Sudemycin K: a synthetic anti-tumor splicing inhibitor variant with improved activity and versatile chemistry

Kamil Makowski, Luisa Vigevani, Fernando Albericio, Juan Valcárcel, Mercedes Álvarez

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. Institute for Research in Biomedicine (IRB), Barcelona. Universitat Pompeu Fabra (UPF), Barcelona. Department of Organic Chemistry, Faculty of Chemistry, University of Barcelona. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona. Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Spain

juan.valcarcel@crg.es and mercedesalvarez@ub.edu

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if

required according to the journal that you are submitting your paper to)

TABLE OF CONTENTS

SI 2 – SI 4	Activity assays
SI 4 - SI 6	Chemical Synthesis of Sudemycin derivatives. General procedures
SI 6 - SI 21	Synthetic procedures
SI 22	Figure 1. In vitro A3' complex formation assays
SI 23	Figure 2. In vitro spliceosome assembly assay
SI 24	Figure 3. Effects on cytotoxicity and alternative splicing after drug pulses.
SI 25	Figure 4. Uncropped images from <i>in vitro</i> A3' complex formation assays
SI 26	Supplementary References
SI 27 - SI 122	¹ H-NMR, ¹³ C-NMR and 2D correlation spectra of Synthetic Compounds

Activity assays

Cell culture

HeLa cells were cultured in Glutamax Dulbecco's modified Eagle's medium supplemented with 10% (v/v) fetal bovine serum and penicillin/streptomycin antibiotics (500 u ml⁻¹ penicillin; 0.5 mg ml⁻¹ streptomycin). Cells were kept at 37 °C under 5% CO₂.

Cytotoxicity assays

1000 HeLa cells/well seeded the day before drug treatments. DMSO or drugs diluted in DMSO were added to the medium (1 μ l in 100 μ l total medium, from 4 or 6 10-fold serial dilutions of 10 mM stock solutions). 68 h after treatment, cell medium was replaced with medium containing 10 μ M Alamar Blue/Resazurin¹ (Sigma, R7017), diluted from a 5 mg ml⁻¹ stock in PBS. Cells were incubated at 37 °C for 4 h and fluorescence was measured with an Infinite 200 PRO series multiplate reader (TECAN) using 530 nm and 590 nm as fluorescence excitation and emission wavelengths, respectively. IC50 values were calculated by interpolating 50% viability values with GraphPad Prism 6 Software. Average and standard deviation values were calculated from experimental triplicates.

Drug treatment and alternative splicing analyses

HeLa cells seeded in 96 wells plate (10000 cells/well) were treated with serial dilutions of drugs dissolved in DMSO (1 μ l of treatment in 100 μ l total medium) and incubated for the indicated times. mRNAs were isolated using oligo dT-coated 96 well plates (mRNA catcher PLUS, Life Technologies) and one third of the recovered RNA was reverse-transcribed using Superscript III reverse transcriptase (Invitrogen, Life Technologies). PCR reactions were carried out in 25 μ l reactions with 5 μ l of cDNA and 38 cycles of amplification. Primers used to detect *MCL1* alternative splicing correspond to sequences AGACCTTACGACGGGTTGG and ACCAGCTCCTACTCCAGCAA in exons 1 and 3, generating amplicons of 401 and 153 bp, for exon 2 inclusion and skipping isoforms, respectively. High throughput capillary electrophoresis measurements for the different splicing isoforms were performed in 96-well format in a Labchip GX Caliper workstation (Caliper, Perkin Elmer) using a HT DNA 5K LabChip chip (Perkin Elmer). Percentages of exon 2 inclusion were normalized to DMSO treatment values and IC50 were calculated by interpolating titration curves with GraphPad Prism 6 Software.

In vitro spliceosome A3' complex formation inhibition assays

This assay was carried out as previously described². Specifically, templates for *in vitro* transcription were PCR-amplified from a plasmid containing AdML sequences in order to generate transcripts containing the last 40 nt of intron 1 and the complete exon 2 (PCR primers: GCTAATACGACTCACTATAGGGtgatgatgtcatacttatc, cccactggaaagaccgcgaaga, with the forward primer including the T7 promoter sequence, indicated with capital letters).

Purified PCR products were *in vitro* transcribed in the presence of 32P-Uridine with T7 RNA Polymerase (Promega) and purified by a Sephadex G-50 column (GE Healthcare).

intron. The corresponding transcript sequence is the following: ugaugaugucauacuuauccugucccuuuuuuuuccacagCUCGCGGUUGAGGACAAACUCUUCGCG GUCUUUCCAGUGGG (with exonic sequences in capital letters).

Each splicing reaction contained 1 μ l of RNA mix (1 fmol of RNA, Creatine Phosphate 200 μ M, ATP 10 mM, MgCl₂ 27 mM), 3 μ l of HeLa nuclear extracts (Cilbiotech), 1 μ l of drug or DMSO, 2 μ l of Polyvynil alcohol 15% prewarmed at 30 °C and Buffer D complemented with fresh 0.1 M KCl and 1 mM DTT up to 9 μ l. ATP and Creatine Phosphate were replaced with Buffer D 0.1 M KCl for the –ATP control. The reactions were set up in a 48 wells microplate and incubated at 30 °C for 15'. Subsequently, 5 mg ml⁻¹ heparin and 2.2 μ l of 6X DNA loading dye were added and the reactions were incubated for 10' at room temperature. The products were subsequently loaded on a 1.5% (w/v) low-melting agarose (Invitrogen) gel in 50 mM Tris base and 50 mM glycine buffer for 90' at 4 °C and run at 75 V. Gels were fixed in 10% (v/v) methanol and 10% (v/v) acetic acid for 10' at room temperature, dried for at least 3 hours at 50 °C and exposed overnight to a PhosphorImager screen. The intensity of the complex A3' band over the signal of the whole well were measured by ImageJ, substracted from the blank (i.e. the signal of an equivalent empty area of the gel) and normalized to the DMSO treatment condition. IC₅₀S were calculated by interpolating titration curves with GraphPad Prism 6 Software.

In vitro full spliceosome assembly assay

This assay was carried out as the previous one, but with RNAs containing both AdML exons 1 and 2 and the full intron. the corresponding transcript sequence is: (AAUACACGGAAUUCGAGCUCGCCCACUCUUGGAUCGGAAA-

Reactions were set up as before, but the final concentration of DMSO was kept lower than 2% to avoid DMSO-related inhibitory effects³. Splicing mixes were incubated at 30 °C for 30'. 5 mg ml⁻¹ were added to the reaction and after a 10' incubation at room temperature, 3 μ l of 50% (v/v) glycerol were added. 2% (w/v) low-melting agarose gels were run in 20 mM Tris base and 20 mM glycine buffer for 3 h 50' at 75 V, at 4 °C, as previously reported³. Gels were dried for 2 h at 50 °C and exposed overnight to a PhosphorImager screen.

Pulsed treatments and stability experiments in culture medium

For pulsed drug treatments, cytotoxicity and *MCL1* alternative splicing assays were carried out as previously described, but culture medium was changed 30' post treatment.

For drug stability experiments, complete culture medium containing 10% (v/v) fetal

bovine serum (Gibco, Life Technologies) containing 1 μ M drug or the equivalent volume of DMSO was incubated at 37 °C for the indicated times and subsequently added to plated cells. *MCL1* alternative splicing assays were carried out as described above.

Comparative analysis of Sudemycins solubility

The solubilities of Sudemycin K, D1 and D6 were compared by performing serial dilutions of the drugs (initially dissolved in DMSO at a concentration of 10 mM) in a solution of PBS and isopropanol (1:1 v/v). The dilutions were incubated at room temperature for 24 h, centrifuged in a table-top centrifuge (Eppendorf) at maximum speed for 15 minutes and optical density of the supernatants was measured at the peak of spectral absorbance (236 nM). Tests were performed in triplicate. The results showed that Sudemycins K and D6 displayed equivalent solubilities (estimated at > 10 μ M by previous work⁴). Consistent with previous results⁴, the solubility of Sudemycin D1 was found to be at least 2-fold lower.

Chemical Synthesis of Sudemycin derivatives.

General procedures

Tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) were dried using a PureSolv solvent purification system. All other solvents and reagents were used as purchased, without further purification, unless otherwise indicated. Flash column chromatography was performed on silica gel (60A 35-70 µm) as stationary phase. Analytical and/or preparative HPLC were performed on a Waters instrument. The purification of chiral compounds was carried out using a Phenomenex Lux 5u Cellulose-2 column. Analytical TLC was performed on pre-coated silica gel 60 F254 plates (0.2 mm thick, 20x20 cm) and visualized under UV light (254 and 360 nm), with anisaldehyde in conc. H₂SO₄, with phosphomolybdic acid in ethanol or in ninhydrin in ethanol. Polarimetry studies were performed on a Perkin-Elmer 241 or JascoP-2000 polarimeter equipped with a Na-lamp. IR spectra were recorded on a Thermo Nicolet FT-IR Nexus spectrometer. NMR spectra were recorded on a Varian Mercury 400MHz. Chemical shifts are reported in ppm referenced to the appropriate residual solvent peaks (CDCl₃ or CD₃OD) and coupling constants are reported in Hz. Multiplicity of the carbons was assigned with gHSQC experiments. Standard abbreviations for off-resonance decoupling were employed: s = singlet, d = doublet, t = triplet, q = quadruplet. The same abbreviations were also used for the multiplicity of signals in ¹H-NMR and also, bs = broad singlet, bd =broad doublet, m = multiplet. High Resolution Mass Spectroscopy (HRMS) was performed an Agilent LC/MSD-TOF 2006 system using the ESI-MS technique.

General procedure 1. Staudinger reduction of azide to amine and coupling with acid. Synthesis of compounds S3, S5, 17, Sudemycin K and 3:

The dry azide (1 eq) was dissolved in dry benzene and treated with Ph_3P (2 eq) at rt. The reaction solution was degassed with nitrogen and heated at 55 °C for 2 h, the transformation of starting material was controlled by TLC. Water (10 eq) was added and the reaction mixture heated again at 55 °C for another 2 h. The reaction mixture was cooled to rt and diluted with a mixture of CH_2Cl_2 and diethyl ether (8:2). This mixture was shaken vigorously, dried over MgSO₄, filtered, and concentrated. The resulting amine intermediate was used in the next step without further purification.

A stirred solution of crude amine (1 eq) in dry MeCN (2 ml) was treated with *i*-Pr₂EtN (5 eq) and a solution of acid (1.7 eq) in MeCN (0.5 ml). This mixture was cooled in an icebath and HBTU (1.45 eq) was added portion wise to the reaction solution. The reaction suspension warmed to rt and stirred 2 h and diluted with EtOAc. After successive washing with saturated aqueous NaHCO₃, saturated aqueous NH₄Cl, saturated NaHCO₃ solutions and brine, the organic layer was dried over MgSO₄ and evaporated. The residue was purified on silica gel column chromatography with hexane-EtOAc to give corresponding amide.

General procedure 2. Julia-Kocienski Olefination. Synthesis of compounds 12, 14 and 21:

A mixture of sulfone $\mathbf{11}^4$ (1.3 eq) and aldehyde (1 eq) was dried under reduced pressure overnight then dissolved in dry THF, and cooled to -78 °C. This cold solution was stirred and a solution of NaHMDS (1.25 eq, 1M in THF) was added drop-wise. The resulting yellow suspension was stirred at -78 °C for 1 h, allowed to warm in an ice bath for 40 min, and then allowed to warm to rt and stirred for 1 h. The reaction mixture was quenched with pH 7 buffer solution and extracted with CH₂Cl₂. The organic layer was dried (MgSO₄), filtered, and concentrated in vacuo. The resulting residue was purified on a silica gel column chromatography with hexane-EtOAc to give corresponding olefin.

General procedure 3. Removal of TBS protecting group. Synthesis of compounds S4, 15a, 15b, S6 and 22:

A solution of TBS protected alcohol (1 eq) in THF was cooled in an ice-bath and TBAF (1.3 eq, 1.0 M in THF) was slowly added using a syringe during a period of 5 minutes. The light yellow solution was allowed to stir for 1 h at 0 °C and after for an additional 2 h at rt. The reaction time was monitored by TLC until the starting material was consumed. The solution was diluted with EtOAc and saturated aqueous NaHCO₃. The organic layer was separated, washed with brine (50 ml) then dried over MgSO₄ and concentrated. The crude residue was purified on silica gel column chromatography with hexane-EtOAc to give corresponding alcohol.

General procedure 4. Ester formation with isobutyric anhydride. Synthesis of compounds 1-4, 5a and 5b:

A stirred solution of alcohol (1 eq) and DMAP (0.5 eq) in CH_2Cl_2 (2 ml) was cooled at 0 °C and Et_3N (5 eq) was added. After 5-10 min isobutyric anhydride (3.3 eq) was added and the stirring was maintained for 90 min at 0 °C. The reaction time was monitored by TLC until the starting material was consumed. Water was added to the reaction mixture and diluted with CH_2Cl_2 . The organic layer was separated and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over MgSO₄ and evaporated. Purification of the residue on silica gel column chromatography with hexane-EtOAc gave corresponding ester.

Ethyl (2E,4E)-6-((1S,4S)-4-azidocyclohexyl)-2,4-dimethylhexa-2,4-dienoate (S1)

A solution of *t*-BuOK (1 ml, 1mmol) 1M in THF was slowly added to a cooled (-78 °C) suspension of (1ethoxy-1-oxopropan-2-yl)triphenylphosphonium

 $bromide^{5}$ (0.72 g, 1.06 mmol) in $CH_{2}Cl_{2}$ (3 ml). After,

the reaction mixture was warmed to 0 °C and stirred 30 min. After this time, a solution of $\mathbf{9}^4$ (0.11 g, 0.53 mmol) in CH₂Cl₂ (2 ml) was added via cannula and the solution was stirred over 1 h at 0 °C and 5 h at rt. Then, the reaction was quenched with saturated aqueous NH₄Cl, diluted with CH₂Cl₂ and washed with brine. The organic layer was dried over MgSO₄ and the solvent was evaporated. The residue was purified on silica gel column chromatography with hexane-EtOAc (95:5) to give the title compound (75 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 1.29 (t, *J* = 7.1 Hz, 3H), 1.62 – 1.48 (m, 9H), 1.83 (s, 3H), 2.00 (s, 3H), 2.11 – 2.06 (m, 2H), 3.82 – 3.78 (m, 1H), 4.19 (q, *J* = 7.1 Hz, 2H), 5.60 (t, *J* = 7.5 Hz, 1H), 7.11 (s, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 14.2 (q), 14.4 (q), 16.6 (q), 27.5 (t), 29.4 (t), 35.2 (t), 37.0 (d), 57.9 (d), 60.7 (q), 125.3 (s), 133.2 (s), 134.8 (d), 143.0 (d), 169.3 (s). IR (NaCl film) 2099, 1708, 1383, 1250, 1119 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₆H₂₆N₃O₂: 292.20195 [M+H]; found: 292.20235

(2E,4E)-6-((1S,4S)-4-Azidocyclohexyl)-2,4-dimethylhexa-2,4-dien-1-ol (S2)

A solution of DIBALH (0.6 ml, 0.6 mmol) 1 M in heptane was slowly added to a solution of **S1** (70 mg, 0.24 mmol) in CH_2Cl_2 (2 ml) cooled at -78 °C. The mixture was stirred over 2.5h. The reaction was quenched with MeOH (0.3

ml) and saturated aqueous potassium sodium tartrate (2.5 ml) at -78 °C. After the mixture was warmed to rt and extracted with AcOEt (3 x 8 ml). The organic layers were washed with brine and dried with MgSO₄ and evaporated. The residue was purified on silica gel column chromatography with hexane-EtOAc (9:1) to give **S2** (55 mg, 93%). ¹H

NMR (400 MHz, CDCl₃) δ 1.36 – 1.23 (m, 4H), 1.58 – 1.50 (m, 5H), 1.73 (s, 3H), 1.80 (s, 3H), 2.09 – 1.95 (m, 2H), 3.80 – 3.76 (m, 1H), 4.02 (s, 2H), 5.31 (t, *J* = 7.5 Hz, 1H), 5.88 (s, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 15.5 (q), 17.1 (q), 27.5 (t), 29.4 (t), 34.9 (t), 37.1 (d), 58.0 (d), 69.6 (t), 128.9 (d), 129.7 (d), 133.2 (s), 134.2 (s). IR (NaCl film) 3564-3083, 2099, 1383, 1254 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₄H₂₅N₃O: 250.1919 [M+H]; found: 250.1914

(2E,4E)-6-((1S,4S)-4-Azidocyclohexyl)-2,4-dimethylhexa-2,4-dienal (10)

Dess–Martin periodinate (112 mg, 0.26 mmol) was added portionwise over a mixture of **S2** (55 mg, 0.22 mmol) and solid NaHCO₃ (22 mg, 0.26 mmol) in dry CH_2Cl_2 (2 ml) cooled at 0 °C. The resulting solution was stirred for 1 h at

rt. After this time the reaction mixture was diluted with CH_2CI_2 , saturated aqueous NaHCO₃ (2 ml) and saturated aqueous sodium thiosulfate (2 ml). The mixture was allowed to stir for 1 h at rt. The aqueous layer was separated and extracted with CH_2CI_2 (2 × 5 ml). The combined organic fractions were dried over MgSO₄ and concentrated. The resulting residue was purified on a silica gel column chromatography with hexane-AcOEt (95:5 to 90:10) to give **10** (38 mg, 70%) as an oil. ¹H NMR (400 MHz, CDCI₃) δ 1.22 – 1.14 (m, 1H), 1.34 – 1.25 (m, 2H), 1.53 – 1.46 (m, 4H), 1.79 – 1.73 (m, 2H), 1.89 (s, 3H), 1.90 (s, 3H), 2.12 – 2.05 (m, 2H), 3.84 – 3.69 (m, 1H), 5.82 (t, *J* = 7.5 Hz, 1H), 6.67 (s, 1H), δ 9.32 (s, 1H). ¹³C NMR (100.6 MHz CDCI₃) δ 10.8 (q), 16.2 (q), 27.5 (t), 29.4 (t), 35.5 (t), 36.9 (d), 57.8 (d), 134.1 (s), 135.5 (s), 139.5 (d), 155.1 (d), 196.3 (d). IR (NaCl film) 2099, 1678, 1619, 1384, 1261, 1023 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₄H₂₄N₃O: 248.17574 [M+H]; found: 248.17708

(3*R*,7*S*)-7-((1*E*,3*E*,5*E*)-7-((1*S*,4*R*)-4-Azidocyclohexyl)-3,5-dimethylhepta-1,3,5-trien-1-yl)-5,5-dimethyl-1,6-dioxaspiro[2.5]octane (12)

Following the general procedure 2, sulfone **11**⁴ (65 mg, 0.18 mmol) and aldehyde **10** (35 mg, 0.14 mmol) led to compound **12** (E/Z ratio 96:4). Compound **12** was obtained by purification with silica gel column chromatography with hexane-

EtOAc (85:15) to give triene as an oil (30 mg, 80%). ¹H NMR (400 MHz, CDCl₃) δ 1.25 – 1.12 (m, 2H), 1.28 (s, 3H), 1.38 – 1.31 (m, 2H), 1.40 (s, 3H), 1.63 – 1.50 (m, 5H), 1.74 (s, 3H), 1.83 – 1.77 (m, 2H), 1.88 (s, 3H), 1.99 – 1.89 (m, 2H), 2.04 (dd, J = 7.5, 6.5 Hz, 2H), 2.57 (s, 2H), 3.82 – 3.76 (m, 1H), 4.52-4.45 (m, 1H), 5.33 (t, J = 7.5, 1H), 5.62 (dd, J = 15.6, 6.7 Hz, 1H), 5.90 (s, 1H), 6.28 (d, J = 15.6, Hz, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 14.1 (q), 17.2 (q), 23.9 (q), 27.5 (t), 29.4 (t), 31.7 (q), 35.1 (t), 37.1 (d), 38.8 (t), 42.6 (t), 51.2 (t), 55.8 (s), 58.1 (d), 69.7 (d), 73.1 (s), 128.3 (d), 130.1 (d), 132.2 (s), 133.6 (s), 136.5 (d), 137.1 (d).). IR (NaCl film) 2099, 1383, 1327, 1259, 1063 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₃H₃₆N₃O₂: 386.28075 [M+H]; found: 386.28075

4-((*tert*-Butyldimethylsilyl)oxy)-*N*-((1*R*,4*S*)-4-((2*E*,4*E*,6*E*)-7-((3*R*,5*S*)-7,7-dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3,5-dimethylhepta-2,4,6-trien-1-yl)cyclohexyl)pent-2-enamide (S3)

Following the general procedure 1, azide **12** (33 mg, 0.085 mmol) and (*S*,*Z*)-4-(TBS-oxy)pent-2-enoic acid⁶ led to amide **S3**. Purification of the compound on silica gel column chromatography

with hexane-EtOAc (90:10 to 85:15) gave **S3** (Z/E: 7:3, 33 mg, 68%, 2 steps) as a colorless oil. This mixture was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 0.04 (s, 3H), 0.05 (s, 3H), 0.87 (s, 9H), 1.20 – 1.13 (m, 4H), 1.27 – 1.25 (m, 3H), 1.29 – 1.27 (m, 3H), 1.41 (s, 3H), 1.69 – 1.55 (m, 8H), 1.74 (s, 3H), 1.87 (s, 3H), 2.02 – 1.92 (m, 2H), 2.09 – 2.04 (m, 2H), 2.57 (s, 2H), 4.07 – 4.01 (m, 1H), 4.51 – 4.45 (m, 1H), 5.34 (t, *J* = 7.5 Hz, 1H), 5.57 – 5.49 (m, 2H), 5.66 – 5.60 (m, 1H), 5.90 (s, 1H), 5.99 (dd, *J* = 11.5, 7.9 Hz, 1H), 6.28 (d, *J* = 15.7 Hz, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 14.1 (q), 17.3 (q), 23.9 (q), 26.0 (q), 28.1 (t), 29.5 (t), 29.8 (t), 31.7 (q), 34.3 (t), 36.4 (d), 38.8 (t), 42.6 (t), 45.5 (d), 51.2 (t), 55.8 (s), 65.6 (d), 69.8 (d), 73.2 (s), 120.0 (d), 128.4 (d), 130.1 (d), 132.3 (s), 133.6 (s), 136.4 (d), 137.1 (d), 150.2 (d), 165.0 (s). IR (NaCl film) 1623, 1533, 1384, 2352, 2075 cm⁻¹. HRMS (+ESI): m/z calcd for C₃₄H₅₈NO₄Si: 572.41296 [M+H]; found: 572.41382

N-((1R,4S)-4-((2E,4E,6E)-7-((3R,5S)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3,5-

dimethylhepta-2,4,6-trien-1yl)cyclohexyl)-4-hydroxypent-2enamide (S4)

Following the general procedure 3, TBS protected alcohol **S3** (30 mg, 0.052 mmol) led to alcohol **S4.** Purification on

silica gel with hexane-EtOAc (7:3) gave **S4** (Z/E 7:3, 21 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 1.24 – 1.17 (m, 4H), 1.38 (s, 3H), 1.39 (s, 2H), 1.45 (s, 3H), 1.72 – 1.64 (m, 8H), 1.78 (s, 3H), 1.92 (s, 3H), 2.05 – 1.96 (m, 2H), 2.13 – 2.09 (m, 2H), 2.61 (s, 2H), 4.13 – 4.07 (m, 1H), 4.57 – 4.47 (m, 1H), 4.86 – 4.76 (m, 1H), 5.38 (t, *J* = 7.4 Hz, 1H), 5.67 (dd, *J* = 15.7, 6.6 Hz, 1H), 5.78 (d, *J* = 12.0, 1H), 5.9 (bs, 1H), 5.94 (s, 1H), 6.19 (dd, *J* = 12.0, 5.4 Hz, 1H), 6.32 (d, *J* = 15.7 Hz, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 14.1 (q), 17.3 (q), 22.9 (q), 23.9 (q), 28.0 (t), 28.1 (t), 29.4 (t), 31.7 (q), 34.3 (t), 36.5 (d), 38.8 (t), 42.6 (t), 46.0 (d), 51.2 (t), 55.8 (s), 64.7 (d), 69.7 (d), 73.2 (d), 123.2 (d), 128.5 (d), 129.9 (d), 132.3 (s), 133.7 (s), 136.3 (d), 137.0 (d), 150.2 (d), 165.9 (s). IR (NaCl film) 3540-3200, 1657, 1623, 1536, 1382, 1062 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₈H₄₃NO₄: 458.32649 [M+H]; found: 458.32669.

(*S,Z*)-5-(((1*R*,4*R*)-4-((2*E*,4*E*,6*E*)-7-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3,5-dimethylhepta-2,4,6-trien-1-yl)cyclohexyl)amino)-5-oxopent-3-en-2-yl isobutyrate (1)

Following the general procedure 4, alcohol **S4** (18 mg, 0.039 mmol) led to ester **1**. The purification on silica gel column chromatography with hexane-EtOAc (8:2) gave a diasteromeric mixture. This mixture was purificated

again by semi-preparative RP-HPLC to give **1** (5 mg, 25%). ¹H NMR (400 MHz, CDCl₃) δ 1.15 – 1.13 (m, 2H), 1.15 (s, 3H), 1.17 (s, 3H), 1.29 (s, 3H), 1.36 (d, *J* = 6.3 Hz, 3H), 1.41 (s, 3H), 1.65 – 1.57 (m, 9H), 1.74 (s, 3H), 1.88 (s, 3H), 2.03 – 1.91 (m, 2H), 2.09 – 2.04 (m, 2H), 2.56 – 2.50 (m, 1H), 2.57 (s, 2H), 4.17 – 4.10 (m, 1H), 4.52 – 4.45 (m, 1H), 5.35 (t, *J* = 7.5 Hz, 1H), 5.67 – 5.59 (m, 2H), 5.82 – 5.75 (m, 2H), 5.90 (s, 1H), 6.28 (d, *J* = 15.7 Hz, 1H), 7.27 – 7.25(m, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 14.1 (q), 17.2 (q), 19.0 (q), 19.1 (q), 20.4 (q), 23.9 (q), 27.8 (t), 29.7 (t), 29.7 (t), 31.7 (q), 34.1 (d), 36.8 (t), 38.8 (t), 42.6 (t), 45.4 (d), 51.2 (t), 55.8 (s), 69.1 (d), 69.8 (d), 73.2 (s), 125.8 (d), 128.4 (d), 130.4 (d), 132.2 (s), 133.4 (s), 136.5 (d), 137.1 (d), 137.7 (d), 165.0 (s), 177.5 (s). IR (NaCl film) 1735, 1689, 1628, 1533, 1450, 1368, 1241, 1050 cm⁻¹. HRMS (+ESI): m/z calcd for C₃₂H₅₀NO₅: 528.36835 [M+H]; found: 528.36835.

(3*R*,7*S*)-7-(3-((2*S*,5*R*)-5-Azido-1,3-dioxan-2-yl)prop-1-en-1-yl)-5,5-dimethyl-1,6dioxaspiro[2.5]octane (14)

Following the general procedure 2, sulfone **11** (309 mg, 0.877 mmol) and 13^7 (165 mg, 0.964 mmol) led to compound **14**. Purification was carried out on a silica gel column chromatography with CH₂Cl₂-EtOAc (95:5) to give

127 mg (42%) of the product as a diasteromeric mixture (E/Z ratio 1:1). This mixture was used without further purification.

(*S*,2*Z*)-4-((*tert*-Butyldimethylsilyl)oxy)-*N*-((2*R*,5*R*)-2-(3-((3*R*,5*S*)-7,7-dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)allyl)-1,3-dioxan-5-yl)pent-2-enamide (S5)

Following the general procedure 1, azide **14** (114 mg, 0.369 mmol) and (*S*,*Z*)-4-(TBS-oxy)pent-2-enoic acid led to compound **S5** The purification was carried out on silica gel column

chromatography with hexane-EtOAc (9:1 to 7:3) to give 147 mg (81%, 2 steps) of desired amide as a colorless oil with ratio Z/E: 1:1. This mixture was used without further purification.

(*S*,*Z*)-*N*-((2*R*,5*R*)-2-((*E*)-3-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)allyl)-1,3dioxan-5-yl)-4-hydroxypent-2-enamide (15a) and (*S*,*Z*)-*N*-((2*R*,5*R*)-2-((*Z*)-3-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)allyl)-1,3-dioxan-5-yl)-4-hydroxypent-2enamide (15b)

Following the general procedure 3, TBS protected alcohol **S5** (140 mg, 0.282 mmol) led to alcohols **15a** and **15b**. The purification was carried out on silica gel column chromatography with hexane-EtOAc (1:1 to 0:1) to give 83 mg (77%) of mixture 1:1 E/Z. This mixture was separated by RT-HPLC semi-preparative and both alcohols were collected.

15a ¹H NMR (400 MHz, CDCl₃) δ 1.23 – 1.09 (m, 2H), 1.26 (s, 3H), 1.36 – 1.32 (m, 3H), 1.38 (s, 3H), 1.92 – 1.82 (m, 1H), 2.01 – 1.93 (m, 1H), 2.43 – 2.34 (m, 2H), 2.56 (s, 2H), 3.99 – 3.90 (m, 5H),

4.38 (dd, J = 11.4, 5.7, 1H), 4.61 (t, J = 5.1, 1H), 4.79 (m, 1H), 5.74 – 5.50 (m, 2H), 5.82 (d, J = 12.0, 1H), 6.19 (dd, J = 12.0, 5.6, 1H), 6.89 – 6.70 (m, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 22.9 (q), 23.9 (q), 31.6 (q), 38.1 (t), 38.3 (t), 42.5 (t), 44.1 (d), 51.2 (t), 55.7 (s), 64.7 (d), 69.1 (d), 70.2 (t), 73.2 (s), 102.2 (d), 122.7 (d), 125.5 (d), 134.5 (d), 150.7 (d), 166.1 (s). IR (NaCl film) 3628-3096, 1635, 1440, 1385, 1233, 1158 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₀H₃₁NaNO₆: 404.2044 [M+Na]; found: 404.2044.

15b ¹H NMR (400 MHz, CDCl₃) δ 1.14 (d, *J* = 13.6, 2H), 1.25 (s, 3H), 1.35 (d, *J* = 6.6, 3H), 1.40 (s, 3H), 1.88 (m, 1H), 1.98 (m, 1H), 2.47 (m, 2H), 2.57 (s, 2H), 4.03 – 3.88 (m, 5H), 4.62 (t, *J* = 5.2, 1H), 4.72 (ddd, *J* = 11.5, 6.0, 2.5, 1H), 4.83 – 4.76 (m, 1H), 5.59 – 5.50 (m, 2H), 5.86 (d, *J* = 12.0, 1H), 6.18 (dd, *J* = 12.0, 5.6, 1H), 6.99 (d, *J* = 7.5, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 23.0 (q),

23.8 (q), 31.6 (q), 33.7 (t), 38.1 (t), 42.5 (t), 44.1 (d), 51.2 (t), 55.9 (s), 64.6 (d), 65.0 (d), 70.0 (t), 70.1 (t), 73.2 (s), 101.9 (d), 123.2 (d), 125.6 (d), 133.5 (d), 150.0 (d), 166.1 (s). IR (NaCl film) 3630-3120, 1631, 1440, 1385, 1233, 1158 cm⁻¹. HRMS (+ESI): m/z calcd for $C_{20}H_{31}NaNO_6$: 404.2044 [M+Na]; found: 404.2044.

(S,Z)-5-(((2R,5R)-2-((E)-3-((3R,5S)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)allyl)-1,3dioxan-5-yl)amino)-5-oxopent-3-en-2-yl isobutyrate (2)

Following the general procedure 4, alcohol **15a** (10 mg, 0.026 mmol) led to ester **2**. The purification was carried out on silica gel column

chromatography with hexane-EtOAc (1:9) to give 9.5 mg (79%) of pure ester. ¹H NMR (400 MHz, CDCl₃) δ 1.14 (s, 3H), 1.16 (s, 3H), 1.21 – 1.18 (m, 2H), 1.26 (s, 3H), 1.39 – 1.35 (m, 6H), 1.96 – 1.85 (m, 2H), 2.44 – 2.32 (m, 2H), 2.54 – 2.46 (m, 1H), 2.56 (s, *J* = 4.8, 2H), 3.99 – 3.89 (m, 5H), 4.38 (ddd, *J* = 11.6, 6.1, 2.3, 1H), 4.59 (t, *J* = 5.3, 1H), 5.62 – 5.53 (m, 1H), 5.71 – 5.63 (m, 1H), 5.88 – 5.77 (m, 2H), 6.13 (dq, *J* = 13.2, 6.5, 1H), 7.18 (d, *J* = 7.9, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 19.0 (q), 19.1 (q), 20.1 (q), 23.9 (q), 29.8 (t), 31.6 (d), 34.1 (d), 38.2 (t), 38.3 (t), 42.6 (t), 43.8 (s), 51.2 (t), 55.7 (s), 68.7 (d), 69.1 (d), 70.3 (t), 73.2 (s), 102.2 (d), 123.2 (d), 125.8 (d), 134.3 (d), 142.8 (d), 164.9 (s), 176.8 (s). IR (NaCl film) 1725, 1386, 1194, 1145, 1117, 1040 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₄H₃₈NO₇: 452.2643 [M+H]; found: 452.2641.

(*S*,*Z*)-5-(((2*R*,5*R*)-2-((*E*)-3-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)allyl)-1,3dioxan-5-yl)amino)-5-oxopent-3-en-2-yl isobutyrate (3)

Following the general procedure 4, alcohol **15b** (10 mg, 0.026 mmol) led to ester **3**. The purification was carried out on silica gel column chromatography with hexane-EtOAc (1:9) to give 9 mg (76%) of pure ester. ¹H NMR (400 MHz, CDCl₃) δ 1.14 – 1.09 (m, 2H), 1.14 (s, 3H), 1.16 (s, 3H), 1.25 (s, 3H), 1.37 (d, *J* = 6.5, 3H), 1.40 (s, 3H), 2.01 – 1.82 (m, 2H), 2.49 – 2.44 (m, 2H),

2.54 – 2.50 (m, 1H), 2.56 (s, 2H), 4.00 – 3.88 (m, 5H), 4.60 (t, J = 5.2, 1H), 4.70 (ddd, J = 11.5, 7.2, 2.4, 1H), 5.64 – 5.47 (m, 2H), 5.92 – 5.75 (m, 2H), 6.14 (dq, J = 13.1, 6.5, 1H), 7.17 (d, J = 8.0, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 19.0 (q), 19.1 (q), 20.1 (q), 23.8 (q), 31.7 (q), 33.7 (t), 34.1 (d), 38.2 (t), 42.5 (t), 43.8 (s), 51.1 (t), 55.7 (s), 64.9 (d), 68.7 (d), 70.3 (t), 70.3 (t), 73.2 (s), 102.0 (d), 123.2 (d), 126.0 (d), 133.3 (d), 142.8 (d), 165.0 (s), 176.8 (s). IR (NaCl film) 1738, 1614, 1521, 1456, 1373, 1123, 1066 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₄H₃₈NO₇: 452.2643 [M+H]; found: 452.2646.

(*S,Z*)-4-((*tert*-Butyldimethylsilyl)oxy)-*N*-((1*R*,4*R*)-4-((2*E*,4*Z*)-5-((3*R*,5*S*)-7,7-Dimethyl-1,6dioxaspiro[2.5]octan-5-yl)-3-methylpenta-2,4-dien-1-yl)cyclohexyl)pent-2-enamide (17)

Following the general procedure 1, azide **16** (118 mg, 0.344 mmol, mixture E/Z, 9:1) led to compound **17** (145 mg, 75%, 2 steps) as a diastereomeric mixture with ratio E/Z = 9:1. This mixture was purified on silica gel column chromatography (40 cm long column) with

hexane-Et₂O (9:1) and 11 mg of pure Z diastereomer was collected. ¹H NMR (400 MHz, CDCl₃) δ 0.00 (s, 3H), 0.01 (s, 3H), 0.83 (s, 9H), 1.18 – 1.07 (m, 3H), 1.23 (m, 3H), 1.33 (s, 3H), 1.49 – 1.42 (m, 1H), 1.52 (d, J = 2.1, 3H), 1.67 – 1.56 (m, 7H), 1.71 (s, 3H), 2.08 –

1.79 (m, 4H), 2.52 (s, 2H), 4.09 – 3.96 (m, 1H), 4.86 (ddd, J = 11.3, 8.7, 2.0, 1H), 5.25 (dd, J = 11.7, 8.7, 1H), 5.37 (t, J = 7.5, 1H), 5.59 – 5.43 (m, 2H), 5.72 (d, J = 7.8, 1H), 5.96 – 5.89 (m, 2H). ¹³C NMR (100.6 MHz CDCl₃) δ -4.6 (q), -4.5 (q), 16.8 (q), 18.3 (q), 23.9 (q), 24.0 (q), 26.0 (q), 28.0 (t), 28.2 (t), 29.7 (t), 29.8 (t), 31.8 (t), 34.4 (t), 36.6 (d), 38.9 (t), 42.5 (d), 45.3 (d), 51.2 (t), 55.9 (s), 65.3 (d), 65.6 (d), 73.2 (s), 120.1 (d), 129.2 (d), 130.0 (d), 133.0 (s), 136.0 (d), 150.1 (d), 165.0 (s). IR (NaCl film) 1737, 1668, 1632, 1529, 1448, 1244, 1049 cm⁻¹. HRMS (+ESI): m/z calcd for C₃₁H₅₄NO₄Si: 532.3822 [M+H]; found: 532.3827.

(*S*,*Z*)-*N*-((1*R*,4*R*)-4-((2*E*,4*Z*)-5-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3methylpenta-2,4-dien-1-yl)cyclohexyl)-4-hydroxypent-2-enamide (S6)

Following the general procedure 3, TBS protected alcohol **17** (9 mg, 0.015 mmol) led to alcohol **S6**. The purification on silica gel column chromatography with hexane-EtOAc (3:7) gave 5.5 mg (80%) of desired alcohol. ¹H NMR (400 MHz, CDCl₃) δ 1.14 – 1.02 (m, 3H), 1.20 (s, 3H),

1.28 (d, J = 6.7, 3H), 1.31 (s, 3H), 1.48 – 1.40 (m, 1H), 1.66 – 1.52 (m, 7H), 2.14 – 1.78 (m, 4H), 1.68 (s, 3H), 2.50 (s, 2H), 4.06 – 3.98 (m, 1H), 4.74 – 4.63 (m, 1H), 4.88 – 4.79 (m, 1H), 5.26 – 5.20 (m, 1H), 5.37 – 5.31 (m, 1H), 5.70 (d, J = 12.0 1H), 5.88 (d, J = 11.6, 1H), 6.02 (d, J = 7.1, 1H), 6.07 (dd, J = 12.0, 5.4, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 16.9 (q), 22.9 (q), 24.0 (q), 27.8 (t), 28.0 (t), 29.7 (t), 31.8 (d), 34.4 (t), 36.7 (d), 38.9 (t), 42.5 (t), 45.7 (d), 51.2 (t), 56.0 (s), 64.7 (d), 65.3 (d), 73.2 (s), 123.4 (d), 129.2 (d), 129.7 (d), 133.1 (s), 135.9 (d), 150. 0(d), 166.0 (s). IR (NaCl film) 3580-3096, 1660, 1540, 1440, 1380, 1183, 1108 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₅H₄₀NO₄: 418.2957 [M+H]; found: 418.2955.

(*S*,*Z*)-5-(((1*R*,4*R*)-4-((2*E*,4*Z*)-5-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3-

7.7-Dimetriyi-1,6-dioxaspiro[2.5]octan-5-yi)-3methylpenta-2,4-dien-1-yl)cyclohexyl)amino)-5oxopent-3-en-2-yl isobutyrate (4)

Following the general procedure 4, alcohol **S6** (5.5 mg, 0.013 mmol) led to ester **4**. The purification on silica gel with hexane-EtOAc (7:3) gave 5 mg (80%) of pure ester. ¹H NMR (400 MHz, CDCl₃) δ 1.15 (s, 3H), 1.17 (s, 3H), 1.24 –

1.18 (m, 2H), 1.26 (s, 3H), 1.39 – 1.34 (m, 6H), 1.50 – 1.43 (m, 1H), 1.69 – 1.54 (m, 8H), 1.75 (s, 3H), 2.12 – 1.86 (m, 4H), 2.57 – 2.48 (m, 3H), 4.18 – 4.09 (m, 1H), 4.95 – 4.84 (m, 1H), 5.28 – 5.22 (m, 1H), 5.43 (t, J = 7.5, 1H), 5.63 (dd, J = 11.6, 9.0, 1H), 5.84 – 5.73 (m, 2H), 5.96 (d, J = 11.6, 1H), 7.28 (d, J = 7.8, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 16.7 (q), 19.0 (q), 19.1 (q), 20.4 (q), 23.9 (q), 27.7 (t), 28.1 (t), 29.7 (t), 29.8 (t), 31.8 (q), 34.1 (d), 34.7 (t), 36.7 (d), 39.0 (t), 42.6 (t), 45.4 (d), 51.1 (t), 55.8 (s), 65.3 (d), 69.1 (d), 73.2 (d),

125.7 (d), 129.1 (d), 130.6 (d), 132.8 (s), 136.1 (d), 137.9 (d), 165.0 (s), 177.5 (s). IR (NaCl film) 1730, 1685, 1625, 1536, 1192, 1050 cm⁻¹. HRMS (+ESI): m/z calcd for $C_{29}H_{46}NO_5$: 488.3376 [M+H]; found: 488.3368.

tert-Butyl (E)-4-(4-Ethoxy-3-methyl-4-oxobut-2-en-1-yl)piperazine-1-carboxylate (S7)

Dry DMSO (6.15 ml, 86.7 mmol) was added to a solution of oxalyl chloride (3.73 ml, 43.5 mmol) in dry CH_2Cl_2 (50 ml) cooled at -78 °C and the mixture was stirred 10 min. After, a solution of commercial **18** (5 g, 21.7 mmol) in CH_2Cl_2 (10

ml) was added via cannula and the solution was stirred over 80 min at -78 °C. Et₃N (18 ml, 130 mmol) was added and the reaction mixture was stirred for 10 min at -78 °C and 1 h at rt. After this time, the suspension was filtered off and the organic layer was washed with H_2O (15 ml), dried with MgSO₄ and evaporated. The resulting aldehyde intermediate was used in the next step without further purification.

A solution of *t*-BuOK (22 ml, 22 mmol) 1M in THF was slowly added to as suspension of (1-ethoxy-1-oxopropan-2-yl)triphenylphosphonium bromide ⁵ (10.2 g, 23 mmol) in CH₂Cl₂ (40 ml) at -78 °C. After the addition the reaction mixture was warmed to 0 °C and stirred 30 min. After this time a solution of aldehyde *tert*-butyl 4-(2-oxoethyl)piperazine-1-carboxylate (3.5 g, 15.3 mmol) in CH₂Cl₂ (10 ml) was added via cannula and the solution was stirred over 1 h at 0 °C and 1 h at rt. The reaction was quenched with saturated aqueous NH₄Cl, diluted with CH₂Cl₂, washed with brine and the organic layer was dried over MgSO₄. The solvent was evaporated the residue was purified on silica gel column chromatography with hexane-EtOAc (4:6 to 3:7) to give 2.44 g (65%) of desired olefin. ¹H NMR (400 MHz, CDCl₃) δ 1.29 (t, *J* = 7.1 Hz, 3H), 1.46 (s, 9H), 1.85 (d, *J* = 1.3 Hz, 3H), 2.44 – 2.38 (m, 4H), 3.14 (d, *J* = 6.5, Hz, 2H), 3.48 – 3.43 (m, 4H), 4.19 (q, *J* = 7.1 Hz, 2H), 6.80 (tq, *J* = 6.5, 1.3 Hz, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 12.6 (q), 14.1 (q), 28.2 (q), 53.0 (t), 56.1 (t), 60.4 (t), 79.4 (s), 130.0 (s), 137.4 (d), 154.5 (s), 167.3 (s). IR (NaCl film) 1699, 1419, 1365, 1245, 1172, 1135, 1004 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₆H₂₉N₂O₄: 313.21218 [M+H]; found: 313.21231.

tert-Butyl (E)-4-(4-Hydroxy-3-methylbut-2-en-1-yl)piperazine-1-carboxylate (19)

A solution of DIBALH (15.5 ml, 15.5 mmol) 1 M in heptane was slowly added to a solution of **S7** (2.2 g, 7.05 mmol) in CH_2Cl_2 (15 ml) cooled at -78 °C. The solution was stirred over 5 min at -78 °C and 1 h at rt. The reaction was

quenched with MeOH (8 ml) and saturated aqueous potassium sodium tartrate (10 ml). The mixture was allowed to stir over 30 min and extracted with CH_2Cl_2 (3 x 10 ml). The organic layers were washed with brine and dried with MgSO₄ and evaporated. The residue was purified on silica gel column chromatography with EtOAc - MeOH (9:1) to give **19** (1.5 g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 1.44 (s, 9H), 1.66 (s, 3H), 2.47 – 2.34 (m, 4H), 3.01 (d, *J* = 7.0 Hz, 2H), 3.45 – 3.35 (m, 4H), 4.01 (s, 2H), 5.66 – 5.41 (m, 1H). ¹³C

NMR (100.6 MHz CDCl₃) δ 14.1 (q), 28.5 (q), 53.1 (t), 55.7 (t), 68.2 (t), 79.8 (t), 120.9 (d), 139.0 (s), 154.8 (s). IR (NaCl film) 3550-3064, 1693, 1421, 1245, 1171, 1128, 999 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₄H₂₇N₂O₃: 271.20162 [M+H]; found: 271.20142.

(*S,Z*)-4-((*tert*-Butyldimethylsilyl)oxy)-1-(4-((*E*)-4-hydroxy-3-methylbut-2-en-1-yl)piperazin-1-yl)pent-2-en-1-one (S8)

TFA (15 ml) was added to a solution of **19** (0.55 g, 2.03 ml) in CH_2Cl_2 (15 ml) cooled at 0 °C. The solution was stirred over 10 min at 0 °C. and 1 h at rt. Then the volatiles were evaporated and the residue was dissolved in 10 ml of CH_2Cl_2 and

carefully statured aqueous NaHCO₃ was added to pH = 10 and shacked over 10 min. Then water was evaporated, the residue was taken up in MeCN, the solids separated by centrifugation, and the solution concentrated. The resulting amine intermediate was used in the next step without further purification.

i-Pr₂EtN (2,12 ml, 12.18 mmol) and a solution of (*S*,*Z*)-4-(*tert*-butyldimethylsilyloxy)pent-2-enoic acid (0.51 g, 2.23 mmol) in MeCN (3 ml) were added over a stirred solution of crude amine in dry MeCN (3 ml) and the mixture was cooled in an ice-bath. HBTU (0.723 g, 2.23 mmol) was added portion wise to the reaction solution and after the addition the reaction suspension warmed to rt and stirred 2 h. Then the solution was diluted with EtOAc (12 ml) and successively washed with saturated aqueous NaHCO₃ (2ml), saturated aqueous NH₄Cl (5 ml), saturated NaHCO₃ (3 x 5 ml) and brine (5ml). The organic layer was dried over MgSO₄ and evaporated. The residue was purified on silica gel column chromatography with EtOAc-MeOH (9:1) to give **S8** (738 mg, 90%, 2 steps). ¹H NMR (400 MHz, CDCl₃) δ 0.03 (s, 3H), 0.05 (s, 3H), 0.87 (s, 9H), 1.27 (d, J = 6.3 Hz, 3H), 1.69 (s, 3H), 2.54 - 2.41 (m, 4H), 3.07 (d, J = 6.9 Hz, 2H), 3.72 - 3.50 (m, 4H), 4.05 (s, 2H), 5.03 -4.95 (m, 1H), 5.58 – 5.52 (m, 1H), 5.98 – 5.87 (m, 2H). ¹³C NMR (100.6 MHz CDCl₃) δ -4.5 (q), -4.3 (q), 14.02 (q), 19.0 (s), 24.3 (q), 26.4 (q), 42.1 (t), 47.0(t), 56.1(t), 67.4(d), 68.1(t), 120.0(d), 120.3(d), 141.3(s), 148.0(d), 167.5(s). IR (NaCl film) 3550-3200, 1618, 1462, 1249, 1075 996 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₀H₃₉N₂O₃Si: 383.27245 [M+H]; found: 383.27245.

(*E*)-4-(4-((*S*,*Z*)-4-((*tert*-Butyldimethylsilyl)oxy)pent-2-enoyl)piperazin-1-yl)-2-methylbut-2-enal (20)

Dess–Martin periodinate (728 mg, 1.71) was portionwise added to a mixture of **S8** (597 mg, 1.56 mmol) and solid NaHCO₃ (145 mg, 1.71 mmol) in dry CH_2Cl_2 (20 ml) cooled at 0 °C. The resulting solution was

stirred for 1 h at 0 $^{\circ}$ C and 1 h at rt, then was diluted with CH₂Cl₂ and added over a 1:1

mixture (20 ml) of a saturated aqueous NaHCO₃ and saturated aqueous sodium thiosulfate. The mixture was stirred for 1 h at rt. The aqueous layer was separated and washed with CH₂Cl₂ (2 × 20 ml). The combined organic fractions were dried over MgSO₄ and concentrated. The residue was purified on a silica gel column chromatography with AcOEt-MeOH (97:3) to give **20** (460 mg, 78%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ), - 0.10 - 0.06 (m, 6H), 0.84 (s, 9H), 1.24 (d, *J* = 6.3 Hz, 3H), 1.73 (s, 3H), 2.50 – 2.38 (m, 4H), 3.28 (d, *J* = 6.4 Hz, 2H), 3.72 – 3.47 (m, 4H), 5.01 – 4.92 (m, 1H), 5.96 – 5.80 (m, 2H), 6.54 – 6.49 (m, 1H), 9.41 (s, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ -4.6 (q), -4.5 (q), 9.6 (q), 18.2 (s), 24.0 (q), 25.9 (q), 41.2 (t), 46.0 (t), 53.2 (t) 56.1 (t), 66.2 (d), 118.4 (d), 141.0 (s), 147.8 (d), 149.3 (d), 165.5 (s), 194.5 (s). IR (NaCl film) 2808, 1692, 1649, 1437, 1075, 837 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₀H₃₇N₂O₃Si: 381.25680 [M+H]; found: 381.25668

(*S*,2*Z*)-4-((*tert*-Butyldimethylsilyl)oxy)-1-(4-(5-((3*R*,5*S*)-7,7-dimethyl-1,6dioxaspiro[2.5]octan-5-yl)-3-methylpenta-2,4-dien-1-yl)piperazin-1-yl)pent-2-en-1-one (21)

Following the general procedure 2, sulfone **11** (60 mg, 0.17 mmol) and aldehyde **20** (50 mg, 0.13 mmol) led to compound **21**. The purification of the compound was carried out on a silica gel column chromatography

with EtOAc-MeOH (98:2) to give 46 mg (70%) of a desired diene (E/Z ratio 8:2) as an oil. ¹H NMR (400 MHz, CDCl₃) δ) -0.00 (s, 3H), 0.01 (s, 3H), 0.83 (s, 9H), 1.18 – 1.10 (m, 2H), 1.26 – 1.23 (m, 6H), 1.37 (s, 3H), 1.72 (s, 3H), 2.00 – 1.85 (m, 2H), 2.44 – 2.35 (m, 4H), 2.54 (s, 2H), 3.07 (d, *J* = 7.1 Hz, 2H), 3.69 – 3.43 (m, 4H), 4.44 (ddd, *J* = 11.6, 6.6, 2.0 Hz, 1H), 4.99 – 4.92 (m, 1H), 5.53 – 5.47 (m, 1H), 5.61 (dd, *J* = 15.7, 6.6 Hz, 1H), 5.93 – 5.86 (m, 2H), 6.25 (d, *J* = 15.7 Hz, 1H). NMR (400 MHz, CDCl₃) δ), -4.5 (q), -4.4 (q), 12.8 (q), 18.3 (s), 23.9 (q), 24.1 (q), 26.0 (q), 31.6 (q), 38.7 (t), 41.4 (t), 42.5 (t), 46.3 (t), 51.1 (t), 53.0 (s), 53.4 (t), 55.7 (t), 66.4 (d), 69.5 (d), 73.2 (s), 118.7 (d), 128.2 (d), 129.0 (d), 135.4 (d), 136.5 (s), 147.6 (d), 165.5 (s). IR (NaCl film) 1632, 1461, 1382, 1249, 1074, 836 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₉H₅₁N₂O₄Si: 519.36126 [M+H]; found: 519.36144

(*S*,2*Z*)-1-(4-(5-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3-methylpenta-2,4dien-1-yl)piperazin-1-yl)-4-hydroxypent-2-en-1-one (22)

Following the general procedure 3, TBS protected alcohol **21** (230 mg, 0.444 mmol) led to compound **22**. Purification of the product on a silica gel column chromatography with EtOAc-MeOH (1:0 to

9:1) gave 129 mg (67%) of desired alcohol. ¹H NMR (400 MHz, CDCl₃) δ 1.25 – 1.13 (m, 2H), 1.27 (s, 3H), 1.31 (d, J = 6.5 Hz, 3H), 1.39 (s, 3H), 1.75 (s, 3H), 2.01 – 1.86 (m, 2H),

2.49 – 2.38 (m, 4H), 2.59 – 2.53 (m, 2H), 3.10 (d, J = 7.0 Hz, 2H), 3.55 – 3.45 (m, 2H), 3.73 – 3.58 (m, 2H), 4.47 (ddd, J = 11.5, 6.5, 2.1 Hz, 1H), 4.65 – 4.56 (m, 1H), 5.52 (t, J = 7.0 Hz, 1H), 5.64 (dd, J = 15.7, 6.5 Hz, 1H), 6.11 – 6.04 (m, 2H), 6.28 (d, J = 15.7 Hz, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 12.8 (q), 22.5 (q), 23.9 (q), 31.6 (q), 38.7 (t), 41.8 (t), 42.5 (t), 46.6 (t), 51.2 (t), 52.8 (t), 53.3 (t), 55.7 (t), 64.9 (d), 69.5 (d), 73.2 (s), 121.4 (d), 128.2 (d), 129.0 (d), 135.4 (d), 136.6 (s), 147.7 (d), 166.5 (s). IR (NaCl film) 3628-3096, 1616, 1439, 1383, 1236, 1062, 833 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₃H₃₇N₂O₄: 405.27428 [M+H]; found: 405.27525

(*S,Z*)-5-(4-((2*E*,4*E*)-5-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3methylpenta-2,4-dien-1-yl)piperazin-1-yl)-5-oxopent-3-en-2-yl isobutyrate (5a) and (*S,Z*)-5-(4-((2*E*,4*Z*)-5-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3methylpenta-2,4-dien-1-yl)piperazin-1-yl)-5-oxopent-3-en-2-yl isobutyrate (5b)

Following the general procedure 4, alcohol **22** (42 mg, 0.10 mmol) led to mixture of **5a** and **5b**. Purification on silica gel column chromatography with hexane-EtOAc (8:2) gave 45 mg (98%) of diasteromeric mixture. This mixture was separated by semi-preparative RP-HPLC to give 24 mg of *E* and 4 mg of *Z* (60%) of pure diasteromers:

5a ¹H NMR (400 MHz, CDCl₃) δ 1.13 (d, *J* = 2.4 Hz, 3H), 1.14 (d, *J* = 2.4 Hz, 3H), 1.25 – 1.16 (m, 2H), 1.28 (s, 3H), 1.40 (s, 3H), 1.38 (d, *J* = 6.3 Hz, 3H), 1.75 (s, 3H), 2.02 – 1.88 (m, 2H), 2.52 – 2.39 (m, 5H), 2.59 – 2.55

(m, 2H), 3.12 (d, J = 6.9 Hz, 2H), 3.87 – 3.39 (m, 4H), 4.47 (ddd, J = 11.9, 6.6, 2.3 Hz, 1H), 5.54 (t, J = 6.9 Hz, 1H), 5.64 (dd, J = 15.7, 6.6 Hz, 1H), 5.83 – 5.69 (m, 2H), 6.04 (d, J = 11.1 Hz, 1H), 6.28 (d, J = 15.7 Hz, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 12.7 (q), 18.9 (q), 18.9 (q), 20.0 (q), 23.7 (q), 31.5 (q), 34.9 (d), 38.5 (t), 41.2 (t), 42.4 (t), 46.1 (t), 51.0 (t), 52.9 (t), 55.6 (t), 55.8 (t), 68.7 (d), 69.4 (d), 73.1 (s), 122.5 (d), 128.1 (d) 128.9 (d), 135.3 (d), 140.1 (d), 165.2 (s), 176.1 (s). IR (NaCl film) 1730, 1631, 1462, 1383, 1233, 1158 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₇H₄₃N₂O₅: 475.31665 [M+H]; found: 475.31680.

5b ¹H NMR (400 MHz, CDCl₃) δ 1.21 – 1.06 (m, 8H), 1.26 (s, 3H), 1.45 – 1.35 (m, 6H), 1.79 (s, 3H), 2.07 – 1.86 (m, 2H), 2.63 – 2.39 (m, 7H), 3.24 – 3.01 (m, 2H), 3.83 – 3.41 (m, 4H), 4.84 (t, J = 9.3 Hz, 1H), 5.36 (dd, J = 11.5, 9.3 Hz, 1H), 5.50 – 5.44 (m, 1H), 5.83 – 5.69 (m, 2H), 5.96 (d, J = 11.5 Hz, 1H), 6.07 (d, J = 11.0 Hz,

1H). ¹³C NMR via HSQC (400 MHz, CDCl₃) 140.2 (d), 136.6 (d), 135.2 (d), 130.1 (d), 122.6

(d), 68.2 (d), 64.9 (d), 56.0 (t), 52.8 (d), 50.5 (t), 45.7 (t), 42.1 (t), 38.4 (t), 33.9 (d), 31.5 (q), 23.7 (q), 20.0 (q), 18.7 (q), 16.7 (q).). IR (NaCl film): = 1731, 1630, 1449, 1368, 1191 cm⁻¹. HRMS (+ESI): m/z calcd for $C_{27}H_{43}N_2O_5$: 475.31665 [M+H]; found: 475.31675.

(*S,Z*)-5-(4-((2*E*,4*E*)-5-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3methylpenta-2,4-dien-1-yl)piperazin-1-yl)-5-oxopent-3-en-2-yl 4-nitrophenyl carbonate (S10)

A solution of alcohol of pure **22** (32 mg, 0.079 mmol) in CH_2Cl_2 (2.5 ml) was stirred at 0 °C. Over the cold solution NEt₃ (0.033 ml) and a solution of 4-nitrophenylchloroformate (32 mg, 0.158 mmol) in CH_2Cl_2 (2 ml) were added via cannula. After 40 min of stirring at 0 °C, additional 1 eq. of 4-nitrophenyl

chloroformate was added and the solution was warmed to rt and stirred for additional 1 h after which TLC showed that most of the starting material had been consumed. Cold water (3 ml) and CH_2Cl_2 was added. The aqueous layer was extracted with CH_2Cl_2 (2x5ml). The combined organic solvents were washed brine (3 ml) and dried over MgSO₄ and evaporated. The residue was purified on silica gel column chromatography with AcOEt-MeOH (98:2 to 94:6) to give **S10** (20 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 1.23 – 1.11 (m, 2H), 1.27 (s, 3H), 1.39 (s, 3H), 1.53 (d, *J* = 6.3, 3H), 1.71 (s, 3H), 2.01 – 1.82 (m, 2H), 2.46 – 2.37 (m, 4H), 2.57 (s,2H), 3.07 (d, *J* = 7.0, 2H), 3.72 – 3.47 (m, 4H), 4.53 – 4.37 (m, 1H), 5.51 (t, *J* = 7.0, 1H), 5.63 (dd, *J* = 15.7, 6.6, 1H), 5.98 – 5.86 (m, 1H), 6.19 (d, *J* = 10.7, 1H), 6.26 (d, *J* = 15.7, 1H), 7.39 – 7.34 (m, 2H), 8.27 – 8.23 (m, 2H). ¹³C NMR (100.6 MHz CDCl₃) δ 12.8 (q), 20.1 (q), 23.9 (q), 31.6 (q), 38.6 (t), 41.6 (t), 42.5 (t), 46.4 (t), 51.2 (t), 52.8 (t), 53.1 (t), 55.7 (t), 55.9 (t), 69.5 (d), 73.3 (d), 74.6 (s), 121.9 (d), 123.7 (d), 125.3 (d), 125.4 (d), 128.2 (d), 129.1 (d), 135.4 (d), 136.6 (s), 139.1 (d) 145.4 (s), 151.7 (s), 155.7 (s), 164.9 (s). IR (NaCl film) 2943, 2814, 1765, 1719, 1627, 1525, 1215, 1021 cm⁻¹. HRMS (+ESI): m/z calcd for C₃₀H₄₀N₃O₈: 570.28154 [M+H]; found: 570.28166.

(*S*,*Z*)-5-(4-((2*E*,4*E*)-5-((3*R*,5*S*)-7,7-Dimethyl-1,6-dioxaspiro[2.5]octan-5-yl)-3methylpenta-2,4-dien-1-yl)piperazin-1-yl)-5-oxopent-3-en-2-yl methylcarbamate (6)

A stirred solution of activated carbonate **S10** (20 mg, 0.035 mmol) in $CICH_2CH_2CI$ (0.5 ml) was cooled in an ice-bath and the methylamine (0.11 ml, 1M in THF, 0.11 mmol) was added dropwise. The resulting yellow solution was allowed to stir at 0 °C for

20 min. Then yellow solid was filtered off volatiles were removed under reduced pressure. The residue was concentrated and purified on silica gel column

chromatography with AcOEt-Hexane-MeOH(8:2:0.8) to give 12 mg (75%) of the desired carbamate. ¹H NMR (400 MHz, CDCl₃) δ 1.22 – 1.13 (m, 2H), 1.27 (d, *J* = 4.2, 3H), 1.41 – 1.35 (m, 6H), 1.75 (s, 3H), 2.03 – 1.88 (m, 2H), 2.43 (s, 4H), 2.60 – 2.54 (m, 2H), 2.76 (d, *J* = 4.9, 3H), 3.10 (d, *J* = 6.9, 2H), 3.81 – 3.37 (m, 4H), 4.47 (ddd, *J* = 11.0, 6.6, 1.8, 1H), 4.66 (bs, 1H), 5.54 (t, *J* = 6.9, 1H), 5.67 – 5.58 (m, 2H), 5.82 (dd, *J* = 11.7, 7.7, 1H), 6.01 (d, *J* = 11.7, 1H), 6.28 (d, *J* = 15.7, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 12.9 (q), 20.6 (q), 23.9 (q), 27.6 (q), 31.6 (q), 38.7 (t), 41.5 (t), 42.6 (t), 46.4 (t), 51.2 (s), 52.9 (t), 55.8 (t), 56.0 (t), 69.6 (d), 73.3 (s), 122.2 (d), 128.6 (d), 128.9 (d), 135.5 (d), 136.5 (s), 140.5 (d), 156.5 (s), 165.6 (s). IR (NaCl film) 1730, 1631, 1440, 1383, 1233, 1158, 1040 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₇H₄₃N₂O₅: 475.31665 [M+H]; found: 475.31680.

Methyl isobutyryl-L-alaninate (24)

NEt₃ (3.97 ml, 28.6 mmol), isobutyric anhydride (3.57 ml, 21.5 mmol) and 4-DMAP (87 mg, 0.72 mmol) were added to a cooled (0 °C) suspension commercial **23** (1.0 g, 7.16 mmol) in CH_2Cl_2 (10 ml) and the mixture was stirred over 15 min. After this time, the ice bath was removed and the solution was allowed to rt and stirred over 3 h. The solution was diluted

with CH_2Cl_2 and washed with sat. NH_4Cl and sat. $NaHCO_3$. The organic layers were dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography (hexane/EtOAc, 8:2) gave the desired compound (1.22 g, 99%) as a colorless oil. All analytical data for this compound were identical with the reported in literature ².

(S)-N-(1-Oxopropan-2-yl)isobutyramide (25)

A solution of DIBALH (9 ml, 1.0 M in heptane, 9 mmol) was added carefully to a solution of **24** (1.2 g, 6.9 mmol) in toluene (12 ml) cooled at -78 °C, over N₂. This mixture was stirred for 2 h at -78 °C and then MeOH (5 ml) and Rochelle's salt saturate solution (5 ml) were added. The mixture was diluted with AcOEt, allowed to room temperature and stirred for additional 1 h. After this time the organic layers were dried

with MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography (hexane/EtOAc, 1:1) gave the desired compound as colorless oil, 0.7 g (71%). ¹H NMR (400 MHz, CDCl₃) δ 1.18 (d, *J* = 6.9, Hz, 6H), 1.37 (d, *J* = 7.4, 3H), 2.43 (hept, *J* = 6.9 Hz, 1H), 4.60 – 4.40 (m, 1H), 6.09 (bs, 1H), 9.56 (s, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 14.6 (q), 19.6 (q), 19.6 (q), 35.4 (d), 54.4 (d), 177.2 (s), 199.5(s). [α]_D=+18.3 (*c* 1.0 in CHCl₃); IR (NaCl film) 1725, 1646, 1537, 1200, 1178 cm⁻¹; HRMS (+ESI): m/z calcd for C₇H₁₄NO₂: 144.1019 [M+H]; found: 144.1021

Methyl (S,Z)-4-isobutyramidopent-2-enoate (26)

Bis(2,2,2-trifluoroethyl) (methoxycarbonylmethyl)phosphonate (0.75 ml, 3.52 mmol) was added to a solution of 18-crown-6 (1.5 g, 5.88 mmol) in THF (12 ml) at room temperature. Then the solution was cooled to -78 $^{\circ}$ C and a 1 M solution of KHMDS in

THF (3.52 ml, 3.52 mmol) was added carefully and the resulting mixture was stirred over 5 min. After this time a solution of **25** (0.42 g, 2.94 mmol) in THF (3 ml) was added via cannula and the solution was stirred over 3 h at -78 °C. After this time, the reaction was quenched with H_2O (10 ml) and the mixture was allowed to room temperature, diluted with CH_2Cl_2 (12 ml) and the aqueous layer was extracted 2 x CH_2Cl_2 (10 ml). The organic layers were washed with sat. NH_4Cl dried with $MgSO_4$, filtered, and concentrated under reduced pressure. Purification of the residue by silica gel column chromatography with hexane-EtOAc (7:3 to 1:1) gave **26** as a colorless oil (0.41 g, 82%) (dr = 92:8). ¹H NMR (400 MHz, CDCl₃) δ 1.11 (d, *J* = 6.9, 6H), 1.29 (d, *J* = 6.9 Hz, 3H), 2.35 – 2.26 (m, 1H), 3.71 (s, 3H), 5.34 – 5.20 (m, 1H), 5.77 (dd, *J* = 11.7, 1.1 Hz, 1H), 6.16 (dd, *J* = 11.7, 8.2 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 19.6 (q), 19.6 (q), 20.0 (q), 35.6 (d), 44.3 (d), 51.6 (q), 119.3 (d), 151.2 (d), 166.6 (s), 176.6 (s). [α]_D=+10.8 (*c* 1.0 in CHCl₃). IR (NaCl film): =1725, 1646, 1537, 1200, 1178 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₀H₁₈NO₃: 200.1281 [M+H]; found: 200.1283.

(S,Z)-4-Isobutyramidopent-2-enoic acid (27)

A Me₃SnOH (0.9 g, 5.0 mmol) was added to a solution of methyl **26** (0.2 g, 1.0 mmol) in ClCH₂CH₂Cl and the solution was stirred at 85 °C overnight. After this time additional Me₃SnOH (0.54 g, 3.0 mmol) was added and the reaction mixture was stirred overnight. Then, the solvent was evaporated and the residue was dissolved

in EtOAc, washed with 5% HCl, brine, dried with MgSO₄, filtered, and concentrated under reduced pressure. Purification of residue by silica gel column chromatography with CH₂Cl₂-MeOH (97.5:2.5 to 95:5) gave the desired acid as a white solid (93 mg, 50%). MP 151 – 152 °C. ¹H NMR (400 MHz, CDCl₃) δ 1.22 – 1.11 (m, 6H), 1.32 (d, *J* = 6.6 Hz, 3H), 2.44 – 2.33 (m, 1H), 4.81 – 4.63 (m, 1H), 5.69 – 5.55 (m, 1H), 5.81 (bs, 1H), 5.94 (d, *J* = 11.6 Hz, 1H). ¹³C NMR (100.6 MHz, CDCl₃) δ 19.5 (q), 19.5 (q), 19.9 (q), 35.4 (d), 45.2 (d), 123.7 (d), 140.6 (d), 167.9 (s), 179.0 (s). [α]_D=+13.2 (*c* 0.25 in CHCl₃). IR (NaCl film) 3460-2517, 1700, 1635, 1536, 1384, 1249, 928 cm⁻¹. HRMS (+ESI): m/z calcd for C₉H₁₆NO₃: 186.1247 [M+H]; found: 186.1243

Compound Sudemycin K (7)

Following the general procedure 1, azide **16** ⁴ (30 mg, 0.085 mmol) and acid 1 led to **Sudemycin K**. The crude was purified on silica gel column chromatography with hexane-EtOAc (1:1 to 1:0) and repurified by semi-preparative RP-HPLC to give the desired amide as a colorless oil (12 mg, 30%,

2 steps). ¹H NMR (400 MHz, CDCl₃) δ 1.09 (d, *J* = 6.9, Hz, 6H), 1.19 – 1.11 (m, 2H), 1.24 – 1.19 (m, 6H), 1.34 (s, 3H), 1.57 – 1.50 (m, 7H), 1.73-1.64 (s, 5H), 1.96 – 1.82 (m, 2H), 2.07 – 1.98 (m, 2H), 2.34 – 2.25 (m, 1H), 2.51 (s, 2H), 4.12 – 4.03 (m, 1H), 4.40 (ddd, *J* = 11.7, 6.8, 2.5 Hz, 1H), 4.71 – 4.60 (m, 1H), 5.52 – 5.40 (m, 3H), 5.74 (d, *J* = 11.7 Hz, 1H), 5.88 (d, *J* = 5.9 Hz, 1H), 6.21 (d, *J* = 15.7 Hz, 1H), 8.43 – 8.31 (m, 1H). ¹³C NMR (100.6 MHz,

CDCl₃) δ 12.7 (q), 19.5 (q), 19.9 (q), 20.6 (q), 23.9 (q), 27.5 (t), 27.9 (t), 29.8 (t), 31.7(q), 34.6(t), 35.5(d), 36.9(d), 38.8(t), 42.6(t), 45.0(d), 45.5(d), 51.2(t), 55.8(s), 69.7(d), 73.2 (s), 125.9 (d), 126.9 (d), 132.4 (s), 133.8 (d), 136.5 (d), 136.5 (d), 137.8 (d), 165.7 (s), 177.4 (s). IR (NaCl film) 3282, 2942, 1653, 1619, 1541, 1483, 1063 928 cm⁻¹. HRMS (+ESI): m/z calcd for C₂₉H₄₇N₂O₄: 487.35303 [M+H]; found: 487.35307.

Methyl (S,Z)-4-((tert-Butoxycarbonyl)amino)pent-2-enoate (29)

To a solution of 18-crown-6 (0.84 g, 3.18 mmol) in THF (8 ml) bis(2,2,2-trifluoroethyl) (methoxycarbonylmethyl)phosphonate (0.401 ml, 1.9 mmol) was added at room temperature. Then the solution was cooled to -78 °C and a 1 M solution of KHMDS in THF

(1.9 ml, 1.9 mmol) was added carefully and was stirred over 40 min. After this time a solution of commercial **28** (0.275 g, 1.59 mmol) in THF (3 ml) was added via cannula. The solution was stirred over 3 h at -78 °C then the reaction was quenched with H₂O (5 ml) and the mixture was allowed to room temperature. The mixture was diluted with CH₂Cl₂ (12 ml) and the aqueous layer was extracted 2 x CH₂Cl₂ (10 ml). The organic layers were washed with sat. NH₄Cl dried with MgSO₄, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography with hexane-EtOAc (7:3) gave **29** (0.27 g, 72%) (dr = 97:3) as a colorless oil. ¹H NMR (400 MHz CDCl₃) δ 1.27 (d, *J* = 6.8 Hz, 3H), 1.42 (s, 9H), 3.72 (s, 3H), 4.75 (bs, 1H), 5.22 – 5.11 (m, 1H), 5.76 (dd, *J* = 11.6, 1.2 Hz, 1H), 6.18 – 6.05 (m, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 20.2 (q), 28.4 (q), 45.5 (d), 51.4 (q), 79.5 (s), 118.7 (d), 152.3 (d), 155.3 (s), 166.2 (s). IR (NaCl film) 1723, 1629, 1513, 1168, 1049 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₁H₁₉NNaO₄: 252.1206 [M+Na]; found: 252.1216

(S,Z)-4-((tert-Butoxycarbonyl)amino)pent-2-enoic acid (30)

A Me₃SnOH (0.79 g, 4.36 mmol) was added to a solution of **29** (0.125 g, 0.55 mmol) in ClCH₂CH₂Cl (5 ml) and the solution was stirred at 85 °C overnight. Then, the solvent was evaporated and the residue was dissolved in EtOAc, washed with HCl 5%, brine, dried with MgSO₄, filtered, and concentrated under

reduced pressure. The residue was purified by silica gel column chromatography with with hexane-EtOAc (8:2 to 7:3) to give the desired acid (83 mg, 75%). ¹H NMR (400 MHz, CD₃OD) δ 1.21 (d, *J* = 6.9 Hz, 3H), 1.42 (s, 9H), 5.24 – 5.10 (m, 1H), 5.72 (dd, *J* = 11.6, 1.3 Hz, 1H), 6.14 – 6.03 (m, 1H). ¹³C NMR (100.6 MHz CD₃OD) δ 20.5(q), 28.7(q), 46.3(d) 80.14(s), 120.05 (d), 152.5 (d), 157.7 (s), 169.4 (s). [α]_D=+44.8 (*c* 1.0 in CHCl₃). IR (NaCl film) 3474-2872, 1706, 1367, 1166, 1049 cm⁻¹. HRMS (+ESI): m/z calcd for C₁₀H₁₇NNaO₄: 238.1050 [M+Na]; found: 238.1044

tert-Butyl ((*S,Z*)-5-(((1*R*,4*R*)-4-((2*E*,4*E*)-5-((3*R*,5*S*)-7,7-dimethyl-1,6dioxaspiro[2.5]octan-5-yl)-3-methylpenta-2,4-dien-1-yl)cyclohexyl)amino)-5-oxopent-3-en-2-yl)carbamate (8)

Following the general procedure 1, azide **16** (30 mg, 0.085 mmol) and acid **30** led to carbamate **8**. The product was purified on silica gel column chromatography with hexane-EtOAc (1:1) to give the title compound (25 mg, 50%, 2 steps) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.24 – 1.13 (m, 5H), 1.28 (s, 3H), 1.42 – 1.37 (m, 6H), 1.44 (s, 9H), 1.60 – 1.52 (m, 4H),

1.70 (s, 3H), 1.86 – 1.74 (m, 2H), 2.00 – 1.88 (m, 2H), 2.17 – 2.04 (m, 2H), 2.56 (s, 2H), 4.14 – 3.91 (m, 1H), 4.55 – 4.41 (m, 2H), 4.95 – 4.87 (m, 1H), 5.57 – 5.42 (m, 3H), 5.79 (d, J = 11.7 Hz, 1H), 6.39 – 6.18 (m, 1H), δ 8.40 (bs, 1H). ¹³C NMR (100.6 MHz CDCl₃) δ 12.6 (q), 20.7 (q), 23.9 (q), 27.3 (t), 27.9 (t), 28.6 (q), 29.6 (t), 29.8 (t), 31.7 (q), 34.6 (t), 37.3 (d), 38.7 (t), 42.6 (t), 45.5 (d), 45.6 (d), 51.1 (t), 55.8 (s), 69.8 (d), 73.3 (s), 80.2 (s), 125.7 (d), 126.8 (d), 132.3 (s), 133.9 (d), 136.8 (d), 137.8 (d), 156.0 (s), 165.9 (s). IR (NaCl film) 2942, 1660, 1622, 1538, 1485, 1072 cm⁻¹. HRMS (+ESI): m/z calcd for C₃₀H₄₉N₂O₅: 517.3641 [M+H]; found: 517.3644 **Supplementary Figure 1.** *In vitro* spliceosome (A3' complex) formation assays. (A) Representative Phosphoroimager pictures of electrophoretic separation of H and A3' complexes assembled upon incubation of a radioactively labeled adenovirus major late promoter RNA (spanning sequences corresponding to 3' half of intron 1 and part of the following exon) in HeLa nuclear extracts and fractionation on non-denaturing agarose gels. The electrophoretic mobility of A3' and H complexes is indicated, as well as concentrations of the indicated drugs or DMSO as control. Only complex H is formed in the absence of ATP. (B) Assays as in A for the indicated drugs. (C) Quantifications of the results reported in A and B.

Supplementary Figure 2. Full *in vitro* spliceosome assembly assay. Electrophoretic separation of H, A, B and C complexes assembled upon incubation of a full length adenovirus major late promoter RNA in HeLa nuclear extracts and fractionation on non-denaturing agarose gels. The electrophoretic mobility of the different complexes is indicated, as well as concentrations of the indicated drugs or DMSO as control. Only complex H is formed in the absence of ATP. As expected, Sudemycins K and D6 inhibit the formation of all A, B and C spliceosomal complexes, leading to an increase in complex H.

Supplementary Figure 3. Effects on cytotoxicity and alternative splicing after pulses of drug treatments. (A) Effects of Sud D6 and Sud K on cell viability were evaluated after 24, 48 and 72 h. Cells were either pulsed with drug for 30' or kept in continuous treatment until the first measurement, at 24h. A 30' pulse significantly decreases the effects on cell viability. (B) Effects of Sud D6 and Sud K on *MCL1* alternative splicing upon continuous drug treatment or after a 30' pulse. Exon 2 inclusion levels were measured at 6 or 24 h. Results show reversal of the effects at 24 h and decreased (but not suppressed) effects at 6h upon pulsed treatments compared to continuous treatments.

Supplementary Figure 4. Uncropped images from *in vitro* A3' complex formation assays. The figures correspond to results presented in Figure 2 and Supplementary Figure 1. The top of each panel shows the signal coming from the wells of the gel.

SUPPLEMENTARY REFERENCES

- [1] O'Brien, J., Wilson, I., Orton, T., and Pognan, F. (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity, *Eur J Biochem 267*, 5421-5426.
- [2] Corrionero, A., Minana, B., and Valcarcel, J. (2011) Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A, Genes Dev 25, 445-459.
- [3] Effenberger, K. A., James, R. C., Urabe, V. K., Dickey, B. J., Linington, R. G., and Jurica, M. S. (2015) The Natural Product N-Palmitoyl-I-leucine Selectively Inhibits Late Assembly of Human Spliceosomes, *J Biol Chem* 290, 27524-27531.
- [4] Lagisetti, C., Palacios, G., Goronga, T., Freeman, B., Caufield, W., and Webb, T. R.
 (2013) Optimization of antitumor modulators of pre-mRNA splicing, *J Med Chem* 56, 10033-10044.
- [5] Shimizu, I., Hayashi, K., Ide, N., and Oshima, M. (1991) Facile synthesis of (—)serricornin by means of palladium-catalyzed hydrogenolysis of alkenyloxiranes, *Tetrahedron 47*, 2991-2998.
- [6] Valverde, S., Martin-Lomas, M., Herradon, B., and Garcia-Ochoa, S. (1987) The reaction of carbohydrate-derived alkoxyaldehydes with methoxycarbonylmethylenetriphenylphosphorane: stereoselective synthesis of β-unsaturated esters, *Tetrahedron 43*, 1895-1901.
- [7] Lagisetti, C., Pourpak, A., Goronga, T., Jiang, Q., Cui, X., Hyle, J., Lahti, J. M., Morris, S. W., and Webb, T. R. (2009) Synthetic mRNA splicing modulator compounds with in vivo antitumor activity, *J Med Chem 52*, 6979-6990.

¹H-NMR, ¹³C-NMR and 2D correlation spectra of Synthetic Compoun**ds**

M400APCB_30102014_km229f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km229f1 Nom: KAMIL MAKOWSKI Data: 29/10/14 / Ope.: K.MAKOWSKI

M400APCB_30102014_km229f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km229f1 Nom: KAMIL MAKOWSKI Data: 29/10/14 / Ope.: K.MAKOWSKI

M400APCB_03112014_km233-H1 Submitq / 400 cdd3 / Temp: 25 C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km233 Nom: KAMIL MAKOWSKI Data: 03/11/14 / Ope.: K.MAKOWSKI

M400APCB_03112014_km233-C13 Submitq / 400 cdd3 / Temp: 25 C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km233 Nom: KAMIL MAKOWSKI Data: 03/11/14 / Ope.: K.MAKOWSKI

M400APCB_04112014_km235f2-H1 Submitq / 400 cdd3 / Temp: 25 C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km235f2 Nom: KAMIL MAKOWSKI Data: 04/11/14 / Ope.: K.MAKOWSKI

N₃

M400APCB_04112014_km235f2-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km235f2 Nom: KAMIL MAKOWSKI Data: 04/11/14 / Ope.: K.MAKOWSKI

M400APCB_06112014_km236_f2-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km236_f2 Nom: KAMIL MAKOWSKI Data: 06/11/14 / Ope.: K.MAKOWSKI

M400APCB_06112014_km236f2-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km236f2 Nom: KAMIL MAKOWSKI Data: 06/11/14 / Ope.: K.MAKOWSKI

M400APCB_11112014_km240f2-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km240f2 Nom: KAMIL MAKOWSKI Data: 11/11/14 / Ope.: K.MAKOWSKI

M400APCB_11112014_km240_f2-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km240_f2 Nom: KAMIL MAKOWSKI Data: 11/11/14 / Ope.: K.MAKOWSKI

M400APCB_13112014_km241f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km241f1 Nom: KAMIL MAKOWSKI Data: 13/11/14 / Ope.: K.MAKOWSKI

M400APCB_13112014_km241f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km241f1 Nom: KAMIL MAKOWSKI Data: 13/11/14 / Ope.: K.MAKOWSKI

M400APCB_20112014_KM244_PUR_P1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: KM244_PUR_P1 Nom: KAMIL MAKOWSKI Data: 20/11/14 / Ope.: K.MAKOWSKI

M400APCB_20112014_km244_purP1-C13 Submitq / 400 Cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km244_purP1 Nom: KAMIL MAKOWSKI

200

M400APCB_10042014_KM127f3-H1 Submitq / 400

M400APCB_14042014_km127f3-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km127f3 Nom: KAMIL MAKOWSKI Data: 14/04/14 / Ope.: K.MAKOWSKI

M400APCB_22042014_km129f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km129f1 Nom: KAMIL MAKOWSKI Data: 22/04/14 / Ope.: K.MAKOWSKI

M400APCB_22042014_km129f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km129f1

I.

M400APCB_26052014_km133_semi_1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km133_semi_1 Nom: KAMIL MAKOWSKI Data: 26/05/14 / Ope.: K.MAKOWSKI

M400APCB_26052014_km133_semi_1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km133_semi_1 Nom: KAMIL MAKOWSKI Data: 26/05/14 / Ope.: K.MAKOWSKI

M400APCB_26052014_km133_semi_2-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km133_semi_2 Nom: KAMIL MAKOWSKI Data: 26/05/14 / Ope.: K.MAKOWSKI

M400APCB_27052014_km133_semi_2-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km133_semi_2 Nom: KAMIL MAKOWSKI Data: 26/05/14 / Ope.: K.MAKOWSKI

M400APCB_28052014_km145f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km145f1 Nom: KAMIL MAKOWSKI Data: 28/05/14 / Ope.: K.MAKOWSKI

0 0 r

M400APCB_29052014_km145_f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km145_f1 Nom: KAMIL MAKOWSKI Data: 28/05/14 / Ope.: K.MAKOWSKI

M400APCB_29052014_km146f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km146f1 Nom: KAMIL MAKOWSKI Data: 29/05/14 / Ope.: K.MAKOWSKI

M400APCB_30052014_km146_f1-C13 Submitq / 400 Usuari: ad / Mostra: km146_f1 Nom: KAMIL_MAKOWSKI

M400APCB_17042014_km131c3f3H1 Submitq / 400 cdd 3 / Temp: 25C / N.Reg: XXXXXXXXXX Usuari: ad / Mostra: km131c3f3 Nom: KAMIL MAKOWSKI Data: 17/04/14 / Ope.: K.MAKOWSKI

L0.0

M400APCB_23042014_km131c3f3-C13 Submitq / 400 cdd 3 / Temp: 25C / N.Reg: XXXXXXXXXX Usuari: ad / Mostra: km131c3f3 Nom: KAMIL MAKOWSKI Data: 22/04/14 / Ope.: K.MAKOWSKI

E.

200

M400APCB_25042014_km134f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km134f1 Nom: KAMIL MAKOWSKI Data: 24/04/14 / Ope.: K.MAKOWSKI

M400APCB_25042014_km134f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km134f1 Nom: KAMIL MAKOWSKI

r

M400APCB_29042014_km136f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km136f1 Nom: KAMIL MAKOWSKI Data: 28/04/14 / Ope.: K.MAKOWSKI

M400APCB_29042014_km136f1-C13 Submitq / 400 Usuari: ad / Mostra: km136f1 Nom: KAMIL MAKOWSKI

-

200

Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km259f1 Nom: KAMIL MAKOWSKI Data: 11/12/14 / Ope.: K.MAKOWSKI

4879-2014_V400_05122014_km253f1-irrad6.8ppm-NOESY1D

Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km253f1 Nom: KAMIL MAKOWSKI Data: 02/12/14 / Ope.: K.MAKOWSKI

M400APCB_04122014_km255f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km255f1 Nom: KAMIL MAKOWSKI

M400APCB_04122014_km255f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km255f1 Nom: KAMIL MAKOWSKI Data: 04/12/14 / Ope.: K.MAKOWSKI

M400APCB_08012015_km278f1-H1 M400PCB / cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km278f1 Nom: KAMIL MAKOWSKI Data: 08/01/15 / Ope.: K.MAKOWSKI

10.0

M400APCB_09012015_km278f1-C13 M400PCB / cd3od / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km278f1 Nom: KAMIL MAKOWSKI Data: 09/01/15 / Ope.: K.MAKOWSKI

M400APCB_09012015_km280f1-H1 M400PCB / cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km280f1 Nom: KAMIL MAKOWSKI Data: 09/01/15 / Ope.: K.MAKOWSKI

M400APCB_09012015_km280f1-C13 M400PCB / cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km280f1 Nom: KAMIL MAKOWSKI Data: 09/01/15 / Ope.: K.MAKOWSKI

M400PCB / cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: KM281F1 Nom: KAMIL MAKOWSKI Data: 12/01/15 / Ope.: K.MAKOWSKI

M400APCB_12012015_km281f1-C13 M400PCB / cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km281f1 Nom: KAMIL MAKOWSKI Data: 12/01/15 / Ope.: K.MAKOWSKI

M400APCB_09022015_KM300F1-H1 M400PCB / Num.Inv. AF/002630 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: KM300F1 Nom: KAMIL MAKOWSKI Data: 09/02/15 / Ope.: K.MAKOWSKI

M400PCB / cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km284f1 Nom: KAMIL MAKOWSKI Data: 14/01/15 / Ope.: K.MAKOWSKI

M400APCB_06022015_km291pur_P2-H1 M400PCB / Num.Inv. AF/002630 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km291pur_P2 Nom: KAMIL MAKOWSKI Data: 05/02/15 / Ope.: K.MAKOWSKI

M400APCB_06022015_km291pur_P2-C13 M400PCB / Num.Inv. AF/002630 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km291pur_P2 Nom: KAMIL MAKOWSKI Data: 05/02/15 / Ope.: K.MAKOWSKI

M400APCB_05022015_km291purP1-H1 M400PCB / Num.Inv. AF/002630 Usuari: ad / Mostra: km291purP1 Nom: KAMIL MAKOWSKI

M400PCB / Num.Inv. AF/002630 cdcl3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km301f1 Nom: KAMIL MAKOWSKI Data: 10/02/15 / Ope.: K.MAKOWSKI

M400PCB / Num.Inv. AF/002630 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km301f1 Nom: KAMIL MAKOWSKI Data: 10/02/15 / Ope.: K.MAKOWSKI

M400APCB_11022015_KM302F1-H1 M400PCB / Num.Inv. AF/002630 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: KM302F1 Nom: KAMIL MAKOWSKI Data: 11/02/15 / Ope.: K.MAKOWSKI

M400APCB_11022015_km302_f1-C13 M400PCB / Num.Inv. AF/002630 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km302_f1 Nom: KAMIL MAKOWSKI Data: 11/02/15 / Ope.: K.MAKOWSKI

M400APCB_09072014_km174f1-H1 Submitq / 400 cdd3 / Temp: 25 C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km174f1 Nom: KAMIL MAKOWSKI Data: 09/07/14 / Ope.: K.MAKOWSKI

M400APCB_05032015_km174f1-C13 M400PCB / Num.Inv. AF/002630 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km174f1 Nom: JOSE-ANTONIO FERNANDEZ MATEOS Data: 05/03/15 / Ope.: J.FERNANDEZ

f1 (ppm)

M400APCB_02092014_km189f1-H1 Submitq / 400 cdd 3 / Temp: 25C / N.Reg: XXXXXXXXXX Usuari: ad / Mostra: km189f1 Nom: KAMIL MAKOWSKI Data: 02/09/14 / Ope.: K.MAKOWSKI

M400APCB_02092014_km 189f1-C13 Submitq / 400 cdd 3 / Temp: 25C / N.Reg: XXXXXXXXXX Usuari: ad / Mostra: km 189f1 Nom: KAMIL_MAKOW/SKI Data: 02/09/14 / Ope.: K.MAKOWSKI

O_∕OMe (S) ⁻Ν Η

M400APCB_21112014_km246c2f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km246c2f1

M400APCB_21112014_km246c2f1-H1 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km246c2f1

M400APCB_22112014_km246c2f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km246c2f1 Nom: KAMIL MAKOWSKI Data: 21/11/14 / Ope.: K.MAKOWSKI

M400APCB_01122014_km249_pur2_p2-H1 Submitq / 400 Cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km249_pur2_p2 Nom: KAMIL_MAKOWSKI Data: 01/12/14 / Ope.: K.MAKOWSKI

10.0

M400APCB_03122014_km249_pur2p2-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km249_pur2p2 Nom: KAMIL MAKOWSKI Data: 02/12/14 / Ope.: K.MAKOWSKI

M400APCB_02092014_km 192f1-H1 Submitg / 400 cdd 3 / Temp: 25C / N.Reg: XXXXXXXXXX Usuari: ad / Mostra: km192f1 Nom: KAMIL MAKOWSKI Data: 02/09/14 / Ope.: K.MAKOWSKI

M400APCB_02092014_km 188f1-C13 Submitq / 400 cdd 3 / Temp: 25C / N.Reg: XXXXXXXXX Usuari: ad / Mostra: km 188f1 Nom: KAMIL MAKOWSKI Data: 02/09/14 / Ope.: K.MAKOWSKI

Submitq / 400 cd3od / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km226_f2_metoh

M400APCB_05032015_km226_f2_meoh-C13 M400PCB / Num.Inv. AF/002630 cd3od / Temp: 25C / N.Reg: XXXXXXXXX

Usuari: ad / Mostra: km264f1 Nom: KAMIL MAKOWSKI

r

M400APCB_17122014_km264f1-C13 Submitq / 400 cdd3 / Temp: 25C / N.Reg: XXXXXXXX Usuari: ad / Mostra: km264f1 Nom: KAMIL MAKOWSKI Data: 17/12/14 / Ope.: K.MAKOWSKI

