Supporting Information

for

Reactivity Studies of $\left[(\text { thf })_{2} \mathrm{Mg}\left\{\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right\}\right]_{2}$: Scrambling Reactions and Diverse Reactions with Dichlorophenylphosphane

Reinald Fischer, Helmar Görls, and Matthias Westerhausen*

Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 8, D-07743 Jena, Germany,
e-mail: m.we@uni-jena.de, fax: +49 364194813

Table of Contents

Figure S1. $\quad{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\left\{(\operatorname{thf})_{2} \mathrm{Mg}\left(\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)\right\}_{2}\right](\mathbf{1})$. 3
$\begin{array}{lll}\text { Figure S2. } \quad{ }^{1} \mathrm{H} \text { NMR spectrum of }\left[\left\{(\operatorname{thf})_{2} \mathrm{Mg}\right\}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\left\{\mu-\left(\mathrm{CH}_{2}\right)_{5}\right\}\right](\mathbf{2}) \\ & \text { at } 20{ }^{\circ} \mathrm{C} \text { and at }-40^{\circ} \mathrm{C} .\end{array}$
Figure S3. $\quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}$ at $20^{\circ} \mathrm{C}$ and at $-40^{\circ} \mathrm{C}$. 5
Figure S4. DEPT and HSQC spectrum of $\mathbf{2}$ at $-40^{\circ} \mathrm{C}$. 6
Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\left[\left\{(\operatorname{thf})_{2} \operatorname{Mg}\left\{\mu-\mathrm{CH}_{2}\right)_{5}\right\}\right\}_{2}\right]$ at $20^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$. 7
Figure S6. $\quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left.\left[\left\{(\text { thf })_{2} \mathrm{Mg}\left\{\mu-\mathrm{CH}_{2}\right)_{5}\right\}\right\}_{2}\right]$ at $20^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$. 7
Figure S7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{1}$ after a 1 h UV irradiation. 8
Figure S8. DEPT and HSQC spectrum of $\mathbf{1}$ after a 1 h UV irradiation. 9
Figure S9. $\quad{ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PhPCl}(\mathrm{S})\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right\}\right](\mathbf{3 - S}) . \quad 10$
Figure S10. $\quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and DEPT spectrum of $\left[\mathrm{PhPCl}(\mathrm{S})\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right\}\right](3-\mathrm{S}) . \quad 11$
Figure S11. Detail of HSQC spectrum and mass spectrum of $\left.\left[\mathrm{PhPCl}(\mathrm{S})\left\{\mathrm{C}_{(} \mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right\}\right]$ (3-S).12

Figure S12. $\quad{ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[\mathrm{PhP}(\mathrm{S})\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right]$ (4-S). 13
Figure S13. $\quad{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and mass spectrum of $\left[\mathrm{PhP}(\mathrm{S})\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right](4-\mathrm{S})$. 14
Figure S14. HSQC spectrum of $\left[\mathrm{PhP}(\mathrm{S})\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right](4-\mathrm{S})$. 15
$\begin{array}{lll}\text { Figure S15. } & { }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR and }{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \text { NMR spectrum of } & \\ & {\left[\{\mathrm{PhP}(\mathrm{S})\}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right]\left(6-\mathbf{S}_{2}\right) .} & 16\end{array}$
Figure S16. $\quad{ }^{1} \mathrm{H}$ NMR and HSQC spectrum of $\left[\{\mathrm{PhP}(\mathrm{S})\}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right]\left(\mathbf{6}-\mathbf{S}_{2}\right)$. 17
Figure S17. DEPT and mass spectrum of $\left[\{\mathrm{PhP}(\mathrm{S})\}_{2}\left\{\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right]\left(\mathbf{6}-\mathbf{S}_{\mathbf{2}}\right)$. 18
Figure S18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectrum of a 1:1 mixture of $\mathbf{7}-\mathbf{S}_{2}$ and $\mathbf{8}-\mathbf{S}_{\mathbf{2}}$ at $50{ }^{\circ} \mathrm{C}$. 19
Figure S19. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of a $1: 1$ mixture of $\mathbf{7}-\mathbf{S}_{\mathbf{2}}$ and $\mathbf{8}-\mathbf{S}_{\mathbf{2}}$ at $50^{\circ} \mathrm{C}$. 20
Figure S20. DEPT spectrum and mass spectrum of a $1: 1$ mixture of $\mathbf{7}-\mathbf{S}_{\mathbf{2}}$ and $\mathbf{8}-\mathbf{S}_{\mathbf{2}}$. 21
Figure S21. HSQC spectrum and detail of the HSQC spectrum of a $1: 1$ mixture of $7-\mathbf{S}_{2}$ and $\mathbf{8 - S} \mathbf{S}_{2}$ at $50^{\circ} \mathrm{C}$.
Figure S22. $\quad{ }^{31} \mathrm{P}$ NMR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture of a 0.27 M solution of $\mathbf{1}$ in THF and PhPCl_{2} (molar ratio $1: 10$) at $-50^{\circ} \mathrm{C}$
Table S1 Crystal and refinement data of the X-ray structure determinations 24

NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (bottom) of $\mathbf{1}$, measured at 600 MHz and at 150.9 MHz , respectively, in $\left[\mathrm{D}_{8}\right]$ THF ($\mathrm{s}=$ (residual) signal of $\left[\mathrm{D}_{8}\right]$ THF).

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of 2 at $20{ }^{\circ} \mathrm{C}$ (top) and at $-40^{\circ} \mathrm{C}$ (bottom) measured at 400 MHz in [D_{8}]THF $\left(\mathbf{1}=\right.$ signals of $\left[\left\{(\operatorname{thf})_{2} \mathrm{Mg}\left\{\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right\}_{2}\right],+=$ signals of $\left.\left[\left\{(\text { thf })_{2} \mathrm{Mg}\left\{\mu-\mathrm{CH}_{2}\right)_{5}\right\}\right\}_{2}\right]$, $*=$ signals of hydrolysis product, $\mathrm{s}=$ (residual) signal of $\left.\left[\mathrm{D}_{8}\right] \mathrm{THF}\right)$.

Figure S3. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 at $20^{\circ} \mathrm{C}$ (top) and at $-40^{\circ} \mathrm{C}$ (bottom) measured at 400.1 MHz in $\left[\mathrm{D}_{8}\right] \mathrm{THF}(\mathbf{1}=$ signals of dinuclear $\left[\left\{(\operatorname{thf})_{2} \mathrm{Mg}\left\{\mu-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right\}_{2}\right], \mathbf{1}_{0.5}=$ signals of mononuclear isomer of $\mathbf{1},+=$ signals of $\left.\left[\left\{(\operatorname{thf})_{2} \operatorname{Mg}\left\{\mu-\mathrm{CH}_{2}\right)_{5}\right\}\right\}_{2}\right], *=$ signals of hydrolysis product, $\mathrm{s}=$ signal of $\left.\left[\mathrm{D}_{8}\right] \mathrm{THF}\right)$

Figure S4. DEPT (top) and HSQC spectrum (bottom) of 2 at $-40^{\circ} \mathrm{C}$ measured in $\left[\mathrm{D}_{8}\right]$ THF at 150.9 MHz and 400.1 MHz , respectively. ($\mathbf{1}_{0.5}=$ mononuclear complex of $\left.\mathbf{1},+=\left[\left\{(\operatorname{thf})_{2} \operatorname{Mg}\left\{\mu-\mathrm{CH}_{2}\right)_{5}\right\}\right\}_{2}\right], *=$ hydrolysis product, $\left.\mathrm{s}=\left[\mathrm{D}_{8}\right] \mathrm{THF}\right)$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\left[\left\{(\text { (hf })_{2} \mathrm{Mg}\left\{\mu-\mathrm{CH}_{2}\right)_{5}\right\}\right\}_{2}\right]$ at $20^{\circ} \mathrm{C}$ (top) and $-40^{\circ} \mathrm{C}$ (bottom), measured at 400 MHz in $\left[\mathrm{D}_{8}\right]$ THF $\left(*=\right.$ hydrolysis product, $\mathrm{s}=($ residual $)$ signal of $\left.\left[\mathrm{D}_{8}\right] \mathrm{THF}\right)$.

Figure S6. Temperature dependent ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left.\left[\left\{(\operatorname{thf})_{2} \mathrm{Mg}\left\{\mu \text { - } \mathrm{CH}_{2}\right)_{5}\right\}\right\}_{2}\right]$ at $20{ }^{\circ} \mathrm{C}$ (top) and $-40^{\circ} \mathrm{C}$ (bottom), measured at 100.6 MHz in $\left[\mathrm{D}_{8}\right] \mathrm{THF}\left(*=\right.$ hydrolysis product, $\mathrm{s}=$ (residual) signal of $\left.\left[\mathrm{D}_{8}\right] \mathrm{THF}\right)$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (bottom) of $\mathbf{1}$ in $\left[\mathrm{D}_{8}\right] \mathrm{THF}$ after 1 h irradiation with a Hg lamp in a NMR glass tube, measured at 600.1 MHz and 150.9 MHz , respectively $(+=$ photolysis products, $\#=$ mesitylene as internal standard, $\mathrm{s}=$ (residual) signal of $\left.\left[\mathrm{D}_{8}\right] \mathrm{THF}\right)$.

Figure S8. DEPT (top) and HSQC spectrum (bottom) of $\mathbf{1}$ in $\left[\mathrm{D}_{8}\right]$ THF after 1 h irradiation with a Hg lamp in a NMR glass tube, measured at 150.9 MHz and 400.1 MHz and, respectively $(+=$ signals of photolysis products, $\mathrm{s}=$ residual signal of $\left[\mathrm{D}_{8}\right]$ THF).

Figure S9. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (bottom) of $\left[\mathrm{PhP}(\mathrm{S})(\mathrm{Cl})\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right\}\right]$ (3-S), measured at 600 MHz and at 162.0 MHz , respectively, in CDCl_{3} (* $=$ residual signal of diethyl ether, $+=$ $\left[\{\mathrm{PhP}(\mathrm{S})(\mathrm{Cl})\}_{2}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right]\left(\mathbf{5}-\mathbf{S}_{2}\right), \mathrm{s}=$ residual signal of $\left.\mathrm{CDCl}_{3}\right)$.

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (top) and DEPT spectrum (bottom) of 3-S, measured at 150.9 MHz , in CDCl_{3} (* $=$ residual signal of diethyl ether, $+=\left[\{\mathrm{PhP}(\mathrm{S})(\mathrm{Cl})\}_{2}\left\{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{2}\right)_{2}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right\}\right]\left(5-\mathrm{S}_{2}\right)$, $\mathrm{s}=$ residual signal of $\left.\mathrm{CDCl}_{3}\right)$.

Figure S11. Detail of HSQC spectrum, measured in CDCl_{3} (top), and mass spectrum (bottom) of 3-S.

4-S

$\stackrel{\Gamma}{\infty}$

Figure S12. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (bottom) of $\mathbf{4 - S}$, measured at 400.1 MHz , and at 162.0 MHz , respectively, in CDCl_{3}.

下．
 4－S

Figure S14. HSQC spectrum of $\mathbf{4 - S}$, measured at 400.1 MHz , in CDCl_{3}.

Figure S15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{6}-\mathrm{S}_{2}$, measured at 162.0 MHz and 100.6 MHz , respectively, in $\mathrm{CDCl}_{3}\left(\mathrm{~s}=\right.$ signal of $\left.\mathrm{CDCl}_{3}\right)$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR and HSQC spectrum of $\mathbf{6}-\mathbf{S}_{2}$, measured at 400.1 MHz , in $\mathrm{CDCl}_{3}\left(\mathrm{~s}=\right.$ signal of $\left.\mathrm{CDCl}_{3}\right)$.

Figure S17. DEPT spectrum (top), measured at 100.6 MHz, in $\mathrm{CDCl}_{3}\left(\mathrm{~s}=(\right.$ residual $)$ signal of $\left.\mathrm{CHCl}_{3}\right)$ and mass spectrum (bottom) of 6-S $\mathbf{S}_{\mathbf{2}}$.

Figure S18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (top) and ${ }^{31} \mathrm{P}$ NMR spectrum (bottom) of a 1:1 mixture of $\mathbf{7}-\mathbf{S}_{\mathbf{2}}(+)$ and $\mathbf{8}-\mathbf{S}_{\mathbf{2}}\left({ }^{*}\right)$, measured at 202.5 MHz, in CDCl_{3} at $50^{\circ} \mathrm{C}$.

$\stackrel{N}{\sim}$
$+$

$\mathbf{8 - S} \mathbf{S}_{2}$

7-S \mathbf{S}_{2}

00 OLL

| 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure S19. ${ }^{1} \mathrm{H}$ NMR (top) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (bottom) of a $1: 1$ mixture of $\mathbf{7 -} \mathbf{S}_{\mathbf{2}}$ and $\mathbf{8}$ - $\mathbf{S}_{\mathbf{2}}$, measured at 600.1 MHz and at 150.9 MHz , in CDCl_{3} at $50^{\circ} \mathrm{C}$ ($\mathrm{s}=\left(\right.$ residual) signal of $\mathrm{CDCl}_{3}, *=$ additional signals of $\mathbf{8}-\mathbf{S}_{\mathbf{2}}$).

7-S2

Figure S20. DEPT spectrum (top) measured at 100.6 MHz in CDCl_{3} and mass spectrum (bottom) of a $1: 1$ mixture of $\mathbf{7 - S} \mathbf{2}$ and $\mathbf{8 - S} \mathbf{S}_{\mathbf{2}}{ }^{*}=$ additional signals of $\mathbf{8 - S} \mathbf{2}$).

Figure S21. HSQC spectrum (top) and detail of the HSQC spectrum (bottom) of a $1: 1$ mixture of $\mathbf{7}-\mathbf{S}_{\mathbf{2}}$ and $\mathbf{8}-\mathbf{S}_{\mathbf{2}}$ measured at 600.1 MHz , in CDCl_{3} at $50^{\circ} \mathrm{C}$.

Figure S22. ${ }^{31} \mathrm{P}$ NMR (top) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (bottom) of the reaction mixture of a 0.27 M solution of $\mathbf{1}$ in THF and dichlorophenylphosphane (molar ratio $1: 10$) at $-50{ }^{\circ} \mathrm{C}$ containing 25% of $\mathrm{C}_{6} \mathrm{D}_{6}$, measured at $162.0 \mathrm{MHz}\left(^{*}=\right.$ signals of unknown side products).

Table S1: Crystal data and refinement details for the X-ray structure determinations of the compounds $\mathbf{2 - 7 - \mathbf { S } _ { 2 }}$.

Compound	2	3-S	4-S	6-S ${ }_{2}$	7-S ${ }_{2}$
formula	$\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{Mg}_{2} \mathrm{O}_{4}$	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{ClPS}$	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{PS}$	$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{P}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{P}_{2} \mathrm{~S}_{2}$
fw $\left(\mathrm{g} \cdot \mathrm{mol}^{-1}\right)$	519.37	288.80	252.34	392.47	504.68
$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	-140(2)	-130(2)	-140(2)	-140(2)	-140(2)
crystal system	monoclinic	orthorhombic	orthorhombic	monoclinic	triclinic
space group	P 21	P c a 21	P $21{ }_{21} 2_{1}$	P $21 / \mathrm{n}$	$\mathrm{P} \overline{1}$
a / \AA	14.8611(4)	11.8438(3)	8.28330(10)	16.4073(3)	8.0198(7)
b/ \AA	$13.4710(2)$	11.9540 (3)	$12.1905(2)$	8.0918(2)	9.2558(8)
c/ \AA	15.9249(4)	10.7610(3)	14.0260(2)	16.7052(3)	11.4204(9)
$\alpha /^{\circ}$	90	90	90	90	111.061(5)
$\beta 1^{\circ}$	93.810(1)	90	90	114.488(1)	93.960(5)
$\gamma 1^{\circ}$	90	90	90	90	112.432(5)
V / \AA^{3}	3181.02(13)	1523.55(7)	1416.31(4)	2018.36(7)	710.04(10)
Z	4	4	4	4	1
$\rho\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.084	1.259	1.183	1.292	1.180
$\mu\left(\mathrm{cm}^{-1}\right)$	1.04	4.71	3.15	4.22	3.14
measured data	42435	11118	17739	15150	7212
data with $\mathrm{I}>2 \sigma(\mathrm{I})$	11206	3101	3125	4230	2520
unique data ($\mathrm{R}_{\mathrm{int}}$)	14013/0.0433	3469/0.0632	3255/0.0293	4601/0.0350	3231/0.0503
w $R_{2}\left(\text { all data, on } \mathrm{F}^{2}\right)^{\text {a) }}$	0.1240	0.0884	0.0730	0.1092	0.1920
$R_{1}(I>2 \sigma(I))^{\text {a) }}$	0.0536	0.0385	0.0312	0.0453	0.0698
$s^{\text {b) }}$	1.067	1.104	1.097	1.119	1.072
Res. dens./e $\AA^{\circ}{ }^{-3}$	0.323/-0.224	0.304/-0.207	0.400/-0.312	1.165/-0.412	0.582/-0.448
Flack-parameter	0.07(19)	-0.11(8)	-0.01(9)	-	-
absorpt method	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
absorpt corr $\mathrm{T}_{\min } /{ }_{\text {max }}$	0.6750/0.7456	0.5967/0.7456	0.7144/0.7456	0.7053/0.7456	0.5684/0.7456
CCDC No.	1504993	1504994	1504995	1504996	1504997

${ }^{\text {a) }}$ Definition of the R indices: $\mathrm{R}_{1}=\left(\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right|\right) / \Sigma\left|F_{\mathrm{o}}\right|$;
$\mathrm{wR}_{2}=\left\{\Sigma\left[w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{0}^{2}\right)^{2}\right]\right\}^{1 / 2}$ with $w^{-1}=\sigma^{2}\left(F_{0}^{2}\right)+(a P)^{2}+\mathrm{bP} ; \mathrm{P}=\left[2 \mathrm{~F}_{\mathrm{c}}{ }^{2}+\operatorname{Max}\left(\mathrm{F}_{0}^{2}\right] / 3 ;\right.$
${ }^{\text {b) }} s=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right\}^{1 / 2}$.

