Supporting Information

On the Mechanism of the Improved Operation Voltage of Rhombohedral Nickel Hexacyanoferrate as Cathodes for Sodium-Ion Batteries

Zhuan Ji, Bo Han*, Haitao Liang, Chenggang Zhou*, Qiang Gao, Kaisheng Xia, Jinping Wu Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China P.R.

E-mail: <u>hanbo@cug.edu.cn (B. H.)</u> <u>cgzhou@cug.edu.cn (C. Z.)</u>

	Na	Κ	Ni	Fe
r-NiHCF	10.93%	-	19.07%	15.05%
c-NiHCF	-	0.59%	21.24%	13.64%

Table S1 ICP-OES test the metal contents of r-NiHCF and c-NiHCF materials

Table S2 EA test the C, N and H contents of r-NiHCF and c-NiHCF materials

	С	Ν	Н
r-NiHCF	19.42%	22.66%	1.43%
c-NiHCF	17.61%	20.54%	2.93%

By ICP calibration of Na, K, Ni, Fe contents and C, N, H elemental analysis, the composition of the r-NiHCF and c-NiHCF can be determined as $Na_{1.46}Ni[Fe(CN)_6]_{0.83}\square_{0.17} \cdot 2.2H_2O$ and $K_{0.04}Ni[Fe(CN)_6]_{0.67}\square_{0.33} \cdot 4.0H_2O$, respectively.

Figure S1. The Raman spectrum of r- and c-NiHCF.

Figure S2. The indexing result of r-NiHCF.

The Powder diffraction pattern of r-NiHCF was first indexed by DICVOL04, which generates a rhombohedral unit cell. A Pawley refinement¹ was successively carried out using the pseudo-Voigt profile function (2 parameters) and the Berar-Baldinozzi asymmetry correction (4 parameters and 20 background coefficients). The zero-point shift of the diffraction pattern was also adjusted. Finally, the cell parameters (a=b=7.386 Å, c=17.279 Å; α = β =90°, γ =120°) and an R-3 space group were obtained, which match well with the XRD profile with the low R_{wp} of 8.85% and R_p of 15.89%.

Figure S3. The radial distribution function (RDF) of Na-N (a); C-N (b); Ni-N (c); C-Fe (d) in r- and c-NiHCF.

Materials	Charge/discharge voltage (V)	
$Na_{1.014}Ni[Fe(CN)_6]_{0.818} \cdot 3.53H_2O^2$	3.19 / 3.15	
$Na_2NiFe(CN)_6^3$	3.30 / 3.22	
$K_{0.09}Ni[Fe(CN)_6]_{0.71} \cdot 6H_2O^4$	3.25 / 2.95	
KNiFe ⁵	3.33 / 3.13	
Na _{1.01~1.41} Ni[Fe(CN) ₆] _{1.02~0.91} ⁶	~3.2	

 Table S3. Charge/discharge voltages of current reported cubic NiFe-PBA as the

 cathode materials of room-temperature Na-ion batteries.

Figure S4. The rate capability of c-NiHCF (a); cycle performance of r-NiHCF and c-NiHCF under current density of 10 mA g⁻¹ (b).

Fig. S4a shows that, at low current density (10 mA g^{-1}), the discharge capacity of c-NiHCF level out around 65.4 mAh g^{-1} . As the current density increases to 80 mA g^{-1} , 160 mA g^{-1} , 240 mA g^{-1} , 320 mA g^{-1} and 480 mA g^{-1} , it delivers the available discharge capacity of 56.8 mAh g^{-1} , 53.0 mAh g^{-1} , 46.7 mAh g^{-1} , 39.1 mAh g^{-1} and 24.0 mAh g^{-1} , respectively, and recovers to 65.0 mAh g^{-1} as the current density shifts back to 10 mA g^{-1} , indicating poor rate capability compared with r-NiHCF, which should result from bigger particle size (300-600 nm) of c-NiHCF than that of r-NiHCF (30-50 nm). Long-term charge/discharge (Fig. S4b) shows that, both r-NiHCF and c-NiHCF exhibits excellent cycling stability that there is no capacity loss after 100 cycles at a current rate of density of 10 mA g^{-1} .

References

(1) Engel, G. E.; Wilke, S.; Konig, O.; Harris, K. D. M.; Leusen, F. J. J. Powder Solve-Acomplete Package for Crystal Structure Solution from Powder Diffraction Patterns. *J. Appl. Crystallogr.* **1999**, *32*, 1169-1179.

(2) Yu, S.; Li, Y.; Lu, Y.; Xu, B.; Wang, Q.; Yan, M.; Jiang, Y. A Promising Cathode Material of Sodium Iron–Nickel Hexacyanoferrate for Sodium Ion Batteries. *J. Power Sources* **2015**, *275*, 45-49.

(3) Qian, J.-F.; Zhou, M.; Cao, Y.-L.; Yang, H.-X. Na_xM_yFe(CN)₆ (M = Fe, Co, Ni):
A New Class of Cathode Materials for Sodium Ion Batteries. *J. Electrochem.* 2012, *18*, 108-112 [CNH].

(4) You, Y.; Wu, X.-L.; Yin, Y.-X.; Guo, Y.-G. A Zero-Strain Insertion Cathode Material of Nickel Ferricyanide for Sodium-Ion Batteries. *J. Mater. Chem. A* **2013**, *1*, 14061-14065.

(5) Lu, Y.; Wang, L.; Cheng, J.; Goodenough, J. B. Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries. *Chem. Commun.* **2012**, *48*, 6544-6546.

(6) Yue, Y.; Binder, A. J.; Guo, B.; Zhang, Z.; Qiao, Z.-A.; Tian, C.; Dai, S. Mesoporous Prussian Blue Analogues: Template-Free Synthesis and Sodium-Ion Battery Applications. *Angew. Chem. Int. Ed.* 2014, *126*, 3198-3201.