Reactions of osmium carbyne complexes OsCl₃(=CR)(PPh₃)₂ (R =

CH=CPh₂, CH₂Ar) with bromine and hydrogen peroxide

Wei Bai, Ka-Ho Lee, Wai Yiu Hung, Herman H. Y. Sung, Ian D. Williams, Zhenyang Lin* and Guochen Jia*

Department of Chemistry, The Hong Kong University of Science and

Technology, Clear Water Bay, Kowloon, Hong Kong

Supporting Information

Table of Contents

1. X-ray crystallographic study of 10, 11 and 13	S2
2. NMR spectra	S3-S 9

The supplemental file "Os carbyne-SI computation.xyz" contains the computed Cartesian coordinates of all of the molecules reported in this study. The file may be opened as a text file to read the coordinates, or opened directly by a molecular modeling program such as Mercury for visualization and analysis.

Table S1. Crystal data of 10, 11 and 13.			
	Complex 10	Complex 11	Complex13
Empirical formula	$C_{33}H_{28}Br_3OOsP$	$C_{56.25}H_{51.25}Cl_4O_{0.75}OsP_2$	$C_{48}H_{45}Cl_3O_2OsP_2$
Formula weight	901.45	1133.16	1012.33
Temperature/K	100.01(10)	100.00(10)	173
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/c$	$P2_1/n$	$P2_1/c$
a/Å	9.8517(2)	12.91509(14)	10.36250(10)
b/Å	10.3571(2)	17.98521(19)	18.2899(2)
c/Å	29.9335(7)	20.77311(19)	22.6189(3)
α/°	90	90	90
β/°	98.040(2)	91.5799(8)	94.7520(10)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	3024.25(12)	4823.36(9)	4272.20(8)
Ζ	4	4	4
$\rho_{calc}g/cm^3$	1.980	1.560	1.574
μ/mm^{-1}	13.302	2.972	8.373
F(000)	1720.0	2275.0	2024.0
Crystal size/mm ³	$0.1\times0.07\times0.05$	$0.32 \times 0.25 \times 0.15$	$0.2\times0.15\times0.12$
Radiation	CuK α (λ = 1.54184)	MoKa ($\lambda = 0.71073$)	CuKa (λ = 1.54178)
2Θ range for data collection/°	9.044 to 133.934	6.756 to 51.994	20.222 to 133.994
	$-8 \le h \le 11$,	$-15 \le h \le 14$,	$-12 \le h \le 12$,
Index ranges	$-12 \le k \le 12$,	$-21 \le k \le 22$,	$-21 \le k \le 16$,
	$-35 \le l \le 33$	$-22 \le l \le 25$	$-26 \le l \le 27$
Reflections collected	16246	28793	36057
Independent reflections	5363 [$R_{int} = 0.0406$]	9417 [R _{int} = 0.0197]	7513 [$R_{int} = 0.0431$]
Data/restraints/parameters	5363/0/353	9417/14/583	7513/10/500
Goodness-of-fit on F^2	1.002	1.000	1.003

1. X-ray crystallographic studies of 10, 11 and 13.

Figure S1. The ¹H NMR spectrum of $OsBr_3 (\equiv CCH = CPh_2)(H_2O)(PPh_3)$ (10) in CDCl₃ at 400.1 MHz.

Figure S2. The ³¹P{¹H} NMR spectrum of $OsBr_3(\equiv CCH=CPh_2)(H_2O)(PPh_3)$ (10) in $CDCl_3$ at 162.0 MHz.

Figure S3. The ¹H NMR spectrum of OsCl₃(=CCCl=CPh₂)(PPh₃)₂ (11) in CDCl₃ at 400.1 MHz.

Figure S4. The ${}^{31}P{}^{1}H$ NMR spectrum of OsCl₃(=CCCl=CPh₂)(PPh₃)₂ (11) in CDCl₃ at 162.0 MHz.

Figure S5. The ¹³C{¹H} NMR spectrum of $OsCl_3(\equiv CCCl = CPh_2)(PPh_3)_2$ (11) in CDCl₃ at 100.6 MHz.

Figure S6. The ¹H NMR spectrum of *mer*-OsCl₃{ \equiv CC(O)Ph}(PPh₃)₂ (13) in CD₂Cl₂ at 300.1 MHz.

Figure S7. The ${}^{31}P{}^{1}H$ NMR spectrum of *mer*-OsCl₃{ \equiv CC(O)Ph}(PPh₃)₂ (13) in CD₂Cl₂ at 121.5 MHz.

Figure S8. The ¹³C{¹H} NMR spectrum of *mer*-OsCl₃{ \equiv CC(O)Ph}(PPh₃)₂ (13) in CD₂Cl₂ at 75.5 MHz.

Figure S9. The ¹H NMR spectrum of *mer*-OsCl₃(\equiv CCH₂-C₆H₄-*p*-CMe₃)(PPh₃)₂ (14) in CDCl₃ at 400.1 MHz.

Figure S10. The ${}^{31}P{}^{1}H$ NMR spectrum of mer-OsCl₃(\equiv CCH₂-C₆H₄-*p*-CMe₃)(PPh₃)₂ (14) in CDCl₃ at 162.0 MHz.

Figure S11. The ¹³C{¹H} NMR spectrum of *mer*-OsCl₃(\equiv CCH₂-C₆H₄-*p*-CMe₃)(PPh₃)₂ (14) in CDCl₃ at 100.6 MHz.

Figure S12. The ¹H NMR spectrum of *mer*-OsCl₃{ \equiv CC(O)-C₆H₄-*p*-CMe₃}(PPh₃)₂ (15) in C₆D₆ at 400.1 MHz.

-14.904

 $mer-OsCl_3 = CC(O)-C_6H_4-p-CMe_3 (PPh_3)_2$ (15) in C₆D₆ at 162.0 MHz.

Figure S14. The ¹³C{¹H} NMR spectrum of *mer*-OsCl₃{ \equiv CC(O)-C₆H₄-*p*-CMe₃}(PPh₃)₂ (15) in C₆D₆ at 100.6 MHz.