Supporting Information

Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A-D-A Versus D-A Motif on Excited-state Photophysics

Samuel J. Hendel^a, Ambata M. Poe^b, Piyachai Khomein^b, Youngju Bae^b, S. Thayumanavan^b, Elizabeth R. Young^a*

a. Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, USA. Email: eyoung@amherst.edu; Phone: +1-413-542-5480; Fax: +1-413-542-2735

b. Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA. E-mail:thai@chem.umass.edu; Phone: +1-413-545-1313; Fax: +1-413-545-4490

Contents

1. Additional electrochemical analysis	S2
2. UV-visible absorption spectra of TA samples	S4
3. Time-resolved photoluminescence kinetic traces	S5

1. Additional electrochemical analysis

Figure S1. Square wave voltammograms of D, D-A and A-D-A. All data were recorded in 100 mM Bu_4NPF_6 in dichloromethane using a platinum working electrode, Ag wire quasi reference electrode and a platinum wire counter electrode. Ferrocene was added as an internal standard.

Table S1.	Peak h	eights	of reducti	ve and	oxidative	peaks in	square	wave vo	ltammog	rams
		0				1			6	,

	Height of peak / µA			
Molecule	Reductive peak	1 st oxidative peak	2 nd oxidative peak	
D-A	2.59	1.89		
A-D-A	1.61	0.781	0.736	

All data were recorded in 100 mM Bu_4NPF_6 in dichloromethane using a platinum working electrode, Ag wire quasi reference electrode and a platinum wire counter electrode. Ferrocene was added as an internal standard.

Figure S2. Differential pulse voltammograms of D, D-A and A-D-A. All data were recorded in 100 mM Bu_4NPF_6 in dichloromethane using a platinum working electrode, Ag wire quasi reference electrode and a platinum wire counter electrode. Ferrocene was added as an internal standard.

Table S2. Integration of peak area in differential pulse voltammograms.

	Integration of peak / nVA				
Molecule	Reductive peak	1 st oxidative peak	2 nd oxidative peak		
D-A	77.8	91.8			
A-D-A	166	79.3	87.8		

All data were recorded in 100 mM Bu_4NPF_6 in dichloromethane using a platinum working electrode, Ag wire quasi reference electrode and a platinum wire counter electrode. Ferrocene was added as an internal standard.

2. UV-visible absorption spectra of TA samples

Figure S3. Representative UV-visible absorption spectra of D-A and A-D-A before and after TA spectroscopy demonstrate that no photodegradation occurred over the course of the TA experiments. Samples were prepared in dichloromethane in an inert glovebox environment.

3. Time-resolved photoluminescence kinetic traces

Figure S4. Time-resolved PL traces of D-A and A-D-A collected using TCSPC with a pulsed LED excitation source, shown as the IRF. Samples were prepared in dichloromethane in an inert glovebox environment.