
S1 

 

Supporting Information 

Rapid, mild, and selective ketone and aldehyde hydroboration/reduction mediated by a 

simple lanthanum catalyst 

Victoria L. Weidner, Christopher J. Barger, Massimiliano Delferro,† Tracy L. Lohr,* and Tobin J. Marks* 

Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA 

†Current Address: Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 
60439-4803, United States 

t-marks@northwestern.edu and tracy.lohr@northwestern.edu 

 

Table of Contents 

Materials and Methods………………………………….…………………..S1 

Experimental Details…………………………………………….………….S2 

Kinetic Analysis Details………………………………………….…………S2 

Plots for the Determination of Reaction Order with Respect to                                                                                                    
.          Aldehyde/Ketone, HBpin, and LaNTMS……………………………....S3 

Spectroscopic Data of Ketone/Aldehyde Hydroboration Products…….…...S6 

NMR Spectra of Hydroboration Products and Relevant Alcohols…….……S12 

References…………………………………………………………….……..S78 

 

 Materials and Methods.  All manipulations of air-sensitive materials were carried out with 
rigorous exclusion of oxygen and moisture in flame- or oven-dried Schlenk-type glassware on a dual-
manifold Schlenk line, interfaced to a high-vacuum line (10−6 Torr), or in an argon-filled vacuum 
atmospheres glovebox with a high capacity recirculator (<1 ppm O2). Benzene-d6 (Cambridge Isotope 
Laboratories; 99+ atom % D) was stored over Na/K alloy and vacuum transferred immediately prior to 
use. La[N(SiMe3)2]3  (LaNTMS)and hexamethylbenzene were purchased from Sigma-Aldrich Co. and 
sublimed under high-vacuum (10-6 Torr). Pinacolborane (“HBpin”) was purchased from Sigma-Aldrich 
Co. and distilled under high-vacuum (10-6 Torr). Carbonyl-containing substrates were purchased from 
Sigma-Aldrich Co. and dried over 3Å molecular sieves and distilled off prior to use (for liquid substrates) 
or dried under vacuum (for solid substrates). Known boryl esters were characterized by 1H, 13C, and 11B 
NMR and compared to literature values. Unknown boryl esters were also fully characterized by NMR, 
and then hydrolyzed by refluxing in 1M NaOH/H2O and MeOH for 1 hour (for dicyclohexyl methanol 
and phenyl cyclohexyl methanol) or by refluxing with silica gel and H2O for 3 hours (for 
perflouorodiphenyl methanol and 2-ethynyl benzyl alcohol). The product was extracted with DCM and 
the organic layer was dried over MgSO4, and the solvent was removed by rotary evaporation. If necessary, 
the crude was purified by column chromatography, using 30% THF in hexanes. The resulting alcohol was 
characterized by 1H and 13C NMR and EI- or ESI-MS.  

 Physical and Analytical Measurements. NMR spectra were recorded on a Bruker Avance III 
(500 MHz, 1H ;  125 MHz, 13C), Varian Inova 500 (500 MHz, 1H; 125 MHz, 13C), Agilent DD MR-400 
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(400 MHz, 1H; 100 MHz, 13C; 128 MHz, 11B),  or Agilent DD2 500 (500 MHz, 1H ;  125 MHz, 13C). 
Chemical shifts (δ) for 1H and 13C are referenced to residual solvent resonances (7.16 and 128.06 ppm, 
resp., for benzene-d6). 

11B shifts are referenced to an external BF3·OEt2 standard. NMR scale reactions 
were carried out either in Teflon-sealed J. Young tubes or PTFE septum-sealed tubes. Mass spectra were 
recorded on a Bruker AmaZon SL LC-MS (ESI, Quadrupole ion trap) or Agilent 5973 GC-MS (EI, 
Quadrupole ion trap).   
 
 Typical NMR-Scale Reaction of HBpin with Solid Ketones and Aldehydes and La

NTMS 

Catalyst. In a glovebox, the aldehyde/ketone (0.25 mmol) was massed in a vial. 500 µL of a stock 
solution containing HBpin (0.30 mmol, 1.2 equivalents vs. aldehyde/ketone) and the internal standard 
hexamethylbenzene (50 µmol) was added to the vial, and the vial was shaken until all solids were 
dissolved. This solution was added to a J. Young tap NMR tube, and 100 µL of a stock solution 
containing an appropriate loading of La[N(SiMe3)2]3 was added. The tube was capped and shaken, and the 
reaction was monitored by 1H NMR.  
 
 Typical NMR-Scale Reaction of HBpin with Liquid Ketones and Aldehydes and La

NTMS
 

Catalyst. In a glovebox, 100 µL of a stock solution containing an appropriate loading of La[N(SiMe3)2]3 
was added to a septum-sealed NMR tube. 500 µL of a stock solution containing HBpin (0.30 mmol, 1.2 
equivalents vs. aldehyde/ketone) and the internal standard hexamethylbenzene (50 µmol) was added to a 
septum-sealed vial, and both were brought out of the glovebox. The liquid aldehyde/ketone (0.25 mmol) 
was injected into the vial with HBpin and standard, the vial was shaken, and the contents were injected 
into the NMR tube with catalyst, all under N2. The tube was shaken, and the reaction was monitored by 
1H NMR.    
 Scale-Up/Air and Moisture Tolerance Test Reaction. Benzophenone (1.0 g, 5.5 mmol) and 
HBpin (0.96 mL, 6.6 mmol) were dissolved in benzene (5 mL) in a vial outside of a glovebox. To this 
solution was added LaNTMS (34 mg, 0.055 mmol). After stirring for 5 minutes, volatiles were removed in 
vacuo, and the resulting white powder was taken up in 10 mL of 10% NaOH in MeOH. The mixture was 
sonicated and refluxed for 1 hour. The product (diphenylmethanol) was extracted in ethyl acetate and 
purified by column chromatography (1:5 THF:hexanes). Final yield of diphenylmethanol: 0.87g (86%). 

Typical NMR-Scale Reaction for Kinetic Monitoring by 
1
H-NMR Arrays. In a glovebox, 500 

µL of a stock solution of aldehyde/ketone and 500 µL of a stock solution containing HBpin and the 
internal standard, hexamethylbenzene (50 µmol), were mixed in a vial. This solution was then added to a 
rubber septum-sealed NMR tube, wrapped with parafilm, and removed from the box. At the NMR, the 
magnet was locked, tuned, and shimmed to the sample, then 100 µL of a stock solution containing an 
appropriate loading of La[N(SiMe3)2]3 was added. The tube was shaken and reinserted into the instrument 
and scanning was begun. Single (1H NMR) scans were collected at regular intervals. Substrate and/or 
product concentrations were determined relative to the intensity of the internal standard resonance plotted 
versus time.  

Kinetic Analysis. Kinetic analysis of the NMR-scale reactions described above was carried out 
by collecting multiple (>15) data points early in the reaction (<20% conversion). Under these conditions, 
the reaction can be approximated as pseudo-zero-order with respect to the substrate concentrations. The 
product concentration was measured from the area of the R2CHOBpin or RCH2OBpin peak formed in the 
product standardized to the methyl peak area of the C6Me6 internal standard. Data were fit by least-
squares analysis (R2 > 0.98) according to eq S1, where t is time, [product] is the concentration of product 
at time t, and m is the rate of reaction.  

    ��������	 = ��     (Eq. S1) 
Orders for each reactant were determined from the average rates (≥3 trials) at varying 

concentrations. Ketone/ aldehyde and HBpin concentrations were varied from 25% to 125% (relative to 
the other reactant) and catalyst concentration was measured at 0.05%, 0.10%, 0.15%, and 0.20% (for 
dicyclohexylketone) or 0.025%, 0.05%, 0.075%, and 0.1% (for cyclohexylcarboxaldehyde). (Note: in 
general, ketones react more quickly than aldehydes, except in the case of dicyclohexylketone). These data 
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were then plotted as ln(rate) vs. ln[ketone].1 The negative rate of disappearance of ketone is proportional 
to the concentration of ketone to the order (α) (see eq. S2). Therefore, the order is the slope of a plot of 
ln(rate) vs. ln[ketone] (eq. S3).  
 

�
�������	

� = �����������	�     (Eq. S2) 

 
ln������ = �������∝ ln	�������	    (Eq. S3) 
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Figure S1. (A) Plot of concentration ketone vs. reaction rate (mol/h); (B) Plot for reaction rate law order 

in [ketone]; (C) Plot of concentration HBpin vs. rate (mol/h); (D) Plot for reaction rate law order in 

[HBpin]; (E) Plot of concentration LaNTMS vs. rate (mol/h); (F) Plot for reaction rate law order in LaNTMS.  

 

 

 
Figure S2. (A) Plot of concentration aldehyde vs. reaction rate (mol/h); (B) plot for reaction rate law 

order in [aldehyde]; (C) Plot of concentration HBpin vs. rate (mol/h); (D) plot for reaction rate law order 

y = 0.1437x - 8.0102 

R² = 0.3277 
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in [HBpin]; (E) Plot of concentration LaNTMS
  vs. rate (mol/h); (F) plot for reaction rate law order in 

La
NTMS .  

 

Temperature Analysis. Data on the rate dependence on temperature was obtained as shown 

above. A rate at each temperature were determined from the average rates (≥3 trials) at temperatures set 

on the NMR and measured using a methanol (<25°C) or ethylene glycol (>25°C) standard.  

These data were then plotted as 1000/T vs. ln(k/T)1 from which the enthalpy and entropy of the 

transition state could be obtained using the Eyring equation (see eq. S4). ∆H≠ is the negative slope times 

R and ∆S≠ is the intercept minus the natural log of kb/h times R.  

ln �" =	
#$%
&" 	'

()%
& *	ln �+, -    (Eq. S4) 

From a plot of 1000/T vs. ln(k), the activation energy can be obtained using the Arrhenius 

equation (eq. S5). Ea is the negative slope times R.  

ln � = 	* ./
&" * ln0             (Eq. S5) 

 
Figure S3. (A) Plot of 1000/temperature vs. ln(k/T) for the lanthanum-catalyzed hydroboration of 
dicyclohexylketone. (B) Plot of 1000/temperature vs. ln (k). 
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Figure S4. (A) Plot of 1000/temperature vs. ln(k/T) for the lanthanum-catalyzed hydroboration of 
cyclohexylcarboxaldehyde. (B) Plot of 1000/temperature vs. ln (k). 
 

Characterization Data for Ketone/Aldehyde Hydroboration Products 

 

O
B O

O

2-(diphenylmethoxy)pinacolborane. 

 1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2  
1
H NMR (C6D6, 500 MHz): 7.45-7.41 (m, 4H), 7.12-7.07 (m, 4H), 7.03-6.98 (tt, 2H, 3JHH = 7.4, 4JHH = 

1.2), 6.41 (s, 1H), 0.98 (s, 12H). 11B{1H} NMR (C6D6, 128 MHz): 22.83. 13C{1H} NMR (C6D6, 125 

MHz): 143.89, 128.57, 127.54, 126.97, 82.85, 78.53, 24.62. 
 

O
B O

O

2-(para-tolylphenylmethoxy)pinacolborane. 
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.3   
1
H NMR (C6D6, 500 MHz): 7.46 (d, 2H, 3JHH= 7.7 Hz), 7.37 (d, 2H, 3JHH= 7.7 Hz), 7.11 (t, 2H, 3JHH= 7.5 

Hz), 7.01 (t, 1H, 7.5 Hz), 6.93 (d, 2H, 3JHH= 7.7 Hz), 6.43 (s, 1H), 2.05 (s, 3H), 0.99 (s, 12H). 11B{1H} 
NMR (C6D6, 128 MHz): 22.86. 13C{1H} NMR (C6D6, 125 MHz): 144.15, 141.10, 136.93, 129.28, 
128.54, 127.46, 127.01, 126.94, 82.80, 78.43, 24.64, 21.06 
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2-(di-para-tolylmethoxy)pinacolborane. 
 

1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.4 
1
H NMR (C6D6, 500 MHz): 7.39 (d, 4H, 3JHH= 7.7 Hz), 6.94 (d, 4H, 3JHH= 7.7 Hz), 6.44 (s, 1H), 2.05 (s, 

6H), 1.00 (s, 12H). 11B{1H} NMR (C6D6, 128 MHz): 22.84. 13C{1H} NMR (C6D6, 125 MHz): 141.35, 
136.82, 129.24, 126.99, 82.76, 78.33, 24.66, 21.06 
 

2-(1-phenylethoxy)pinacolborane.  
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2  
1
H NMR (C6D6, 500 MHz): 7.37-7.33 (m, 2H), 7.17-7.11 (m, 2H), 7.08-7.02 (tt, 1H, 3JHH = 7.4, 4JHH = 2.1 

Hz), 5.39 (q, 1H, 3JHH = 6.4 Hz), 1.45 (d, 3H, 3JHH = 6.5 Hz), 1.00 (s, 12H). 11B{1H} NMR (C6D6, 128 

MHz): 22.52. 13C{1H} NMR (C6D6, 125 MHz): 145.39, 128.54, 127.35, 125.70, 82.54, 72.94, 25.79, 
24.70, 24.62. 
 

2-(di-perfluorophenylmethoxy)pinacolborane.  
1
H NMR (C6D6, 500 MHz): 6.90 (s, 1H, H-5), 1.03 (s, 12H, H-7). 11B{1H} NMR (C6D6, 128 MHz): 

22.62. 13C{1H} NMR (C6D6, 125 MHz): 145.13 (dm, C-Ar , J=253.6 Hz), 141.60 (dt, C-Ar, J= 255.4 Hz, 
J= 13.2 Hz), 137.92 (dt, C-Ar, J=250.7 Hz, J=14.1 Hz), 131.78 (s, C-1), 84.14 (s, C-6), 62.77 (s, C-5), 
24.45 (s, C-7). 
Perfluorodiphenylmethanol.   62% isolated yield.  
1
H NMR (C6D6, 500 MHz): 5.94 (d, 1H, H-5, 3JHH = 5.8 Hz), 2.20 (d, 1H, OH, 3JHH = 5.8 Hz). 19F{1H} 
NMR (C6D6, 376 MHz): -143.5 - -143.8 (m, 2F), -153.8 (t, 1F, J=22Hz), -161.6 - -162.0 (m, 2F). 13C{1H} 
NMR (C6D6, 125 MHz): 144.4 (dm, C-Ar , J=253 Hz), 140.9 (dm, C-Ar, J= 255 Hz), 137.4 (dm, C-Ar, 
J=251 Hz), 125.5 (s, C-Ar), 113.7 (s, C-OH). LC-MS: [2M-H]-: Calc: 726.9813. Found: 726.9818 
 

2-(dicyclohexylmethoxy)pinacolborane.  
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1
H NMR (C6D6, 500 MHz): 3.78 (t, 1H, H-5, 3JHH = 6.0 Hz), 1.89-1.82 (m, 2H, H-1), 1.75-1.66 (m, 4H, 

H-Cy), 1.64-1.49 (m, 6H, H-Cy), 1.29-1.07 (m, 10H, H-Cy), 1.10 (s, 12H, H-7). 11B{1H} NMR (C6D6, 

128 MHz): 22.46. 13C{1H} NMR (C6D6, 125 MHz): 82.79 (C-6), 82.14 (C-5), 39.66 (C-1), 30.19 (C-Cy), 
27.64 (C-Cy), 26.94 (C-Cy), 26.82 (C-Cy), 26.58 (C-Cy), 24.68 (C-Cy).  
Dicyclohexylmethanol.   92% isolated yield. 
1
H NMR (C6D6, 500 MHz): 2.88 (q, 1H, H-5, 3JHH = 5.7 Hz), 1.85-1.78 (m, 2H, H-Cy), 1.77-1.67 (m, 

4H, H-Cy), 1.66-1.60 (m, 2H, H-Cy), 1.51-1.44 (m, 2H, H-Cy), 1.40-1.31 (m, 2H, H-Cy), 1.25-0.97 (m, 
10H, H-Cy), 0.81-0.76 (m, 1H, H-OH). 13C{1H} NMR (C6D6, 125 MHz): 80.13 (C-5), 40.30 (C-1), 30.33 
(C-Cy), 27.69 (C-Cy), 27.02 (C-Cy), 26.96 (C-Cy), 26.65 (C-Cy). GC-MS [M-H2O]+

: Calc: 178.17; 
Found: 178.25.  
 
 

  2-(cyclohexylphenylmethoxy)pinacolborane.  
1
H NMR (C6D6, 500 MHz): 7.38-7.33 (m, 2H, H-2), 7.20-7.12 (m, 2H, H-3), 7.10-7.04 (m, 1H, H-4), 

5.03 (d, 1H, H-5, 3JHH = 6.4 Hz), 2.03-1.94 (m, 1H, H-6), 1.75-1.45 (m, 6H, H-Cy), 1.25-1.05 (m, 4H, H-
Cy), 1.03 (s, 6H, H-11), 0.99 (s, 6H, H-11). 11B{1H} NMR (C6D6, 128 MHz): 22.60. 13C{1H} NMR 

(C6D6, 125 MHz): 143.13 (C-1), 128.25 (C-Ar), 127.38 (C-Ar), 127.05 (C-Ar), 82.47 (C-10), 81.48 (C-5), 
45.45 (C-6), 29.65 (C-Cy), 28.63 (C-Cy), 26.78 (C-Cy), 26.47 (C-Cy), 26.40 (C-Cy), 24.64 (C-Cy).   
Cyclohexyl(phenyl)methanol.  83% isolated yield.  
1
H NMR (C6D6, 500 MHz): 7.22-7.17 (m, 4H, H-Ar), 7.12-7.08 (m, 1H, H-Ar), 4.10 (dd, 1H, H-5, 3JHH = 

6.8 Hz, 4JHH = 3.3 Hz), 2.04-1.98 (m, 1H, H-6), 1.72-1.65 (m, 1H, H-Cy), 1.61-1.48 (m, 3H, H-Cy), 143-
1.36 (m, 1H, H-Cy), 1.19 (d, 1H, H-Cy, 3JHH = 3.4 Hz), 1.18-0.98 (m, 4H, H-Cy), 0.94-0.85 (m, 1H, H-
Cy). 13C{1H} NMR (C6D6, 125 MHz): 144.61 (C-1), 127.40 (C-Ar), 126.99 (C-Ar), 79.15 (C-5), 45.54 
(C-6), 29.71 (C-Cy), 28.92 (C-Cy), 26.86 (C-Cy), 26.54 (C-Cy), 26.47 (C-Cy). GC-MS [M]+

: Calc: 
190.14; Found: 190.20. 
 

2-(1-cinnamylethoxy)pinacolborane. 

 
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2  
1
H NMR (C6D6, 500 MHz): 7.22-7.17 (m, 2H), 7.12-7.06 (m, 2H), 7.05-6.99 (m, 1H), 6.64 (dd, 1H, 3JHH 

= 16 Hz, 4JHH = 0.95 Hz), 6.19 (dd, 1H, 3JHH = 16 Hz,  3JHH = 5.9 Hz), 4.98 (ddq, 1H, 3JHH = 6.2 Hz, 3JHH = 
6.4 Hz, 4JHH = 1.2 Hz), 1.33 (d, 3H, 3JHH = 6.4 Hz), 1.06 (d, 12H, 3JHH = 2.3 Hz) 11B{1H} NMR (C6D6, 

128 MHz): 22.50. 13C{1H} NMR (C6D6, 125 MHz): 137.43, 132.72, 129.49, 128.76, 127.65, 126.88, 
82.51, 71.47, 24.95, 24.80, 24.67, 23.43. 
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2-(1-(4-nitrophenyl)ethoxy)pinacolborane.  
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2 
1
H NMR (C6D6, 500 MHz): 7.80-7.72 (m, 2H), 7.00-6.92 (m, 2H), 5.13 (q, 1H, 3JHH = 6.5 Hz), 1.20 (d, 

3H, 3JHH = 6.5 Hz), 0.94 (s, 12H). 11B{1H} NMR (C6D6, 128 MHz): 22.43. 13C{1H} NMR (C6D6, 125 

MHz): 151.82, 147.47, 126.09, 123.64, 82.94, 71.96, 25.33, 24.62. 
 

 

2-(Rotenoxy)pinacolborane.  
1
H NMR (C6D6, 500 MHz): 7.26 (d, 1H, J=8.2 Hz), 6.71 (s, 1H), 6.60 (d, 1H, J=8.2 Hz), 6.51 (s, 1H), 

5.48 (d, 1H, J=4.0), 5.08-5.05 (m, 1H), 4.96 (t, 1H, J=8.8 Hz), 4.89 (t, 1H, J=10 Hz), 4.76-4.73 (m, 1H), 
4.67-4.61 (m, 1H), 4.17 (ddd, 1H, J=1.2, 4.8, 9.8 Hz), 3.59 (s, 3H), 3.31 (s, 3H), 3.12-3.01 (m, 2H), 2.93-
2.85 (m, 1H), 1.58 (s, 3H), 0.95 (s, 6H), 0.92 (s, 6H). 11B{1H} NMR (C6D6, 128 MHz): 22.29. 13C{1H} 
NMR (C6D6, 125 MHz): 162.60, 150.67, 150.19, 150.12, 144.54, 144.40, 130.38, 114.64, 113.96, 
113.20, 111.15, 109.91, 102.88, 101.54, 86.70, 82.67, 70.17, 69.41, 65.45, 56.63, 55.36, 38.03, 32.57, 
24.80, 24.31, 17.32. LC-MS [M+Na]+ Calc.: 545.232, Found: 545.233 

2-(benzyloxy)pinacolborane.  
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2  
1
H NMR (C6D6, 500 MHz): 7.32-7.28 (m, 2H), 7.16-7.10 (m, 2H), 7.08-7.02 (m, 1H), 4.94 (s, 2H), 1.04 

(s, 12H). 11B{1H} NMR (C6D6, 128 MHz): 22.79. 13C{1H} NMR (C6D6, 125 MHz): 140.1, 128.59, 
127.57, 127.05, 82.75, 66.96, 24.70. 
 

2-(2-ethynylbenzyloxy)pinacolborane.   
1
H NMR (C6D6, 500 MHz): 7.61 (m, 1H), 7.35 (dd, 1H, 3JHH= 7.7 Hz), 7.04 (dt, 1H, 3JHH= 7.7 Hz, 4JHH = 

0.96 Hz), 6.86 (m, 1H), 5.34 (s, 2H) 2.89 (s, 1H), 1.03 (s, 12H). 11B{1H} NMR (C6D6, 128 MHz): 22.76. 
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13
C{

1
H} NMR (C6D6, 125 MHz): 142.45, 132.67, 129.22, 127.10, 126.24, 119.94, 82.83, 81.11, 65.26, 

24.68 
2-ethynylbenzyl alcohol.  77% isolated yield. 
1
H NMR (C6D6, 500 MHz): 7.38 (dd, 1H, H-2, 3JHH = 7.7 Hz, 4JHH = 0.9 Hz), 7.32 (d, 1H, H-5, 3JHH = 7.7 

Hz), 7.01 (dt, 1H, H-3, 3JHH = 7.7 Hz, 4JHH = 1.1 Hz), 6.85 (t, 1H, H-4, 3JHH = 7.7 Hz), 4.67 (s, 2H, H-9), 
2.85 (s, 1H, H-8), 1.42 (br s, 1H, OH). 13C{1H} NMR (C6D6, 125 MHz): 144.34 (C-1), 132.82 (C-Ar), 
129.23 (C-Ar), 127.15 (C-Ar), 127.00 (C-Ar), 120.22 (C-6), 82.37 (C-9), 81.53 (C-7), 63.43 (C-8). GC-
MS [M]+

: Calc: 132.06; Found: 132.10. 
 
 

2-(cinnamylmethoxy)pinacolborane.  
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.5  
1
H NMR (C6D6, 500 MHz): 7.22-7.16 (m, 2H), 7.13-7.07 (m, 2H), 7.06-7.00 (m, 1H), 6.62 (dt, 1H, 3JHH 

= 15.9 Hz, 4JHH = 1.7 Hz), 6.19 (dt, 1H, 3JHH = 15.9 Hz, 3JHH = 5.3 Hz), 4.55 (dd, 2H, 3JHH = 5.3 Hz, 4JHH = 
1.7 Hz), 1.08 (s, 12H). 11B{1H} NMR (C6D6, 128 MHz): 22.70. 13C{1H} NMR (C6D6, 125 MHz): 

137.36, 130.91, 128.76, 127.69, 127.52, 126.85, 82.70, 65.54, 24.74. 
 
 

2-(4-chlorobenzyloxy)pinacolborane. 
 

1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2  
1
H NMR (C6D6, 500 MHz): 7.09-7.04 (m, 2H), 7.02-6.96 (m, 2H), 4.76 (s, 2H), 1.03 (s, 12H). 11B{1H} 
NMR (C6D6, 128 MHz): 22.64. 13C{1H} NMR (C6D6, 125 MHz): 138.46, 133.35, 128.71, 128.40, 82.87, 
66.09, 24.69. 
 

2-(cyclohexylmethoxy)pinacolborane.  
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2  
1
H NMR (C6D6, 500 MHz): 3.76 (d, 2H, 3JHH = 64 Hz), 1.75-1.67 (m, 2H), 1.65-1.57 (m, 2H), 1.56-1.45 

(m, 2H), 1.18-1.04 (m, 3H), 1.07 (s, 12H), 0.97-0.84 (m, 2H). 11B{1H} NMR (C6D6, 128 MHz): 22.29. 
13
C{

1
H} NMR (C6D6, 125 MHz): 82.37, 70.60, 39.86, 29.74, 26.90, 26.18, 24.77.  
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B O

O

2-(mesitylmethoxy)pinacolborane.  
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.6  
1
H NMR (C6D6, 500 MHz): 6.73 (s, 2H), 5.03 (s, 2H), 2.37 (s, 6H), 2.12 (s, 3H), 1.04 (s, 12H). 11B{1H} 
NMR (C6D6, 128 MHz): 22.58. 13C{1H} NMR (C6D6, 125 MHz): 137.78, 137.39, 132.98, 129.35, 82.53, 
61.53, 24.70, 21.07, 14.64. 
 
 

O
B O

O

N   2-(4-cyanobenzyloxy)pinacolborane.  
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.4  
1
H NMR (C6D6, 500 MHz): 7.03-6.99 (m, 2H), 6.92-6.87 (m, 2H), 4.667 (s, 2H), 1.04 (s, 12H). 11B{1H} 
NMR (C6D6, 128 MHz): 22.66. 13C{1H} NMR (C6D6, 125 MHz): 144.57, 132.10, 126.78, 118.85, 
111.61, 83.10, 65.84, 24.67. 
 

2-(ferrocenylmethoxy)pinacolborane. 
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.2  
1
H NMR (C6D6, 500 MHz): 4.75 (s, 2H), 4.21 (dd, 2H, 3JHH = 1.9 Hz, 4JHH = 1.9 Hz), 3.98 (s, 5H), 3.95 

(dd, 2H, 3JHH = 1.9 Hz, 4JHH = 1.9 Hz), 1.07 (s, 12H). 11B{1H} NMR (C6D6, 128 MHz): 22.67. 13C{1H} 
NMR (C6D6, 125 MHz): 86.08, 82.61, 69.02, 68.80, 68.52, 63.44, 24.82.  
 
 
 

2-(4-N,N-dimethylaminobenzyloxy)pinacolborane 
1H, 11B{1H} and 13C{1H} spectra are identical to those reported in the literature.4 
1
H NMR (C6D6, 500 MHz): 7.36-7.32 (m, 2H), 6.60-6.53 (m, 2H), 5.00 (s, 2H), 2.50 (s, 6H), 1.07 (s, 

12H). 11B{1H} NMR (C6D6, 128 MHz): 22.80. 13C{1H} NMR (C6D6, 125 MHz): 150.16, 128.57, 112.42, 
82.15, 66.85, 39.92, 24.39.  
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Figure S5. 1H NMR spectrum of 2-(diphenylmethoxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S6. 11B NMR spectrum of 2-(diphenylmethoxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin.  
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Figure S7. 13C NMR spectrum of 2-(diphenylmethoxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S8. 1H NMR spectrum of 2-(para-tolylphenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S9. 11B NMR spectrum of 2-(para-tolylphenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S10. 13C NMR spectrum of 2-(para-tolylphenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S11. 1H NMR spectrum of 2-(di-para-tolylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S12. 11B NMR spectrum of 2-(di-para-tolylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S13. 13C NMR spectrum of 2-(di-para-tolylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S14. 1H NMR spectrum of 2-(1-phenylethoxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S15. 11B NMR spectrum of 2-(1-phenylethoxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin.  
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Figure S16. 13C NMR spectrum of 2-(1-phenylethoxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S17. 1H NMR spectrum of 2-(di-perfluorophenylmethoxy)pinacolborane acquired in benzene-d6. 
* indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S18. 11B NMR spectrum of 2-(di-perfluorophenylmethoxy)pinacolborane acquired in benzene-d6. 
* indicates excess HBpin.  
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Figure S19. 13C NMR spectrum of 2-(di-perfluorophenylmethoxy)pinacolborane acquired in benzene-d6. 
* indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S20. 1H NMR spectrum of perfluorobenzhydrol acquired in benzene-d6.  
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Figure S21. 19F NMR spectrum of perfluorobenzhydrol acquired in benzene-d6.  
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Figure S22. 13C NMR spectrum of perfluorobenzhydrol acquired in benzene-d6.  
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Figure S23. 1H NMR spectrum of 2-(dicyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S24. 11B NMR spectrum of 2-(dicyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S25. 13C NMR spectrum of 2-(dicyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S26. 1H NMR spectrum of dicyclohexyl methanol acquired in benzene-d6.  
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Figure S27. 13C NMR spectrum of dicyclohexyl methanol acquired in benzene-d6.  
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Figure S28. 1H NMR spectrum of 2-(phenylcyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S29. 11B NMR spectrum of 2-(phenylcyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S30. 13C NMR spectrum of 2-(phenylcyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S31. 1H NMR spectrum of cyclohexyl(benzyl)alcohol acquired in benzene-d6.  
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Figure S32. 13C NMR spectrum of cyclohexyl(benzyl)alcohol acquired in benzene-d6.  
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Figure S33. 1H NMR spectrum of 2-(3-phenylprop-3-enylethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S34. 11B NMR spectrum of 2-(3-phenylprop-3-enylethoxy)pinacolborane acquired in benzene-d6. 
* indicates excess HBpin.  
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Figure S35. 13C NMR spectrum of 2-(3-phenylprop-3-enylethoxy)pinacolborane acquired in benzene-d6. 
* indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S36. 1H NMR spectrum of 2-(4-nitrophenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
 

 

 

‡ 

 

* 

 



S44 

 

 
Figure S37. 11B NMR spectrum of 2-(4-nitrophenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S38. 13C NMR spectrum of 2-(4-nitrophenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S39. 1H NMR spectrum of 2-(rotenoxy)pinacolborane acquired in benzene-d6. * indicates excess 
HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S40. 11B NMR spectrum of 2-(rotenoxy)pinacolborane acquired in benzene-d6. * indicates excess 
HBpin.  
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Figure S41. 13C NMR spectrum of 2-(rotenoxy)pinacolborane acquired in benzene-d6. * indicates excess 
HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S42. 1H NMR spectrum of 2-(benzyloxy)pinacolborane acquired in benzene-d6. * indicates excess 
HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S43. 11B NMR spectrum of 2-(benzyloxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin.  
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Figure S44. 13C NMR spectrum of 2-(benzyloxy)pinacolborane acquired in benzene-d6. * indicates 
excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S45. 1H NMR spectrum of 2-(2-ethynylbenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S46. 11B NMR spectrum of 2-(2-ethynylbenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S47. 13C NMR spectrum of 2-(2-ethynylbenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S48. 1H NMR spectrum of 2-ethynylbenzyl alcohol acquired in benzene-d6.  
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Figure S49. 13C NMR spectrum of 2-ethynylbenzyl alcohol acquired in benzene-d6.  
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Figure S50. 1H NMR spectrum of 2-(3-phenylprop-3-enylmethoxy)pinacolborane acquired in benzene-d6. 
* indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
 

 

 

‡ 

 

* 

 



S58 

 

 

Figure S51. 11B NMR spectrum of 2-(3-phenylprop-3-enylmethoxy)pinacolborane acquired in benzene-
d6. * indicates excess HBpin.  
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Figure S52. 13C NMR spectrum of 2-(3-phenylprop-3-enylmethoxy)pinacolborane acquired in benzene-
d6. * indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S53. 1H NMR spectrum of 2-(4-chlorobenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S54. 11B NMR spectrum of 2-(4-chlorobenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S55. 13C NMR spectrum of 2-(4-chlorobenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S56. 1H NMR spectrum of 2-(cyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S57. 11B NMR spectrum of 2-(cyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
 

 

 

* 

 



S65 

 

 
Figure S58. 13C NMR spectrum of 2-(cyclohexylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S59. 1H NMR spectrum of 2-(2,4,6-trimethylbenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S60. 11B NMR spectrum of 2-(2,4,6-trimethylbenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S61. 13C NMR spectrum of 2-(2,4,6-trimethylbenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S62. 1H NMR spectrum of 2-(4-cyanobenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin. 
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Figure S63. 11B NMR spectrum of 2-(4-cyanobenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S64. 13C NMR spectrum of 2-(4-cyanobenzyloxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin. 
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Figure S65. 1H NMR spectrum of 2-(ferrocenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin, ‡ indicates hexamethylbenzene (internal standard) resonance.  
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Figure S66. 11B NMR spectrum of 2-(ferrocenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin.  
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Figure S67. 13C NMR spectrum of 2-(ferrocenylmethoxy)pinacolborane acquired in benzene-d6. * 
indicates excess HBpin. 
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Figure S68. 1H NMR spectrum of 2-(4-N,N-dimethylaminobenzyloxy)pinacolborane acquired in 
benzene-d6. * indicates excess HBpin.  
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Figure S69. 11B NMR spectrum of 2-(4-N,N-dimethylaminobenzyloxy)pinacolborane acquired in 
benzene-d6. * indicates excess HBpin.  
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Figure S70. 13C NMR spectrum of 2-(4-N,N-dimethylaminobenzyloxy)pinacolborane acquired in 
benzene-d6. * indicates excess HBpin. 
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