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Our Contribution

e Model the protein interface region as a network (Interfacial network)
o Each conformation of a particular protein represented as a single network

e Use a scalable graph Mining approach to mine frequent subgraphs among conformations
o  Multiple conformations of a particular protein form a graph database

e Show that Interfacial network can be used to find
o Lock structure in HIV L
o Hugging point in TIM structure .
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Modeling interface region as a Network

e Retrieve the backbone carbons along with their 3D coordinates

e Sclect the subset of C_alpha residues that are in the interface region of either
of the chains

e (Consider a residue 1n a chain to be at the interface region if it is within 8A
distance of any C alpha residue in the other chain

e Represent those residues as nodes

e (Connect two nodes in the inter-chain if they are within 8 A distance from each
other

e For intra-chain, that distance is 4A

e Obtain a set of undirected, vertex-labeled graphs---each corresponding to one
of the conformations



Mining Frequent Subgraphs (traditional definition)
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(a) A graph database with 3 graphs (b) All frequent subgraph of the graph database in (a) using

minimum support value of 2



Issues with frequent subgraph mining techniques

e Not Scalable for dense and large graphs

Dataset Statistics: # graphs: 80, avg, # vertices: 67, avg, # edges: 268

# node labels: 20, # edge labels: 3
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e Distributed methods solve the scalability issue for the case of many graphs in

the database, but not for the case of large and dense graphs



Other Issues

e User needs to choose minimum support threshold
o  When mining for patterns in graph database, due to protein dynamics
identical patterns does not appear in many conformations

e Frequent subgraphs have substantial overlap
o Functional motifs can be fragmented in many overlapping frequent
subgraphs



FS> Algorithm: An alternative approach of frequent
subgraph Mining

e [t solves the lack of scalability problem by sampling fixed-size pattern instead of
complete enumeration
e Instead of using support as a input, the method takes size as input,
o For motif detection, typical size of functional motifs is usually known
e We superimpose each of the top-k frequent patterns to find functional motif in the
conformation database and merge patches to obtain the complete functional motifs



FS> Algorithm

e A fixed size subgraph sampler

e Performs sampling in two stages. At the first stage, it choose one graph in the
graph database. In the second stage, it samples a size-/ subgraph from the
chosen graph.

e The sampling distribution in second stage 1s biased such that it over-samples the
graphs that are likely to be frequent over the entire database. The sampling is
done via Markov chain Monte carlo (MCMC) sampling

e FS”3 algorithm repeat the sampling process for many times, and uses an
innovative priority queue to hold a small set of most frequent subgraphs

Tanay Kumar Saha and Mohammad Hasan, "FS*3: A sampling based method for top-k frequent subgraph
mining", Journal of statistical analysis and data mining, 2015



Mining Frequent Subgraphs (Sampling)
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(a) A graph database with 3 graphs (b) Sampled subgraphs show a number associated with those,

which is their observed frequency through sampling

What sampling distribution should we use?



FS> Algorithm

Sampler

!

Canonical Code
Generator

U

Queue Manager

Sampler samples a [-size subgraph in
proportion to the set-intersection support of
a subgraph

Set intersection support is an upper bound
of actual support of that pattern

Queue 1s sorted based on canonical code,
their max support and arrival time in the
queue (3-criterion)

Queue manager dynamically maintains the
top-k frequent patterns

Generation of canonical code is the most
time consuming step.



FS> (Target Distribution of sampling)

Support (BD) = 3 {1,2,3}, Support (BE) = 2 {2,3},

Support (ED) =2 {2,3}
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(a) A graph database with 3 graphs (b) All frequent subgraph of the graph database in (a) using

minimum support value of 2



Sampling Induced Subgraph using Metropolis-Hastings
Algorithms

SAMPLEINDSUBGRAPH(G, p)
1 =z = State saved at G,
2 d: = Neighbor-count of Proposal distribution: Uniform
3 I'J'_,.'-H.rlf.l‘_l_. = SCore ”[ :_“;T'HI'.II'I_ X . . o .
4 while (a neighbor state y is not found) Target distribution: Proportlonal to
5] y = a random neighbor of »
6 d, = Possible neighbor of y Upp er bound of Supp ort
T a_sup, = score of graph y
8 accp_val = (d: * a_sup,)/(d, * a_sup.)
9 accp_probablility = min(1, accpval)
10 if uniform(0, 1) < accp_probability
11 return

Fig: Sample Induced Subgraph



Neighborhood Generation in FS>
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(i) A database graph G i with the current (i) The state of random walk on G_i
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Neighborhood information of the current Updated Neighborhood information
state <1,2,3,4>



Finding sub-network embedding in the interface graph

e Most of the top-frequent subgraphs are almost identical

e After embedding, they map to a patch of the functional motif in such a way that
superimposition of the embedded patches of multiple top-frequent patterns cover the entire
motif

e For HIV-1 Protease, we consider 10 of the frequent subgraphs, and the embedding with
superimposition covers the entire 16-residue dimeric lock motif in 323 out of 329 patterns

e Similar treatment for the TIM protein using 20 most frequent subgraphs finds the dimeric
lock 1n 50 out of 86 structures.
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Fig: Subnetwork patches embedded in an interface graph.



EXperimental A\ Front view subunit A B B?Et?rjview
result s |

LY = “--,-‘"_' -
P R /) %
subunitB  # {v
N
base

&

: CT} Cantilev
/

N

/
G

Lo _
dimeric

Y
er QD"X
< A
D g

Fig: HIV-1
Protease (Lock
structure)



Experimental A
Result

Loep ] Loop 1
C (subunit B) D fop N10

(subunit B) '

Fig: TIM
hugging point » | W O
(hugging point) o _ 0% O &8

(subunit B) (subunit B) L i Al {\ .

Loop3 | Loop 4 L5663 Loop 4

(subunit A) (nibumit B) (subunitA) (subunit B)



Future work

e Using more datasets to see the hypothesis holds for multiple datasets
e Using clustering techniques for cluster the mined frequent subgraphs to
overlap the patches to obtain the complete functional motif.



Conclusion

e Propose a method for the discovery of functional motifs from the interface region of
dimeric protein structures

e The method uses the graphical representation of the interface region of these
structures and mine fixed size highly frequent subgraphs

e The method captures the locking mechanism at the dimeric interface by taking only
into account the spatial positioning of the interfacial residues through graphs



