Supporting Information

RAFT macro-surfmers and their use in the ab initio **RAFT** emulsion polymerization to decouple NP size and polymer MW

Umberto Capasso Palmiero¹, Azzurra Agostini¹, Simone Gatti¹, Mattia Sponchioni¹, Viola Valenti¹, Lucia Brunel² and Davide Moscatelli¹

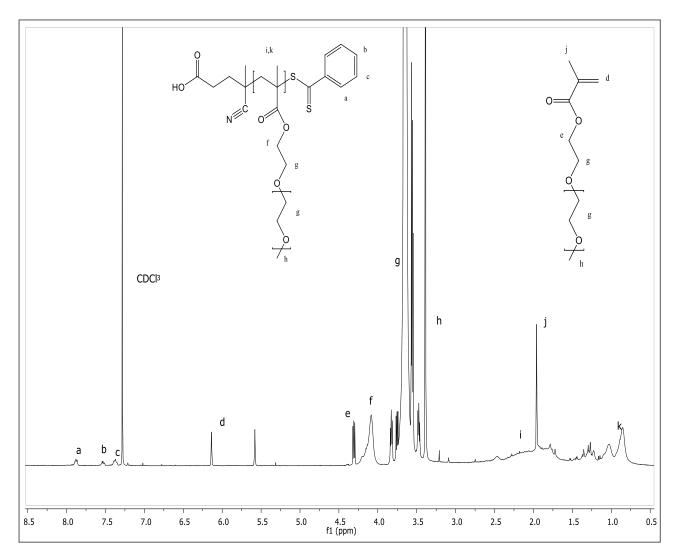


Figure S1: ¹H NMR spectrum of the sample 20PEGMA after 24h of reaction

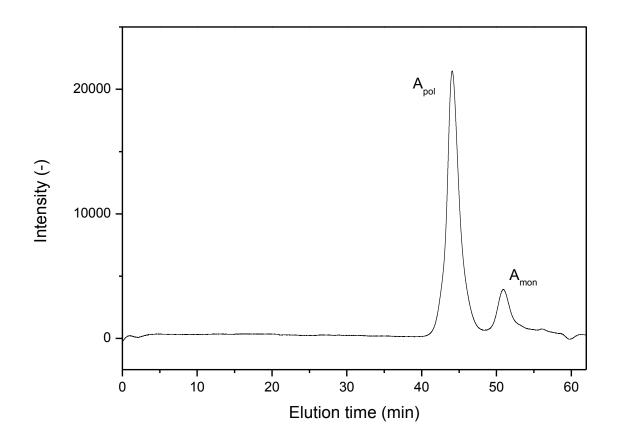
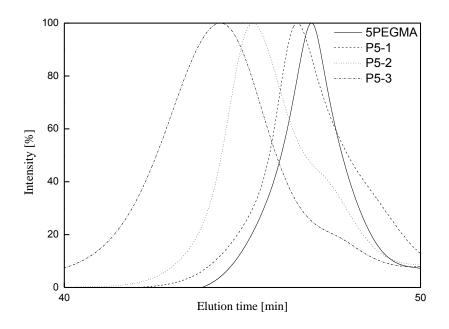



Figure S2: GPC trace of the sample 20PEGMA after 24h of reaction

Figure S3: GPC traces of the block copolymers produced with 5PEGMA in the AIREP experiments P5-1, P5-2 and P5-3 in **Table 3**

List of abbreviations

A _{Cov}	NP surface area that a single hydrophilic chain can cover
C_{b_hydro}	Hydrophilic chain weight concentration
C_{lipo}	Lipophilic monomer weight concentration
Dn	NP diameter
DP _{hydro}	Degree of polymerization of the hydrophilic block
DP _{lipo}	Degree of polymerization of the lipophilic block
DP _{ratio}	Ratio between <i>DP_{lipo}</i> and <i>DP_{hydro}</i>
MW _{cop}	Molecular weight of the block-copolymer that constitutes the NP
MW_{b_hydro}	Molecular weight of the hydrophilic chain (macro-RAFT surfmers in this work)
MW_{hydro}	Molecular weight of the hydrophilic monomer (PEGMA in this work)
MW _{lipo}	Molecular weight of the lipophilic monomer (MMA in this work)
MW_{RAFT_agent}	Molecular weight of the RAFT agent (CPA in this work)
N _{Avo}	Avogadro number
N _{b_hydro}	Number of hydrophilic chains located on the NP surface
n_{lipo}	Initial number of moles of the lipophilic monomer
N _{NPs}	Number concentration of NPs in the system
n_{RAFT_agent}	Initial number of moles of the RAFT agent
V	Volume of the mixture
$ ho_{b_lipo}$	Density of lipophilic chains that form the NP core (pMMA in this work)

Derivation of equation (12) from equations (8-11)

$$MW_{cop} = MW_{hydro} \cdot DP_{hydro} + MW_{lipo} \cdot DP_{lipo} + MW_{RAFT_agent}$$
(8)

$$A_{Cov} = \frac{\pi \cdot Dn^2}{N_{b_hydro}} \tag{9}$$

$$N_{b_hydro} = \frac{C_{b_hydro} \cdot N_{Avo}}{MW_{b_hydro} \cdot N_{NPs}}$$
(10)

$$N_{NPS} = \frac{6 \cdot C_{lipo}}{\pi \cdot Dn^3 \cdot \rho_{b_lipo}} \tag{11}$$

Combining equations (9-11), it is possible to obtain equation (12a):

$$A_{Cov} = \frac{\pi \cdot Dn^2}{\frac{C_{b_hydro} \cdot N_{Avo}}{MW_{b_hydro} \cdot N_{NPs}}} = \frac{\pi \cdot Dn^2}{\frac{C_{b_hydro} \cdot N_{Avo}}{MW_{b_hydro} \cdot \frac{6 \cdot C_{lipo}}{\pi \cdot Dn^3 \cdot \rho_{b_lipo}}} = \frac{6 \cdot C_{lipo} \cdot MW_{b_hydro}}{C_{b_hydro} \cdot N_{Avo} \cdot Dn \cdot \rho_{b_lipo}}$$
(12a)

 C_{lipo} and C_{b_hydro} can be expressed as:

$$C_{lipo} = \frac{n_{lipo} \cdot MW_{lipo}}{V}$$
(12b)

$$C_{b_hydro} = \frac{n_{b_hydro} \cdot MW_{b_hydro}}{V}$$
(12c)

where V is the volume of the mixture and n_{b_hydro} and n_{lipo} are the initial number of moles of the hydrophilic chain and of the lipophilic monomer, respectively. In the case of well controlled RAFT polymerization (eq. (8) is true), the RAFT functional end group is present at the end of each chain and, for this reason, DP_{lipo} can be expressed as:

$$DP_{lipo} = \frac{n_{lipo}}{n_{RAFT_agent}} = \frac{n_{lipo}}{n_{b_hydro}}$$
(12d)

Where n_{RAFT_agent} is the initial number of moles of the RAFT agent.

If we combine equations (12b,c,d) with equation (12a), it is possible to obtain:

$$Dn = \frac{6 \cdot n_{lipo} \cdot MW_{lipo}}{N_{Avo} \cdot A_{Cov} \cdot \rho_{b_lipo} \cdot n_{b_hydro}} = \frac{6 \cdot DP_{lipo} \cdot MW_{lipo}}{N_{Avo} \cdot A_{Cov} \cdot \rho_{b_lipo}}$$
(12)