Spectroscopic Characterization of Fluorinated

Benzylphosphonic Acid Monolayers on AlO_x/Al Surfaces

William E. Ford,^{*} Ffion Abraham, [§] Frank Scholz, Gabriele Nelles, Graham Sandford,[§] Florian von Wrochem^{*}

Sony Europe Limited, Materials Science Laboratory, Hedelfinger Strasse 61, 70327 Stuttgart, Germany.

[§]Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK

SUPPORTING INFORMATION

Contents:

Tables S1 and S2: SAMs on AlO _x /Al: Physical and calculated properties.
Figure S1: XPS F 1s spectrum of SAM 10.
Figure S2: PM-IRRAS (SAM) spectra for 1–11.
Figure S3: TIR (KBr, CaF ₂) spectra for 1–11.
Table S3, Figure S4 to Figure S7: Vibrational modes from DFT calculations for 9,
10 , 2 , and 11 .

Section 6. Tables S4 and S5: Literature IR results for systems related to 9, 10, 2, and 11.

Section 1.

SAM	Coverage ^{<i>a</i>}	Area (Å ²) ^b	$N(\mathrm{nm}^{-2})$	Φ (eV)	Φ _{norm} ^c (eV)	$\mu_{z}^{d}(\mathbf{D})$	μ_{z} - $\mu_{z}^{ref}(D)$
1	0.906	24.1	4.15	3.18	3.18	-2.664	0.000
2	1.229	17.7	5.64	3.57	3.47	-3.506	-0.842
3	0.73_{0}	29.6	3.38	3.62	3.72	-2.804	-0.140
4	0.917	23.8	4.20	3.41	3.41	-2.071	+0.592
5	0.563	38.4	2.61	3.55	3.77	-2.674	-0.010
6	0.77_{7}	28.2	3.55	3.27	3.29	-2.634	+0.030
7	0.515	42.8	2.34	3.50	3.75	-3.438	-0.774
8	0.77_{1}	28.0	3.57	3.58	3.64	-2.440	+0.224
9	0.503	42.9	2.33	4.08	4.78	-5.560	-2.896
10	0.742	29.1	3.43	4.09	4.28	-4.708	-2.044
11	0.672	32.1	3.11	3.71	3.89	-3.041	-0.377

Table S1. Molecular coverage, surface area per molecule, molecular density N, and work function Φ based on XPS and LI-XPS data for phosphonic acid SAMs on AlO_x/Al substrates. Molecular dipole moments from DFT calculations (Data are from Ref¹).

^{*a*}Coverage as determined from XPS data, relative to a SAM of $C_{12}H_{25}SH$ on Au(111). ^{*b*}Surface area per molecule, assuming a value of 21.6 Å²/molecule for a reference SAM of $C_{12}H_{25}SH$ on Au.² ^{*c*}Work function from LI-XPS data, normalized for molecular density, *N*. ^{*d*}Molecular dipole moment from DFT calculations of a coupled phosphonic acid/Al₆O₁₀ cluster system¹.

Name	Position	FWHM	R.S.F.	Area	% Conc.	%P/%Al				
SAM 1										
P 2s	193.1	2.46	0.34	71	1.80	0.061				
O 1 <i>s</i>	533.0	2.73	0.78	3784	42.18					
C 1 <i>s</i>	286.7	1.21	0.33	1010	26.39					
F 1 <i>s</i>	687.2	0.90	1.00	21	0.18					
Al 2p	76.0	1.71	0.29	996	29.45					
			SAM 2							
P 2s	192.1	2.22	0.34	91	3.39	0.083				
O 1 <i>s</i>	532.4	2.56	0.78	499	8.23					
C 1 <i>s</i>	285.6	1.32	0.33	1193	46.08					
F 1 <i>s</i>	689.2	1.78	1.00	122	1.57					
Al 2p	75.5	1.66	0.29	931	40.74					
			SAM 3							
P 2s	191.9	2.43	0.34	63	1.38	0.050				
O 1 <i>s</i>	532.6	2.63	0.78	4858	46.72					
C 1 <i>s</i>	285.5	1.49	0.33	1067	24.03					
F 1 <i>s</i>	687.0	0.14	1.00	23	0.17					
Al 2p	75.5	1.66	0.29	1086	27.70					
			SAM 4							
P 2s	192.1	2.46	0.34	87	1.89	0.062				
O 1 <i>s</i>	532.5	2.60	0.78	5342	51.07					
C 1 <i>s</i>	285.6	1.69	0.33	709	15.89					
F 1 <i>s</i>	686.1	1.64	1.00	85	0.63					
Al 2p	75.3	1.65	0.29	1203	30.52					

Table S2: Elemental composition of the SAMs based on XPS data.

	SAM 5										
P 2 <i>s</i>	192.2	2.44	0.34	54	1.19	0.038					
O 1 <i>s</i>	532.5	2.52	0.78	4977	48.33						
C 1 <i>s</i>	288.0	3.65	0.33	547	12.45						
F 1 <i>s</i>	688.4	1.68	1.00	934	7.07						
Al 2p	75.3	1.73	0.29	1202	30.96						
SAM 6											
P 2 <i>s</i>	192.6	2.53	0.34	73	1.67	0.052					
O 1 <i>s</i>	532.6	2.52	0.78	4828	48.54						
C 1 <i>s</i>	286.1	1.56	0.33	633	14.91						
F 1 <i>s</i>	688.4	1.70	1.00	382	3.00						
Al 2p	75.6	1.66	0.29	1196	31.89						
SAM 7											
P 2s	191.9	2.19	0.34	45	1.03	0.034					
O 1 <i>s</i>	532.4	2.51	0.78	4515	45.58						
C 1 <i>s</i>	285.8	1.56	0.33	762	18.01						
F 1 <i>s</i>	688.4	1.56	1.00	697	5.49						
Al 2p	75.4	1.69	0.29	1116	29.89						
			SAM 8								
P 2 <i>s</i>	191.9	2.48	0.34	60	1.34	0.053					
O 1 <i>s</i>	532.4	2.57	0.78	4154	40.72						
C 1 <i>s</i>	285.4	3.40	0.33	1089	25.00						
F 1 <i>s</i>	688.2	1.55	1.00	975	7.46						
Al 2p	75.3	1.69	0.29	980	25.48						
			SAM 9								
P 2 <i>s</i>	192.1	2.17	0.34	50	1.05	0.034					
O 1 <i>s</i>	532.4	2.44	0.78	5115	46.89						
C Is	288.6	1.33	0.33	622	13.37						
F 1 <i>s</i>	688.6	1.71	1.00	1130	8.08						
Al 2p	75.2	1.72	0.29	1259	30.61						
	1000		SAM 10			0.0.71					
P 2s	192.2	2.44	0.34	64	1.35	0.051					
O ls	532.4	2.49	0.78	4534	42.43						
C ls	285.7	1.57	0.33	961	21.07						
F Is	688.9	1.56	1.00	1163	8.49						
AI 2 <i>p</i>	75.5	1.70	0.29	1074	26.66						
D A	101.4	0.54	SAM 11		1.00	0.046					
P 2s	191.4	2.54	0.34	57	1.22	0.046					
O Is	532.5	2.49	0.78	4583	43.24						
	285.5	1.47	0.33	981	21.69						
F Is	688.3	1.52	1.00	984	7.24						
AI 2 <i>p</i>	75.3	1.67	0.29	1063	26.61						
P 2	101.0	Blank	(Aluminu	m only)	0.05	0.010					
P 2s	191.8	1.52	0.34	17	0.37	0.013					
O ls	532.4	2.51	0.78	4791	46.34						
C ls	285.9	1.41	0.33	869	19.69						
F 1s	689.0	1.67	1.00	564	4.25						
Al 2p	75.4	1.61	0.29	1144	29.35						

Section 2.

Figure S1: XPS F 1*s* spectrum of SAM **10**, with a single component at 687.76 eV, resulting from the fluorinated ring.

Section 3.

1700 1600 1500 1400

1300 1200 1100

Wavenumber (cm⁻¹)

1000 900 800

824

0.0011

3150 3100 3050

3000 2950 2900

Wavenumber (cm⁻¹)

2850 2800 2750

Section 4.

	3_KI	Br	3_CaF2				
	3205	0.033					
	3101	0.003					
	3080	0.002					
	3061	0.009	3062	0.0000			
	3038	0.021	3037	0.0000			
	3014	0.012	3016	0,0000			
	2972	0.019	2964	0.0002			
	2937	0.013	2924	0.0004			
	2905	0.018	2853	0.0002			
	2841	0.063	2841	0.0003			
	1663	0.013	1650	0.0002			
	1608	0.276	1608	0.0005			
	1581	0.056					
	1532	0.039					
	1500	0.662	1501	0.0015			
_	1471	0.022	1469	0.0003			
(a.u.)	1458	0.074					
Initia	1445	0.086					
Intel	1429	0.021					
	1404	0.070	1404	0.0003			
	1315	0.024					
	1291	0.203	1292	0.0005			
	1272	0,106	1272	0.0004			
	1254	0.376	1255	0.0004			
	1208	0.053					
	1180	0.205	1182	0.0006			
	1138	0.040					
	1116	0.030	1115	0.0003			
	1096	0.098	1101	0.0003			
	1034	0.466	1034	0.0011			
	1012	0.665	998	0.0019			
	952	0.271	949	0.0002			
	932	0.197	932	0.0015			
	821	0.720	819	0.0033			

	4_KI	Зг	4_CaF ₂				
	3425	0.012					
	3083	0.004					
	3065	0.004					
	3040	0.027	3039	0.0001			
	3024	0.026	3023	0.0001			
	2969	0.078	2967	0.0007			
	2953	0.041	2953	0.0006			
	2917	0.047	2923	0.0009			
			2854	0.0004			
	2843	0.050	2843	0.0004			
	1611	0.197	1610	0.0012			
	1585	0.097	1584	0.0006			
	1515	0.725	1514	0.0051			
	1470	0.055					
	1458	0.058	1456	0.0003			
	1442	0.114	1441	0.0007			
(g.u.	1423	0.024					
(IIII)	1398	0.061	1397	0.0002			
	1320	0.014					
	1301	0.117	1300	0.0010			
	1267	0.249					
	1254	0.632	1253	0.0031			
	1212	0.138					
	1183	0.106	1182	0.0009			
	1148	0.130	1147	0.0002			
	1104	0.069					
	1082	0.021					
	1029	0.272	1029	0.0014			
	995	0.856	992	0.0052			
	955	0.226	954	0.0013			
	946	0.219	946	0.0014			
	931	0.086	931	0.0003			
	855	0.017					
	833	0.121	832	0.0017			
	813	0.059	805	0.0003			

700 1600

1500 1400 1300 1200

100

1100 1000 900 800

2950 her (cr

2900 2850 2800 2750

m-1)

3150 3100 3050 3000 Wav

-0.000

 5_CaF_2

2960

2926

2854

1511

1493

1446

1427

1261

1167

1144

974 0.0025

938 0.0002

846 0.0002

832 0.0003

818

6 CaF₂

3017 0.0001

0,0002

0.0004

0.0002

0.0013

0.0050

0.0003

0.0003

0.0004

0.0003

0.0003

0.0002

 7_CaF_2

8_CaF₂

	5424	0.021		
	3080	0.006	3067	0.0001
	3015	0.024		
	3002	0.028	2997	0.0006
	2963	0.059	2954	0.0012
	2936	0.025	2927	0.0008
	2902	0,016		
	2841	0.047	2838	0.0007
	1612	0.200	1613	0.0026
	1575	0,057	1576	0.0007
	1521	0.339	1523	0.0041
	1484	0.888	1481	0.0223
	1460	0.090		
	1444	0.123		
	1412	0.238	1410	0.0033
2	1313	0.040	1313	0.0008
a.e	1297	0.238	1279	0.0048
1015	1252	0.525	1256	0.0047
=	1199	0.030	1202	0.0038
	1176	0.418	1178	0.0073
	1127	0.063		
	1093	0.289	1065	0.0031
	1032	0.420	1035	0.0032
	1022	0.433	1006	0.0107
	974	0.580	968	0.0065
	957	0.422	937	0.0016
	858	0.222	859	0.0027
	837	0.280		
	819	0.112	825	0.0043

11_K	Br	11_CaF ₂				
3429	0.017					
3051	0.001	3048	0.0000			
3031	0.003	3016	0.0001			
3001	0.005	3000	0.0002			
2961	0.021	2959	0.0004			
2928	0.002	2923	0.0006			
2894	0,002					
2840	0.007	2854	0.0003			
1653	0.051					
1570	0,021	1569	0,0002			
1504	0.482					
1484	0.724	1483	0.0109			
1440	0.015					
1414	0.223	1413	0.0027			
1324	0.015					
1267	0.070	1260	0.0002			
1210	0.133	1199	0.0011			
1183	0.047	1181	0.0011			
1154	0.026					
1128	0.106	1126	0.0009			
1094	0.379	1099	0.0011			
1055	0.033	1052	0.0006			
1030	0.232					
1003	0.104	1002	0.0019			
979	0.494	978	0.0081			
949	0,264	948	0.0025			
858	0.099					
848	0.207	848	0.0023			
813	0.018	805	0.0007			

Section 5.

Vibrational modes from DFT calculations for PA derivatives 9, 10, 2, and 11.

Table S3.

	PA 9		PA 10		PA 2			PA 11			
mode	cm ⁻¹	km/mol	mode	cm ⁻¹	km/mol	mode	cm ⁻¹	km/mol	mode	cm ⁻¹	km/mol
37	806	146.5	50	834	20.3	40	822	4.1	52	820	34.6
38	837	135.9	51	835	195.5	41	833	216.8	53	837	83.5
39	878	231.2	52	859	27.4	42	838	10.4	54	843	161.5
40	960	116.3	53	874	256.8	43	868	202.6	55	848	10.5
41	972	209.2	54	931	1.7	44	897	3.2	56	879	234.1
42	1005	45.0	55	952	0.8	45	949	0.2	57	934	9.4
43	1044	50.7	56	979	204.7	46	951	0.5	58	939	19.1
44	1116	53.5	57	994	44.5	47	962	2.4	59	965	17.8
45	1122	27.6	58	1019	33.4	48	968	0.0	60	972	185.7
46	1166	24.2	59	1019	0.3	49	995	0.0	61	1014	0.1
47	1230	34.2	60	1053	127.9	50	1006	7.4	62	1018	48.9
48	1273	176.8	61	1086	2.3	51	1020	3.4	63	1043	30.0
49	1298	10.2	62	1127	4.0	52	1024	32.0	64	1077	234.8
50	1328	2.9	63	1132	6.0	53	1042	2.6	65	1092	1.8
51	1402	10.7	64	1175	2.6	54	1055	49.3	66	1105	2.7
52	1416	5.2	65	1185	7.5	55	1085	12.3	67	1135	7.7
53	1485	375.6	66	1201	0.7	56	1089	2.2	68	1139	9.4
54	1496	233.7	67	1221	32.2	57	1125	8.3	69	1176	4.7
55	1610	3.7	68	1265	198.0	58	1163	0.0	70	1185	1.7
56	1620	17.9	69	1298	9.2	59	1171	0.9	71	1190	0.7
57	2997	3.1	70	1313	8.1	60	1178	0.9	72	1196	37.2
58	3085	1.4	71	1315	3.7	61	1186	1.4	73	1224	44.3
59	3696	125.7	72	1338	2.0	62	1219	32.8	74	1267	201.8
60	3699	140.1	73	1407	7.2	63	1263	186.9	75	1279	18.1
			74	1409	21.7	64	1279	4.9	76	1299	8.6
			75	1414	34.2	65	1291	0.5	77	1307	0.8
			76	1475	322.1	66	1306	1.6	78	1335	2.7
			77	1489	313.5	67	1330	0.4	79	1387	62.0
			78	1511	5.5	68	1347	0.1	80	1413	54.7
			79	1566	8.1	69	1405	6.7	81	1417	14.1
			80	1594	8.7	70	1413	10.7	82	1429	195.3
			81	1616	2.2	71	1445	2.7	83	1452	97.3
			82	1625	20.8	72	1480	45.7	84	1457	139.7
			83	2981	9.6	73	1509	3.9	85	1461	46.3
			84	3054	1.7	74	1551	1.6	86	14/3	164.4
			85	3110	10.4	75	1580	1.4	8/	1505	5.9
			80	3130	3.5	/6	1605	0.7	88	1543	5.9
			8/	3164	0.2	70	2002	0.5	89	1562	1.0
			80	2705	116.5	70	3064	11.2	90	1616	13.0
			00	3703	155.0	20	2007	1.2	02	2024	0.5 70 7
			90	5708	155.0	81	3113	63	92	2904	10.2
						01 82	3121	27	93 04	2774	10.2
						83	3120	0.9	95	3070	20.9
						84	3137	10.1	96	3122	10.9
						85	3145	17.2	97	3131	14.4
						86	3146	23.9	98	3138	3.4
						87	3153	18 7	99	3158	7.5
						88	3154	43	100	3179	5.0
						89	3695	130.2	101	3715	125.8
						90	3708	88.1	102	3718	146.0

Figure S4. Vibrational modes for 9.

Vibration Frequency amplitude/direction Normalized TDM (unit length)

1496 cm⁻¹

1485 cm⁻¹

 1610 cm^{-1}

Figure S5. Vibrational modes for 10.

Figure S6. Vibrational modes for 2.

S22

Section 6.

Table S4.	Literature IR results in the fingerprint region (1700–900 cm ⁻¹) for systems related to 9, 1	10,
2, and 11.	Band assignments are those provided in the cited references.	

System											Ref
C ₆ F ₅ -CH ₂ PO ₃ /IZO	1658 v _{8a}	1529 v _{19a}	1508 ν _{19b}				1257 v(P=O)	1131 v _{7a}	1019 ν(P-O)	979 v _{20a}	3
C ₆ H ₅ -CH ₂ PO ₃ /IZO	1603 v _{8a}		1496 v _{19a}	1455 v _{19b}			1259 v(P=O)		1077 β(C-C)		3
C ₆ H ₅ -CH ₂ S/Au			1495 v _{19a}						1028 v _{18a}		4
NC-C ₆ H ₄ -CH ₂ S/Au	1605 ν _{8a}		1502 v _{19a}						1020 v _{18a}		4
C ₆ H ₅ -CH ₂ Se/Au	1595 8a					1265 3	1181 9a	1101 7a	1074 15	1020 18a	5
С ₆ H ₅ -CH ₂ SeH	1598 8a		1492 19a	1452 19b	1408 CH ₂ sci	1280 3	1173 9a	1101 7a	1065 15	1028 18a	5
C ₆ F ₅ -C ₆ F ₄ -C ₆ F ₄ -(CH ₂) ₃ S/Au	1658 C=C	1543 C=C	1517 C=C	1485 C=C		1259 C-F		1150 C-F	1090 C-F	~940 C-F	6
C ₆ F ₅ -CH ₂ F	1658 C=C	1523 C=C	1510 C-F		1432 CH ₂ δ			1134 C-F	1016 C-F	965 C-F	7
C ₆ F ₅ -CH ₃	1656 v ₁	1519 v ₂	1503 v ₂₂					1124 v ₅		958 v ₆	8
C ₆ F ₅ -SH		1514 ip, 1,4	1496 ip, 3,5					1090 ip, 1,4			9
C ₆ F ₅ -C ₆ H ₄ -CH ₃	1649 C=C	1526 C=C	1510 C=C	1494 C-F		1322 C-F		1141 C-F	1064 C-F	991 C-F	10
$C_6H_5-C_6H_5-SH$			1480 ip, par	1403 ip, perp		1259 ip, perp		1105 ip, perp	1076 ор		11

<u>References</u>: Sang *et al.* (2015)³; Rajalingam *et al.* (2010)⁴; Azzam et al. (2014)⁵; Chesneau *et al.* (2010)⁶; Mooney (1968)⁷; Frankiss and Harrison (1975)⁸; Azzam *et al.* (2012)⁹, Brown and Mooney (1968)¹⁰; Azzam *et al.* (2002)¹¹.

System						Ref
C ₆ H ₅ -CH ₂ PO ₃ /IZO			3067	3034		3
			v ₂	v_{20b}		
C ₆ H ₅ -CH ₂ PO ₃ H ₂		3071	3051	3038		3
		v_{20a}	v_2	v_{20b}		
			20(2			4
C_6H_5 - CH_2S/AU			3063 V			4
			• 2			
C ₆ H ₅ -CH ₂ SH	3102	3084	3062	3027	3003	4
		ν_{20b}	ν_2	v_{20a}		
			2061	2021		10
C ₆ Π ₅ -PO ₃ /120			5001	5051 V		12
			v ₂	v 20b		
C ₆ H ₅ -PO ₃ H ₂		3083	3055	3016		12
		v_{20a}	v_2	v_{20b}		

Table S5. Literature IR results in the aromatic C–H stretch region $(3150-3000 \text{ cm}^{-1})$ for systems related to 9, 10, 2, and 11. Band assignments are those provided in the cited references.

<u>References</u>: Sang et al. (2015)³; Rajalingam et al. (2010)⁴; Gliboff et al. (2013)¹²

Reference List

- (1) Abraham, F.; Ford, W. E.; Scholz, F.; Nelles, G.; Sandford, G.; von Wrochem, F. ACS *Appl.Mater.Interfaces* **2016**, *8*, 11857-11867.
- (2) Schreiber, F. Prog.Surf.Sci. 2000, 65, 151-256.
- (3) Sang, L.; Mudalige, A.; Sigdel, A. K.; Giordano, A. J.; Marder, S. R.; Berry, J. J.; Pemberton, J. E. *Langmuir* **2015**, *31*, 5603-5613.
- (4) Rajalingam, K.; Hallmann, L.; Strunskus, T.; Bashir, A.; Wöll, C.; Tuczek, F. *Phys.Chem.Chem.Phys.* **2010**, *12*, 4390-4399.
- (5) Azzam, W.; Al Rawashdeh, N. A. F.; Al Refaie, N.; Shekhah, O.; Bashir, A. J.Phys.Chem.C 2014, 118, 4846-4859.
- (6) Chesneau, F.; Schupbach, B.; Szelagowska-Kunstman, K.; Ballav, N.; Cyganik, P.; Terfort, A.; Zharnikov, M. *Phys.Chem.Chem.Phys.* **2010**, *12*, 12123-12137.
- (7) Mooney, E. F. Spectrochim. Acta Part A: Mol. Spectrosc. 1968, 24, 1999-2002.
- (8) Frankiss, S. G.; Harrison, D. J. Spectrochim. Acta Part A: Mol. Spectrosc. 1975, 31, 1839-1864.
- (9) Azzam, W.; Bashir, A.; Ulrich Biedermann, P.; Rohwerder, M. *Langmuir* **2012**, *28*, 10192-10208.
- (10) Brown, P. J. N.; Mooney, E. F. Spectrochim.Acta Part A: Molec.Spectrosc. 1968, 24, 1317-1320.
- (11) Azzam, W.; Wehner, B. I.; Fischer, R. A.; Terfort, A.; Wöll, C. Langmuir 2002, 18, 7766-7769.
- (12) Gliboff, M.; Sang, L.; Knesting, K. M.; Schalnat, M. C.; Mudalige, A.; Ratcliff, E. L.; Li, H.; Sigdel, A. K.; Giordano, A. J.; Berry, J. J.; Nordlund, D.; Seidler, G. T.; Brédas, J. L.; Marder, S. R.; Pemberton, J. E.; Ginger, D. S. *Langmuir* **2013**, *29*, 2166-2174.