Electronic Supplementary Information

Out-of-Substrate Ag–Ag₂O Nanoplates: Surfactantless Photochemical Synthesis, Structural Evolution, and Mechanistic Study

Meng Yin Li,^{†,∥} Yao Quan Mao,^{†,∥} Su Ke Yang,[†] Ting Ting Dai,[†] Hua Yang,[†] Feng Feng,[†] Tao Wu,[†] Muzi Chen,[‡] Guo Qin Xu,^{∗,§} Ji Hong Wu,^{∗,†}

- [†] College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 RenAi Road, Suzhou 215123, Jiangsu, China
- [§] Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- [‡] Testing & Analysis Center, Soochow University, 199 RenAi Road, Suzhou 215123, Jiangsu, China

Figure S1. Small nanoplates with rough surfaces and ragged edges grown from a 0.1M AgNO₃ aqueous solution after UV illumination for 180 min.

Figure S2. SEM characterization reveals polymerization of the large nanoplates. Growth time: (A) 130 min, (B) 150 min, (C) 160 min, and (D) 180 min.

Figure S3. (**A-D**) Close-up side view of THE large smooth nanoplates obtained at 180 min and measurements of the nanoplate thicknesses. Concentration of AgNO₃ precursor: 5 M.

Figure S4. (A-D) Close-up side view of the large smooth nanoplates obtained at 180 min and measurements of the nanoplate thicknesses. Concentration of AgNO₃ precursor: 1 M.