Supplementary Information

Structural Effects on Incident Photon-to-current Conversion Efficiency of Zn Porphyrin Dyes on the Low Index Planes of TiO_2

Ryo Ide¹, Yamato Fujimori², Yukihiro Tsuji², Tomohiro Higashino², Hiroshi Imahori^{2,3}, Hideki Ishikawa⁴, Akihito Imanishi⁴, Ken-ichi Fukui⁴, Masashi Nakamura¹, Nagahiro Hoshi¹*

- 1 Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- 2 Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- 3 Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- 4 Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Figure S1 AFM images and LEED patterns of Nb doped TiO_2 single crystal surfaces after chemical etching in HF and annealing at 600° C in air. AFM images: (a) $TiO_2(100)$, (b) $TiO_2(110)$. LEED patterns: (c) $TiO_2(100)$, (d) $TiO_2(110)$. The figures are reproduced from ref. 38.

Figure S2 Illustration of the cell (left) and the holder of TiO_2 single crystal (right)