Supporting Information

CO_{2} as C 1 Source: $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ Catalyzed Cyclization of o-Phenylenediamines to Construct Benzimidazoles in the Presence of Hydrosilane

Zhenbei Zhang, ${ }^{\text {a,b }}$ Qiangsheng Sun,a Chungu Xia, and Wei Sun*a
${ }^{a}$ State Key Laboratory for Oxo Synthesis and Selective Oxidation, and Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
${ }^{b}$ University of Chinese Academy of Sciences, Beijing 100049, China

Table of Contents

1. General remarks... 2
2. General procedure for the synthesis of products $\mathbf{2 a} \mathbf{- m}$.. 2
3. Characterization data for all products. 2
4. Synthesis of the adduct from o-phenylenediamine and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$... 6
5. The generation of species 7 from o-phenylenediamine, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and CO_{2} .. 7
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the products. 9

General remarks

All solvents before used were dehydration under standard methods and stored under argon. Other reagents were obtained from commercial sources and used without further purification, unless otherwise noted. All reactions were monitored by TLC with GF254 silica gel coated plates. Flash column chromatography was carried out by using 200-300 mesh silica gel. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance III NMR spectrometer (400 MHz) in CDCl_{3} or DMSO-d ${ }_{6}$ internally referenced to tetramethylsilane (TMS) or CDCl_{3} (DMSO- d_{6}) signals. Chemical shifts are reported in ppm and coupling constants () in Hz. The high resolution mass spectra were measured on an Agilent 6530 Q-TOF mass spectrometer. All substrates ($\mathbf{1 a} \mathbf{- 1 m}$) are known compounds and prepared according to the literature.

General procedure for the synthesis of products 2a-m.

To a PTFE-lined autoclave equipped with a magnetic stirrer was charged with $\mathbf{1 a}$ ($\mathbf{1 b} \mathbf{b}-\mathbf{p}, 0.2 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.02 \mathrm{mmol})$ and $\mathrm{PhSiH}_{3}(0.8 \mathrm{mmol})$ in 2 mL THF, Then the sealed mixture was charged with 1 MPa CO 2 and heated with stirring at $120{ }^{\circ} \mathrm{C}$ for 24 h . Water (15 mL) was then added to the mixture when the reaction was completed and cool down to ambient temperature. The aqueous layer was extracted with $3 \times 10 \mathrm{~mL}$ of DCM. The combined organic layer was dried over anhydrous MgSO_{4}, after which the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using petroleum ether and ethyl acetate (1:2-1:3) as the eluent to afford the desired product $\mathbf{2 a}(\mathbf{2 b} \mathbf{- 1})$.

Characterization data for all products

1H-Benzo[d]imidazole (2a) ${ }^{1}$

2a
$19.6 \mathrm{mg}, 83 \%$ yield, white solid; Spectral data of 2a: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 10.16$ (s, 1 H), 8.14 (s, 1H), 7.68 (dd, $J=5.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (dd, $J=6.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 140.6,137.6,123.2$, 115.7. HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$119.0604, found: 119.0603.

6-Methyl-1H-benzo[d]imidazole (2b) ${ }^{\mathbf{2}}$

2b
$22.4 \mathrm{mg}, 85 \%$ yield, yellow solid; Spectral data of $\mathbf{2 b}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.07$ (s, $1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.00(\mathrm{dd}, J=8.4,1.2,1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (100 MHz , Chloroform-d) $\delta 140.4,137.2,136.0,133.1,124.7,115.5,114.9,21.8$. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+133.0760$, found: 133.0760.

7-Methyl-1H-benzo[d]imidazole (2c) ${ }^{3}$

$15.4 \mathrm{mg}, 58 \%$ yield, yellow solid; Spectral data of $\mathbf{2 c}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.12$ (s, $1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 140.3,137.6,136.8,126.0,123.5,123.1,112.6,17.3$. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+133.0760$, found: 133.0758.

6-Methoxy-1H-benzo[d]imidazole (2d) ${ }^{4}$

2d
$18.2 \mathrm{mg}, 61 \%$ yield, yellow solid; Spectral data of 2 d : ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.06$ (s, $1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 157.0,140.2,137.3,132.3,116.5,113.3,97.6,56.0$. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]+149.0709$, found: 149.0711.

5,6-Dimethyl-1H-benzo[d]imidazole (2e) ${ }^{4}$

2e
$18.0 \mathrm{mg}, 62 \%$ yield, yellow solid; Spectral data of $\mathbf{2 e}:{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.01$ (s, 1H), 7.43 (s, 2H), $2.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 140.1,136.4,132.0,115.6,20.5$. HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+147.0917$, found: 147.0919.

6-Fluoro-1H-benzo[d]imidazole (2f) ${ }^{4}$

$2 f$
$20.6 \mathrm{mg}, 76 \%$ yield, yellow solid; Spectral data of 2f: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.13$ (s, 1 H), 8.16 ($\mathrm{s}, 1 \mathrm{H}$), 7.58 (dd, $J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (dd, $J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=8.8,1.2 \mathrm{~Hz}$ 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 159.9(\mathrm{~d}, J=237.6 \mathrm{~Hz}), 141.9,137.7(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 134.5$, $116.4(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 111.6(\mathrm{~d}, J=25.5 \mathrm{~Hz}), 101.5(\mathrm{~d}, J=25.8 \mathrm{~Hz}) . \mathrm{HRMS}$ (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{FN}_{2}$ $[\mathrm{M}+\mathrm{H}]+137.0510$, found: 137.0509 .

6-Nitro-1H-benzo[d]imidazole (2 g$)^{4}$

2g
$8.2 \mathrm{mg}, 25 \%$ yield, yellow solid; Spectral data of $\mathbf{2 g}$: ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.54(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 8.13 (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.78 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) δ 146.8, 142.9, 142.6, 117.6, 115.6, 111.6. HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]+164.0455$, found: 164.0457.

3H-Imidazo[4,5-c] pyridine (2h) ${ }^{5}$

2h
$20.8 \mathrm{mg}, 87 \%$, yellow solid; Spectral data of $\mathbf{2 h}:{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}$, 1H), $8.30(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 144.3,141.2,139.8$, 109.4. HRMS (ESI) calcd for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]+120.0556$, found: 120.0555.

1-Methyl-1H-benzo[d]imidazole (2i) ${ }^{1}$

2i
$25.1 \mathrm{mg}, 95 \%$ yield, yellow solid; Spectral data of 2i: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.86$ (s, 1H), $7.83-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) $\delta 143.6,134.6,123.1,122.3,120.3,109.5,31.2$ HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 133.0760, found: 133.0761.

1,5,6-Trimethyl-1 H -benzo $[d]$ imidazole $(2 \mathrm{j})^{3}$

2j
30.1 mg , 94% yield, yellow solid; Spectral data of $\mathbf{2 j}:^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}$), $7.55(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) δ 142.8, 142.2, 133.2, 132.2, 131.1, 120.2, 109.6, 31.1, 20.7, 20.4. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2}$ $[\mathrm{M}+\mathrm{H}]+161.1073$, found: 161.1075.

1-Isopropyl-1H-benzo[d]imidazole (2k) ${ }^{6}$

$17.0 \mathrm{mg}, 53 \%$ yield, red oil; Spectral data of 2k: ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.19$ (s, 1H), 7.59 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.56-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=8.4 \mathrm{~Hz} 1 \mathrm{H}), 4.86-4.75(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 6 H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) δ 139.4, 136.3, 131.7, 126.2, 125.8, 116.8, 112.1, 50.3, 29.9. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+161.1073$, found: 161.1073.

1-Benzyl-1H-benzo[d]imidazole (21) ${ }^{7}$

$32.9 \mathrm{mg}, 79 \%$ yield, orange oil; Spectral data of $\mathbf{2 l}:{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.39-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 6.82-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.59(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform-d) δ 139.5, 137.8, 134.3, 128.7, 127.9, 127.4, 120.8, 118.9, 116.6, 112.1, 48.7. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]+209.1073$, found: 209.1070.

3-Ethyl-3H-imidazo[4,5-c]pyridine (2m)

$25.8 \mathrm{mg}, 88 \%$ yield, yellow solid; Spectral data of $\mathbf{2 n}:{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 8.83$ (s, $1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.28-3.20(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) δ 156.5, 140.8, 139.2, 137.5,128.6, 103.5, 41.8, 12.1. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]+148.0869$, found: 148.0871 .

References

1. Kattimani, P. P.; Kamble, R. R.; Meti, G. Y. RSC Adv. 2015, 5, 29447-29455
2. Hao, L.; Zhao, Y.; Yu, B.; Zhang, H.; Xua, H.; Liu, Z. Green Chem. 2014, 16, 3039-3044
3. Sun, Z.; Bottari, G.; Barta, K. Green Chem. 2015, 17, 5172-5181.
4. Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. ACS Catal. 2015, 5, 6648-6652.
5. Dar, B. A.; Ahmad, S. N.; Wagay, M. A.; Hussain, A.; Ahmad, N.; Bhat, K. A.; Khuroo, M. A.; Sharma, M.; Singh, B. Tetrahedron Lett. 2013, 54, 4880-4884.
6. Hornberger, K. R.; Adjabeng, G. M.; Dickson, H. D.; Davis-Ward, R. G. Tetrahedron Lett. 2006, 47, 5359-5361.
7. Xia, Q.; Chen, W.; Qiu, H. J. Org. Chem. 2011, 76, 7577-7582.

Synthesis of the adduct from o-phenylenediamine and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

To a PTFE-lined autoclave equipped with a magnetic stirrer was charged with $\mathbf{1 a}(0.2 \mathrm{mmol})$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.2 \mathrm{mmol})$ in 2 mL THF. Then the sealed mixture was charged with $1 \mathrm{MPa} \mathrm{CO}_{2}$ and heated with stirring at $60^{\circ} \mathrm{C}$ for 12 h . After that the solvent was removed under reduced pressure and to measure the NMR directly in CDCl_{3}.
${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 149.0,146.7,138.3,137.7,136.0,135.7,129.2,128.2,124.0(\mathrm{~d}, J=$ 16.6 Hz), 123.1, 119.2. ${ }^{11}$ B NMR (128 MHz , Chloroform-d) $\delta-4.08$ (s), -6.59 (s).

70	160	150	140	130	120	110	10

Figure $\mathbf{S 1}{ }^{13} \mathrm{C}$ NMR spectra of the adduct from o-phenylenediamine and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

| 0 | 15 | 10 | 5 | 0 | -5 | -10 | -15 | $-:$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure S2 ${ }^{11}$ B NMR spectra of the adduct from o-phenylenediamine and $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$

The generation of species 7 from o-phenylenediamine, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and CO_{2}.
To a PTFE-lined autoclave equipped with a magnetic stirrer was charged with $\mathbf{1 a}(0.2 \mathrm{mmol})$ and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(0.2 \mathrm{mmol})$ in 2 mL THF. Then the sealed mixture was charged with $1 \mathrm{MPa}_{\mathrm{CO}}^{2}$ and heated with stirring at $120^{\circ} \mathrm{C}$ for 6 h . After that the solvent was removed under reduced pressure and to measure the NMR directly in CDCl_{3}.
${ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 163.1$ (CO), 149.1, 146.8, 137.9, 135.7, 134.1, 133.9, 127.9, 123.7 (d, $J=14.2 \mathrm{~Hz}$), 123.3, 121.2, 117.6. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta-2.79(\mathrm{~s}), 4.01(\mathrm{~s}),-6.58(\mathrm{~s})$.

Figure S3 ${ }^{13} \mathrm{C}$ NMR spectra of species 7 from o-phenylenediamine, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and CO_{2}.

Figure S4 ${ }^{11} \mathrm{~B}$ NMR spectra of species 7 from o-phenylenediamine, $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ and CO_{2}.

Copies of NMR

$\stackrel{\stackrel{N}{\text { Nे }}}{\text { i }}$
8

Mn	∞
¢ ¢ m - 心u	- -
T=	

180	160	140	120	100	80	60	40	20	0

ふin

| 70 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $\mathrm{fl}(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

21

n
$\underset{\sim}{\text { ヘNO }}$
$\underset{\substack{\infty \\ \vdots}}{\stackrel{\rightharpoonup}{+}}$

