasz Michalski,^{a,b} Robert Podgajny,^c* Szymon Chorazy,^c Robert Pełka,^a Dominik Czernia,^{a,b} Szymon Buda,^c Jacek Mlynarski,^c Barbara Sieklucka,^c Tadeusz Wasiutyński^a

^aInstitute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków, Poland (4812) 662 8019. Email: piotr.konieczny@ifj.edu.pl

^bFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

^cFaculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland. Tel.: (4812) 6632051. E-mail: podgajny@chemia.uj.edu.pl.

Figure S1. Photograph of the single crystals lying on a plastic plate coved by a thin layer of Apiezon grease. All crystals are in the same orientation.

Figure S2. Isothermal magnetization of **1** at 2.0 K. Red diamonds - bc//H, blue circles - $a^*//H$ geometry.

Figure S3. Temperature dependence of χ T product for 1 in *bc*//*H* (red diamonds) and *a**//*H* (blue circles) geometry at *H*=500 Oe.

Figure S4. Plots of χT versus *T* for **1** as measured in the easy plane (red diamond) and in the hard axis (blue circles) direction at *H*=500Oe.

Figure S5. The ac susceptibility as a function of temperature for crystals oriented in *bc* // *H* (red diamonds) and a^* // *H* (blue circles) geometry measured at frequency of *F*=120 Hz and amplitude H_{ac} =3.0 Oe. Insert: The same data for small values of χ_{ac} to emphasize the contribution of out-of-phase component.

Figure S6. The first derivative of ac susceptibility real part as a function of temperature for bc//H (red circles) and $a^*//H$ (blue squares) geometry. Temperatures of phase transition to ordered magnetic phase are pointed in the figure. Dashed lines are guides for the eyes.

Figure S7. Isothermal magnetization of **1** for bc//H (left) and $a^*//H$ (right) geometry collected for temperatures varying from 2.0 K to 80.0 K and fields ranging from 0 to 5.0 T.

Figure S8. Isothermal magnetization of **1** for bc//H (left) and $a^*//H$ (right) geometry collected for the same temperatures as in Figure S6 and field range 0 - 0.3 T.

Figure S9. Temperature dependence of Inverse MCE for **1** in $a^*//H$ geometry. Solid lines are guides for the eyes.

Figure S10. Field dependence of T_{min} , which is the temperature where the inverse part MCE posses a minimum. The data represents only the $a^*//H$ geometry, because there was no inverse MCE for the second geometry.

Figure S11. Ratio of ΔS_{R} and $\Delta S_{\text{m-bc}}$ as a function of temperature for different magnetic fields. Values above 100% indicate the excess of RMCE over the MCE in *bc*//*H* geometry.