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Supporting Information 

(S1) Resonance integral  of metal-ligand interaction 

Figure S1. Values of  and 
COT

S used in eq 4 calculated for (a) 4f-ligand interaction in the e2u and 

e1u MOs, (b) 5d-ligand interaction in the e2g MO, (c) 5p-ligand interaction in the e1u MO, and (d) 

5d-ligand interaction in the e1g MO. Each of the least squares fitted lines are presented along with the 

change rates. In panel (a), because of the small S values, the 
COT

S values are essentially the same 

as the  values and are not shown. 

 

Figure S1(a) shows a monotonic increase of  in the 4f-ligand interaction across the Ln 

series. On an average, these  values are one order of magnitude smaller than those for the 5d-ligand 
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(Figures S1(b) and (d)) and 5p-ligand (Figure S1(c)) interactions. The compactness of the 4f orbitals 

and the small 4f-ligand overlap result in the sign change in the  values, even though the energy 

order of  > 4f remains through the series. 
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(S2) MCQDPT2 energy levels and their splitting patterns for the whole series of Ln complexes 

Figure S2. MCQDPT2 energy levels for (a) Pr (4f
2
), (b) Pm (4f

4
), (c) Eu (4f

6
), and (d) Gd (4f

7
) 

complexes. 
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Figure S2 (Continued.) MCQDPT2 energy levels for (e) Tb (4f
8
), (f) Dy (4f

9
), (g) Er (4f

11
), and (h) 

Tm (4f
12

) complexes. 
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Figure S2 (Continued.) MCQDPT2 energy levels for (i) Yb (4f
13

) complex. 

 

As has been discussed in the text, the electronic structure of the Ln complexes is 

characterized by (i) the strong exchange interactions among the 4f electrons, (ii) the ligand field 

perturbation, and (iii) the relaxation effect of the 4fe2u orbitals caused by the electron detachment 

from the anion e2u orbitals. This relaxation effect is expressed with the one-electron excitation 

configurations from the 4fe2u to e2u orbitals belonging to the same symmetry. Note that the 

interactions (i) and (ii) appear in both anion and neutral complexes, and (iii) is inherent in the neutral 

complexes, and its magnitude is much smaller than that of (i).  Since our discussion for the 

additional interaction (iii) is largely based on the perturbation method and group theory, a clear 

explanation of the electronic wave functions of the neutral complexes is in order now. 

The spatial part of the electronic wave functions for the neutral complexes can be expressed 

as a linear combination of configurations denoted as ΦΓelse
∙ 4fe2u

𝑝
∙ πe2u

𝑞
, where ΦΓelse

is a 

many-electron configuration excluding the one-electron 4fe2u  and πe2u  orbitals, and has the 



S6 

 

specified irreducible representation (irrep) of Γelse. Here, p and q are the orbital occupation numbers. 

Because of the stronger interaction (i) compared to (iii), the energy eigenstates are well described by 

the orbital coupling scheme of (ΦΓelse
4fe2u

𝑝
) ∙ πe2u

𝑞
, however in the current problem with many 

degenerate one-electron orbitals, a different coupling scheme denoted as ΦΓelse
∙ (4fe2u

𝑝
πe2u

𝑞
) is 

more convenient for the discussion of the above (iii) based on the symmetry classification of the 

(4fe2u
𝑝

πe2u
𝑞

) configurations. Then, we first consider the degree of configuration mixing in the second 

coupling scheme, then with transforming the relevant configurations from the second to the first 

coupling scheme, we describe the energy splitting patterns. Those who are interested in more details 

may consult a classic reference book by Griffith,
79

 on which our group theory terms are based.   

 The  (angular coordinate) dependent part of the relevant one-electron wavefunctions is 

represented in the form of exp(iml) or a pair of cos(ml) and sin(ml). We generally prefer to use the 

latter real forms, since they transform as basis functions belonging to irreps of D8 or D8h point group. 

To make the following discussion more concrete, the spatial configurations are occasionally 

expressed by combining only the  dependent parts of the 4felse, 4fe2u, e2u functions, with defining 

their respective angular coordinates as 1,2, and 3. In what follows, the axial angular momentum of 

the total system and that of the 4felse component are denoted as ML,total and ML,else, respectively. 

Let us first consider the case of (4fe2u)
1
(e2u)

3
 configuration in Figure 8 (a) in the above 

second coupling scheme. The coupling between the 4fe2u and e2u orbitals results in four states with 

the  dependence of cos(2223), sin(2223), cos(2223), and sin(2223), belonging to A1, A2, 

B1, and B2 irreps, respectively.  From their  dependence, it is clear that the A1, A2, B1, and B2 

components change the axial angular momentum ML,else by 0,0, ±4, and ±4 units, respectively.  

As shown in Figure 8(b), if else, the irrep excluding (4fe2u, e2u), belongs to A1 or A2, then 

ML,total=ML,e2u, and the splitting pattern is similar to that obtained with ignoring the 4felse part, while 

if else is one of E1, E2, E3, and (B1, B2), a different splitting pattern appears. The latter case is now 

explained taking the |ML|=5 case ((4fe3u)
1
(4fe2u)

1
, else =E3, grey level) of the Pr negative complex 
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(Figure S2 (a)) as an example. In this case, the neutral complex has two values of ML,total=5+2=7 

( ((E3×E2)
E3×E2)=E1) and 5-2=3 (((E3×E2)

E3×E2)=E3). In these first coupling schemes, the direct 

products of three irreps are denoted as (1×2)
12×3. In the second coupling scheme, the former 

E1 level is considered to be derived by the coupling of ML,else (=3)+4, that is, E3×(E2×E2)
B1,B2

=E1 in 

the direct product scheme of 1×(2×3)
23

. Since neither B1 nor B2 component does not have 

interaction with the Ln
4+

 configuration, no stabilization energy appears in the doublet E1 level (gray) 

in Figure S2 (a)), but significant energy lowering can be seen in the doublet E3 level (gray).  

To examine the latter doublet E3 state, their configuration functions are explicitly written 

down in the two coupling schemes, (E3×E2)
E3×E2=E3  and E3×(E2×E2)

A1,A2
=E3.  Referring to 

reference 79, the former configuration functions with cosine component is given as follows, 

((𝐸3 × 𝐸2)𝐸3 × 𝐸2)𝑐
𝐸3 = (𝐸3 × 𝐸2)𝑐

𝐸3𝐸2𝑐 − (𝐸3 × 𝐸2)𝑠
𝐸3𝐸2𝑠 

= cos(3𝜙1 + 2𝜙2) cos 2𝜙3 + sin(3𝜙1 + 2𝜙2) sin 2𝜙3. 

As is easily confirmed, the above expression is just equal to the sum of the following two 

configuration functions in the second coupling scheme, 

                (𝐸3 × (𝐸2 × 𝐸2)𝐴1)𝑐
𝐸3 = cos3𝜙1 × cos(2𝜙2 − 2𝜙3) 

(𝐸3 × (𝐸2 × 𝐸2)𝐴2)𝑐
𝐸3 = −sin3𝜙1 × sin(2𝜙2 − 2𝜙3). 

 The analysis so far states that the E3 state in the first coupling scheme is composed of both 

the e2u=A1 and A2 intermediate components in the second coupling scheme, thus the energy is 

approximately given as their average energy. Since only the e2u=A1 component can involve the 

mixing with the Ln
4+

 configuration, the low-spin E3 states are stabilized, and the stabilization energy 

is decreased by a half because of the mixing with the non-stabilized e2u=A2 component. In the actual 

calculations, the weights of the e2u=A1 and A2 components deviate from 1:1 because of the 

interactions with other states having the same overall irrep E3. Anyway, if else belongs to doubly 

degenerate irreps, one can expect the splitting pattern shown on the right-hand side of Figure 8 (b). 



S8 

 

 A similar explanation can be applied to the states with (4fe2u)
3
(e2u)

3
 configuration. In this 

case, e2u is one of A1, A2, B1, and B2 again, and as explained in the text, if else belongs to A1 or A2, 

the coupling of the 4fe2u and e2u orbitals gives the splitting pattern shown on the left-hand side of 

Figure 8 (g). As the second coupling scheme suggests that the low-spin configurations with e2u=A1, 

B1, and B2 involve the mixing with the Ln
4+

 configuration, the states with ML,total=ML,else and 

ML,else±4 are all stabilized. As for the high-spin states, only the configurations with e2u=A2 involve 

the mixing, thus the states with ML,total=ML,else are stabilized. Consequently, if else belongs to one of 

E1, E2, E3, and (B1, B2), the largest stabilizations occur in the low-spin states with ML,total=ML,else±4, 

and the stabilizations of about a half size occur in the low- and high-spin states with ML,total=ML,else. 

The high-spin states with ML,total=ML,else±4 show no stabilization due to the mixing with the Ln
4+

 

configuration. These splitting patterns are shown in the right-hand panel of Figure 8(g)).  

 In contrast to the above two cases, the situation is quite simple for the (4fe2u)
2
(e2u)

3
 

configuration. The 4fe2u orbitals are half-filled with parallel spins, and the irrep of the (4fe2u)
2
 part is 

A2. Thus, e2u is E2, and the second coupling scheme else×(A2×E2)
E2

 gives ML,total=ML,else±2 for 

the neutral complex. Because the A2 component of the (4fe2u)
2
 part has no  dependence, the 

configuration functions in the second coupling scheme are equivalent to those in the first coupling 

scheme (else×A2)×E2, and the angular momentum recoupling is not needed. Therefore, as the 

second coupling scheme shows, all the low-spin states are stabilized by the interaction with the Ln
4+

 

configuration (Figure 8(d)).  
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 (S3) Spin-orbit coupling (SOC) effect on the energy of the anion and neutral states 

 In general, SOC plays an important role for describing the electronic structure of Ln systems. 

This is especially true for the later Ln cases, in which the splitting energy levels due to the SOC is 

almost ten times larger than those caused by the ligand field for Ln(COT)2

, thus SOC should be 

taken into account for more precise description. However, as explained below, its inclusion has little 

effect on the vertical detachment energies and the X peak splittings. This is because both in the anion 

and neutral complexes with the strong ionic bonds, the 4f orbitals remain essentially as the atomic 

orbitals and their variations on photodetachment is negligibly small, therefore the SOC due to the 

open-shell 4f electrons remains the same. In what follow, we briefly explain this point using a simple 

degenerate first-order perturbation scheme.  

Let L, S, ML, and MS denote the total orbital and spin angular momentum quantum numbers 

and their respective axial component quantum numbers of Ln
3+

 without the SOC, and also let J and 

MJ denote the total angular momentum quantum number and its z-component with the SOC. First, 

the SO coupled ground states of most Ln
3+

 ions are efficiently approximated using the L-S coupling 

scheme,
79

 and J=L-S (n<7) or J=L+S (n≥7) depending on the number of f electrons n, and SO 

interaction within the COT portion is negligible. In this situation, the SO coupled wavefunction of 

the anion complex Ln
3+

(COT
2

)2

 with the ligand field split component of MJ is approximately 

expressed as a product of the wavefunctions for the Ln
3+

 and for the two COT ligands as follows, 

  )(),,,(
4

e2u
anion

,anion   
 JSL

SL

MMM

SLMM MSMLcA ,    (S1) 

where A is the antisymmetrizer, and the expansion coefficints  

  JSLMM MJMSMLc
SL

,,,,anion

,        (S2) 

are the Clebsch-Gordan coefficients for each component (L,ML,S,MS) of the Ln
3+

 ground state 
2S+1

LJ, 

and (e2u
4
) symbolically stands for the two COT ligands. This is a good approximation for these 

weak field complexes. If only the first-order SOC is taken into account, and the second-order SO 

interactions are ignored for the ground LS term, the energy for (J, MJ) anion state as expressed in 



S10 

 

(S1) is given as 

anion
SOSF

anion
anion

,  HHE
JMJ    

  
SMLM SMLM

SLSLSMLMSMLM MSMLHHMSMLcc
, ','

4

e2u

SOSF4

e2u

anion

','

anion

, ;',,',;,,,   

SO

,

4
e2u

122anion
, );()( ELEc

SL

LSL

MM

M
S

MM     .     (S3) 

Here, E(
2S+1

LML
; e2u

4
) is the ligand field split energy without the SOC. ESO represents the SOC 

energy, which is expressed in the well-known form as 

        111
2

SO  SSLLJJE


 

 










LS

SL



 1
 
 
 .138

61





n

n
      (S4) 

Here,  is the SOC parameter. Eq. S3 shows that the SOC mixes electronic states with different ML 

values, and it gives the averaged energy weighted by the square of the Clebsch-Gordan coefficients.  

 In a similar manner, the wavefunction of the SO coupled neutral state, whose Ln
3+

 portion is 

identical to that of the anion state 
2S+1

LJ with the component of MJ is approximated with the same 

Clebsch-Gordan coefficients as follows, 

  )(),,,(
3

e2u
neut

,neut   
 JSL

SL

MMM

SLMM MSMLcA ,    (S5) 

where 

  JSLMM MJMSMLc
SL

,,,,neut
,  .      (S6) 

The energy for the neutral state is further expressed as 

neut
SOSF

neut
neut

,  HHE
JMJ   
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SL SL
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, ','
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e2u
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e2u
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,

3
e2u
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2

3
e2u
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2

2neut
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1
);(

12
)( ELE

S

S
LE

S

S
c

SL

LLLLSL

MM

M
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MM
SS
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
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

  .  (S7)  
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For the neutral state with SOC, the energy of the low-spin and high-spin states is averaged with the 

weighting factors of each spin multiplicity.  

 In these approximations given in eqs. S2, S3, S6 and S7, the anion and neutral complexes 

have identical SOC energy and the expansion coefficient. In the actual calculations, however, their 

values should be slightly different for the anion and neutral complexes. The small differences of 

these values are a consequnce that the electronic structure of the Ln complexes is dominated by ionic 

bond within the weak ligand field regime and that the SOC effect of the ligand portion is negligibly 

small. In other words, for the anion and neutral states having the same 4f configuration, the SOC 

causes a similar energy shift and has an insignificant effect on the vertical detachment energy, which 

is the energy difference between the anion and neutral states. Although the absolute values of SOC 

are typically larger than the ligand field perturbation, and the splitting pattern becomes more 

complicated with the SOC, the coulombic interaction between the 4fe2u and ligand e2u electrons, 

which is a second-order interaction not included in the above first-order model, still plays the 

dominating role in the splitting of the X peaks. 

 

(S4) Basis set dependence of orbital interaction analysis 

 Mulliken population analysis, which estimates atomic charges by partitioning the wave 

function in terms of the basis functions, has a shortcoming in that the final results show a rather large 

basis-set dependence. In particular, diffuse functions added to improve the wave function often give 

results inconsistent with the chemical intuition and cause a problem in the interpretation. We faced 

several problems in our orbital interaction analysis. After some trial and error analyses, we have 

slightly modified the basis functions from the originally optimized one by Cundari and Stevens 
65

 

(denoted CS basis set) as detailed below. 

For example, the 5pe1u orbital contributes to the e1u MO in an anti-bonding manner (Figure 

2), however, we have also found the most diffuse p-type primitive basis function contributed to the 

e1u MO in an in-phase manner. Since the diffuse function has only a small chemical impact to the 
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Ln
3+

 5p orbital, we have removed the most diffuse sp-type functions from the CS basis set. Figure S3 

compares the 5p-ligand overlap calculated using the original CS basis sets and the new basis sets 

(denoted 5p-like basis sets). The overlap calculated with the CS basis sets shows a drastic change due 

to the increasing contribution of the diffuse p-type function across the Ln series. However, this 

significant change is actually not relevant to the 5p-ligand interaction. These 5p-like basis sets were 

used to calculate the radial expectation value of the 5p orbital (Figure 4), overlap between the πe1u 

and 5pe1u orbitals (Figure 5(a)), the interligand overlap in the e1u MO (Figure 5(b)), the energy of the 

πe1u orbital (Figure 6(c)) and the 5pe1u orbitals (Figure 6(g)), and  (Figure S1(c)). 

Figure S3. Overlap integral between the e1u and 5pe1u orbitals in the e1u MO calculated using the CS 

basis sets and the 5p-like basis sets.  

 

The diffuse basis functions used for the 5d and 4f atomic orbitals of Ln are even more 

problematic, because they significantly contribute to the atomic orbitals of Ln
3+

. Figure S4 shows the 

energies of the 5de2g and 5de1g orbitals, calculated with the CS basis sets. In the e1g MO case, the 

diffuse d-type function is directed at the ligands and effectively used to describe the ligand orbital. It 

results in the over-stabilization of the 5de1g orbital, and the basis set modification is needed. We 

contracted the d-type primitive functions of the CS basis sets into the single-zeta 5d atomic orbital of 

Ln
3+

 and constructed the (9s9p5d)/[4s4p1d] basis set for La and the (6s6p3d7f)/[4s4p1d2f] basis sets 

for Ce-Lu. We used these 5d-like basis sets to calculate the radial expectation value of the 5d orbital 
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(Figure 4), the 5d-ligand overlap (Figure 5(a)), the interligand overlap in the e2g and e1g MOs (Figure 

5(b)), the energy of the πe2g and πe1g orbitals (Figures 6(b) and (d)) and the 5d orbitals (Figure 6(f)), 

and  (Figures S1(b) and (d)).  

 Figure S4. The energies of the 5de2g and 5de1g orbitals calculated using the CS basis sets. 

 

 As in the previous single-zeta 5d basis set, the single-zeta 4f basis sets 

(6s6p3d7f)/[4s4p2d1f] for Ce-Lu can be generated by contracting the f-type primitive functions into 

the single-zeta 4f orbital of Ln
3+

. Since the contribution of the f-type functions to the MO is very 

small, our analysis on the 4f-ligand orbital interaction depends critically on the presence/absence of 

diffuse f-type functions. Figure S5 compares the 4f-ligand overlap calculated with the 4f-like basis 

sets and the CS basis sets. The overlap calculated using the 4f-like basis sets shows almost a steady 

decrease across the Ln series, reflecting the contraction of the 4f orbitals. On the other hand, the 

overlap calculated with the CS basis sets shows a discontinuous variation between Pm and Tb, which 

is attributed to the nonsystematic change of the diffuse f-type basis function. In this case, the Ln 

dependence of the overlap is clearly dominated by that of the most diffuse f-type primitive function 

(Figure S6). Therefore, our orbital interaction analysis has been carried out with the 4f-like basis sets 

(4f-ligand overlap (Figure 5(a)) and  (Figure S1(a))). However, since the single-zeta basis set is not 

flexible enough to describe electron correlation effect, we adopted the CS basis sets to estimate the 

many-body 4f-ligand interaction in 3-2. It is noted that, as shown in Table S1, the basis set 

dependence of the peak splitting energy was not so critical as it was for the 4f-ligand overlap 
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integral. 

Figure S5. 4f-ligand overlap in the e2u, e1u and a2u MOs, calculated using (a) 4f-like basis sets (the 

same as shown in Figure 5(a)) and (b) CS basis sets.  

 

Figure S6. Smallest exponents of the f-type primitive functions used in the CS basis sets. 

 

Table S1. Total energy and orbital energy and metal-ligand overlap in the e2u MO for Gd(COT)2

, 

calculated using the CS basis sets and the 4f-like basis sets. The splitting value of the X peak by the 

MCQDPT2 method is also given. The 4f-ligand overlap decreased by half in the 4f-like basis sets, 

whereas the splitting value decreased about 20%. 

  total energy (eV) e2u MO energy (eV) e2u -4f e2u overlap peak splitting (eV) 

CS basis set -19727.171  -2.261  0.048  0.215 

4f-like basis set -19727.031  -2.231  0.024  0.176 

 


