Supporting Information

Interface Effects in Hydrogen Elimination Reaction from Isopropanol by Ni₁₃ Cluster on Θ-Al₂O₃(010) Surface

Andrey Lyalin¹, Ken-ichi Shimizu^{2,3}, and Tetsuya Taketsugu^{1,3,4}

¹Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

²Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan

³Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8245, Japan

⁴Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

Figure S1 Left: Schematic representation of the most favorable adsorption sites of a single Ni atom on θ -Al₂O₃(010) surface with the binding energy E_b: (1) E_b=3.16 eV; (2) E_b=3.09 eV; (3) E_b=2.97 eV; (4) E_b=2.67 eV. Only first atomic layer of θ -Al₂O₃(010) is shown. Ni prefers to bridge the low coordinated O atoms on the θ -Al₂O₃(010) surface. Right: Optimized the most stable geometry of Ni on θ -Al₂O₃(010) surface. Aluminum atoms are yellow-green-colored and oxygen atoms are red-colored.

 $E_{b} = 7.25 \text{ eV}$

b)

 $E_b = 5.69 \text{ eV}$

 $E_b = 5.48 \text{ eV}$

d)

c)

 $E_b = 5.31 \text{ eV}$

 $E_b = 5.21 \text{ eV}$

Figure S2. Optimized structures of ico-Ni₁₃ cluster on θ -Al₂O₃(010) surface (a)-(e). Ni prefers maximize interaction with the low coordinated O atoms resulting in strong deformations of the cluster, especially noticeable in the most bounded (a) and (b) configurations. Aluminum atoms are yellow-green-colored and oxygen atoms are red-colored. Only the first layer atoms of the surface are colored, while the deeper layers are shown in light gray.

Figure S3. Optimized structures of C_3H_8O adsorbed on the θ -Al₂O₃(010) surface in the close vicinity of Ni₁₃ cluster INTa1 and INTb1 (upper row); optimized structures of intermediates INTa2 and INTb2 formed after first H transfer from the OH group of isopropanol (middle row); optimized structures of intermediates INTa3 and INTb3 formed after C-H bond cleavage (lower row).