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Figure captions 

Figure S1. HAADF-STEM images, EDX-mapping analysis, size distributions, and average sizes of catalysts. 

The green and yellow points in (b) correspond to Cu-L and Ag-L fluorescence lines, respectively. 

Figure S2. TEM images, size distributions, and average sizes of Ag/Al2O3 before and after thermal aging at 

900 °C for 100 h in air. 

Figure S3. (a) Bright-field STEM image, (b) EDX-mapping analysis, and (c, d) HAADF-STEM images of 

CuOx/Al2O3(aged). The blue and green points in (b) correspond to Al-K and Cu-L fluorescence lines, 

respectively. (d) Taken from the area shown by a black square in (a).
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Figure S4. High-magnification HAADF-STEM images of as-prepared Ag/Al2O3, CuOx−Ag/Al2O3, and 

Ag/CuOx/Al2O3. 

Figure S5. Correlation between NH3 combustion activity (T10) and Ag–Ag coordination number for 

catalysts before and after thermal aging. Ag–Ag coordination number was estimated from Ag K-edge 

XAFS. 

Figure S6. (left) Cu 2p and (right) Ag 3d XPS spectra of catalysts before and after thermal aging. The 

intensity of each spectrum was normalised by Al 2p. 

Figure S7. Cu 2p and Ag 3d XPS depth profiles of as-prepared catalysts and Ag2O as a reference. The 

intensity of each spectrum was normalised by Al 2p. 
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Figure S8. H2-TPR profiles of supported catalysts before and after thermal aging, bulk materials, and 

support. H2-TPR was performed in a flow system (5% H2/Ar) at a constant rate of 10 °C·min
−1

. 

Figure S9. NH3-TPD profiles of supports and catalysts before and after thermal aging. 5% NH3/He, 

10 °C·min
−1

, m/z value of 15. 

Figure S10. NO-TPD profiles of supports and catalysts before and after thermal aging. 1% NO/He, 

10 °C·min
−1

, m/z value of 30. 

Figure S11. Product selectivities for catalytic NH3 combustion over CuOx/Ag/Al2O3 after thermal aging at 

700 °C or 800 °C for 100 h in air. Reaction conditions: 1.0% NH3, 1.5% O2, λ = 2, He balance, W/F = 5.0 × 

10
−4

 g·min·cm
−3

. 

Figure S12. Product selectivities for catalytic NH3 combustion over binary catalysts before and after 

thermal aging at 900 °C for 100 h in air. Reaction conditions: 1.0% NH3, 1.5% O2, λ = 2, He balance, W/F = 

5.0 × 10
−4

 g·min·cm
−3

. 

Figure S13. Product selectivities for the NH3–NO–O2 reaction over as-prepared catalysts. Reaction 

conditions: 0.8% NH3, 0.2% NO, 1.4% O2, He balance, W/F = 5.0 × 10
−4

 g·min·cm
−3

. 
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MATERIALS AND METHODS 

Characterization 

XPS combined with depth profiling was conducted with Ar
+
 ion beam bombardment (3000 eV), which was 

used for 10 s for each etch step. The C1s signal at 285.0 eV, derived from adventitious carbon, was used as a 

reference to correct the effect of surface charge. 

Temperature-programmed reduction by H2 (H2-TPR) was performed in a flow system (5% H2/Ar) at a 

constant rate of 10 °C·min
−1

. 

 

The calculation formulae of concentration ratios 

For the NH3–O2 reaction (NH3 combustion), the concentration ratios were calculated by the following 

formulae: 

NH3  =  [NH3out] / [NH3in]  

N2O  =  2[N2Oout] / [NH3in]  

NO  = [NOout] / [NH3in]  

N2  =  2[N2out] / [NH3in] 

where [NH3in] is the inlet NH3 concentration (1.0%) and [NH3out], [N2Oout], [NOout], and [N2out] are the outlet 

gas concentrations. N2O and N2 concentration ratios were doubled as 2 mol of nitrogen were present. The 



S5 

formulae were approximated on the basis of the hypothesis that the volume of a gas mixture before and after 

reaction is invariable. 

 

For the NH3–NO–O2 reaction, the concentration ratios were calculated by the following formulas: 

NH3  =  [NH3out] / ([NH3in] + [NOin]) 

N2O  =  2[N2Oout] / ([NH3in] + [NOin]) 

NO  =  [NOout] / ([NH3in] + [NOin]) 

N2  =  2[N2out] / ([NH3in] + [NOin]) 

where [NH3in] and [NOin] are the inlet NH3 (0.8%) and NO concentrations (0.2%), respectively, and [NH3out], 

[N2Oout], [NOout], and [N2out] are the outlet gas concentrations. N2O and N2 concentration ratios were 

doubled as 2 mol of nitrogen were present. 
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Figure S1. HAADF-STEM images, EDX-mapping analysis, size distributions, and average sizes of catalysts. 

The green and yellow points in (b) correspond to Cu-L and Ag-L fluorescence lines, respectively. 
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Figure S2. TEM images, size distributions, and average sizes of Ag/Al2O3 before and after thermal aging at 

900 °C for 100 h in air. 
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Figure S3. (a) Bright-field STEM image, (b) EDX-mapping analysis, and (c, d) HAADF-STEM images of 

CuOx/Al2O3(aged). The blue and green points in (b) correspond to Al-K and Cu-L fluorescence lines, 

respectively. (d) Taken from the area shown by a black square in (a).
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Figure S4. High-magnification HAADF-STEM images of as-prepared Ag/Al2O3, CuOx−Ag/Al2O3, and 

Ag/CuOx/Al2O3. 
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Figure S5. Correlation between NH3 combustion activity (T10) and Ag–Ag coordination number for 

catalysts before and after thermal aging. Ag–Ag coordination number was estimated from Ag K-edge 

XAFS. 
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Figure S6. (left) Cu 2p and (right) Ag 3d XPS spectra of catalysts before and after thermal aging. The 

intensity of each spectrum was normalised by Al 2p. 

 

The Cu 2p XPS spectra of the catalysts exhibit two Cu 2p3/2 peaks assignable to Cu
+
 and Cu

2+
 at 933.1 and 

934.6 eV, respectively. Additionally, two satellite peaks (941.5 and 944.0 eV), attributed to Cu
2+

 with the 

3d
9
 electronic state, are also found. Unlike the thermodynamically stable Cu

2+
 in atmosphere, Cu

+
 is 
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observed in all catalysts, which is indicative of highly dispersed CuOx nanoparticles (Figure 4 and 

Supporting Information) having a high fraction of surface CuOx species with lower oxygen coordination 

numbers than bulk CuOx (Cu
2+

). Based on previous reports,
2,3

 in the case of the Ag 3d XPS spectra, the 

deconvolution of the observed peaks reveals two sets of spin-orbital doublets assigned to Ag
0
 and Ag

+
. Al 

2p and/or O 1s XPS spectra of these catalysts were also measured; however, no noticeable difference was 

observed. 
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Figure S7. Cu 2p and Ag 3d XPS depth profiles of as-prepared catalysts and Ag2O as a reference. The 

intensity of each spectrum was normalised by Al 2p. 
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Unlike the Ag 3d XPS depth profiles for as-prepared CuOx/Ag/Al2O3 and Ag/Al2O3, that for bulk Ag2O 

shows that the fraction of Ag
0
 increases with increasing etch step, which implies that Ag2O is reduced to 

metallic Ag (Ag
0
) by the Ar

+
 ion beam. Conversely, the Cu 2p peaks for CuOx/Ag/Al2O3 shift slightly to 

lower binding energy (from Cu
2+

 to Cu
+
) with increasing etch step. It is also thought that the CuOx 

nanoparticles in CuOx/Ag/Al2O3 are reduced by the Ar
+
 ion beam. 
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Figure S8. H2-TPR profiles of supported catalysts before and after thermal aging, bulk materials, and 

support. H2-TPR was performed in a flow system (5% H2/Ar) at a constant rate of 10 °C·min
−1

. 
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Figure S9. NH3-TPD profiles of supports and catalysts before and after thermal aging. 5% NH3/He, 

10 °C·min
−1

, m/z value of 15. 
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Figure S10. NO-TPD profiles of supports and catalysts before and after thermal aging. 1% NO/He, 

10 °C·min
−1

, m/z value of 30. 
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Figure S11. Product selectivities for catalytic NH3 combustion over CuOx/Ag/Al2O3 after thermal aging at 

700 °C or 800 °C for 100 h in air. Reaction conditions: 1.0% NH3, 1.5% O2, λ = 2, He balance, W/F = 5.0 × 

10
−4

 g·min·cm
−3

. 
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Figure S12. Product selectivities for catalytic NH3 combustion over binary catalysts before and after 

thermal aging at 900 °C for 100 h in air. Reaction conditions: 1.0% NH3, 1.5% O2, λ = 2, He balance, W/F = 

5.0 × 10
−4

 g·min·cm
−3

. 



S20 

0.0

0.2

0.4

0.6

0.8

1.0

0 300 600 900

0.0

0.2

0.4

0.6

0.8

1.0

0 300 600 900
0.0

0.2

0.4

0.6

0.8

1.0

0 300 600 900

CuOx/Al2O3 CuOx/Ag/Al2O3 Ag/Al2O3

C
o

n
c
e

n
tr

a
ti
o
n

 r
a

ti
o

 /
−

Temperature / °CTemperature / °C Temperature / °C

NH3

N2

NO

N2O

NO

N2O

N2

NH3

NO

N2

N2O

NH3

 

Figure S13. Product selectivities for the NH3–NO–O2 reaction over as-prepared catalysts. Reaction 

conditions: 0.8% NH3, 0.2% NO, 1.4% O2, He balance, W/F = 5.0 × 10
−4

 g·min·cm
−3

. 
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