Supporting Information (I)

The Total Synthesis of Absinthin

Weihe Zhang, ${ }^{\dagger, \dagger}$ Shengjun Luo, ${ }^{\dagger}$ Fang Fang, ${ }^{\dagger}$ Qingshou Chen, ${ }^{\dagger}$ Xueshun Jia, ${ }^{\dagger}$ and Hongbin $\mathbf{Z h a i}{ }^{*},{ }^{\dagger}$

Laboratory of Modern Synthetic Organic Chemistry and State Key Laboratory of Bio-Organic and Natural
Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China 200032, ${ }^{\dagger}$ and Department of Chemistry, Shanghai University, Shanghai, China 200436^{\ddagger}

Part 1. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Spectroscopic Data of Absinthin (PDF)

For comparison, both literature-reported ${ }^{1}$ and our ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopic data of absinthin (1) were listed in Table S1.

Table S1. A List of ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR Data for Absinthin

Position	${ }^{13} \mathrm{C}$ (Lit. ${ }^{\mathbf{1}}$)		${ }^{13} \mathrm{C}$ (Current)		${ }^{1} \mathrm{H}$ (Lit. ${ }^{\mathbf{1}}{ }^{\text {) }}$		${ }^{1} \mathbf{H}$ (Current)	
1, 1'	71.3	57.0	71.3	57.0	2.16	2.29	2.16	2.20
2, 2'	45.6	46.5	45.6	46.6	2.86	2.84	2.83	2.81
3, 3'	122.4	58.8	122.1	58.8	5.50	3.21	5.55	3.20
4, 4'	146.6	135.4	147.3	134.9	--	--	--	--
5, 5'	64.0	147.8	64.0	148.2	--	--	--	--
6, 6'	82.7	81.5	82.6	81.4	4.70	4.60	4.71	4.60
7, 7'	46.3	49.2	46.4	49.3	1.80	1.64	1.78	1.67
8, 8'	27.5	23.6	27.4	23.5	1.80	1.60	1.84	1.76
9, 9'	43.6	42.4	43.6	42.4	1.80	1.60	1.85	1.76
10, 10'	73.9	71.6	74.0	71.9	--	--	--	--
11, 11'	42.2	42.0	42.2	42.0	2.30	2.30	2.27	2.24
12, 12'	179.3	179.8	178.5	178.8	--	--	--	--
13, 13'	13.0	12.1	13.0	12.1	1.25	1.21	1.25	1.20
14, 14'	29.4	32.2	29.3	32.2	1.20	1.31	1.22	1.30
15, 15'	13.6	18.3	13.7	18.3	1.78	1.90	1.78	1.92

Part 2. Experimental Procedures and Analytical Data (PDF)

Experimental Section

General Methods. Melting points are uncorrected. All solvents and reagents were obtained from commercial sources and used without further purification unless otherwise stated. NMR
spectra were recorded in CDCl_{3} or pyridine- $d_{5}\left({ }^{1} \mathrm{H}\right.$ at 300 MHz and ${ }^{13} \mathrm{C}$ at 75 MHz$)$ using TMS as the internal standard. Analytical samples were obtained by chromatography on silica gel using an $\mathrm{EtOAc} / \mathrm{hexane}$ mixture as the eluent. Anhydrous solvents and reagents were obtained as follows: dichloromethane was distilled over calcium hydride under N_{2}; THF, ether and benzene were distilled over sodium benzophenone ketyl under N_{2}.
\boldsymbol{O}-Acetylisophotosantonic lactone (4). A solution of $\boldsymbol{\alpha}$-santonin ($5.00 \mathrm{~g}, 21.0 \mathrm{mmol}$) in glacial $\mathrm{AcOH}(400 \mathrm{~mL})$ placed in a water-cooled quartz immersion well apparatus (Figure S1) was photolyzed at $16^{\circ} \mathrm{C}$ under a nitrogen atmosphere with a high press Hg lamp (150 W) for 7 hours. After the AcOH was evaporated under reduced pressure, the resulting oil was dissolved in hot $\mathrm{MeOH}(20 \mathrm{~mL})$ and then left in a freezer $\left(-20^{\circ} \mathrm{C}\right)$ overnight. Suction filtration afforded $4(2.40 \mathrm{~g}$, 38.6%) as a colorless solid: mp $175-178{ }^{\circ} \mathrm{C} ;[\alpha]^{20}{ }_{\mathrm{D}}+46.4\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03-2.62(\mathrm{~m}, 7 \mathrm{H}), 4.13-4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 1), 4.82(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$, C6).

Figure S1. The photochemical reactor used for preparing 4
Compound 8. To a solution of $4(1.56 \mathrm{~g}, 5.09 \mathrm{mmol})$ in $\mathrm{MeOH}(45 \mathrm{~mL})$ was added NaBH_{4} $(203 \mathrm{mg}, 5.37 \mathrm{mmol})$ in several portions. The reaction mixture was stirred at room temperature for 30 min and then saturated aqueous NaHCO_{3} was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{PrOH}(3: 1)$ and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give $8(1.55 \mathrm{~g}, 99 \%)$. For the major isomer ($3 \alpha-\mathrm{OH}$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.08-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.49(\mathrm{~m}, 2 \mathrm{H})$, 3.68-3.79 (m, 1H, CH, C1), 4.48-4.57 (m, 1H, CH, C3), 4.66 (d, J=10.8 Hz, 1H, CH, C6).

Compound 9. A solution of $8(1.18 \mathrm{~g}, 3.83 \mathrm{mmol})$ and o-nitrophenyl selenocyanate $(1.13 \mathrm{~g}$, $4.98 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ was treated dropwise with tri- n-butylphosphine $(1.3 \mathrm{~mL}, 5.22$ mmol) at room temperature under nitrogen. After the reaction mixture was stirred for 1 h , the solvent was removed in vacuo. Chromatography of the residue on silica gel using EtOAc/hexane (1:3) gave 9 ($1.36 \mathrm{~g}, 72 \%$) as yellow crystals. For the major isomer: mp (EtOAc) 214-216 ${ }^{\circ} \mathrm{C}$; $[\alpha]^{20}{ }_{\mathrm{D}}-10.2\left(c 0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.26\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.94-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.16-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.63(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$, $\mathrm{C} 1), 4.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 3), 4.67(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 6), 7.31-7.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 7.49-7.65 (m, 2H, 2CH), $8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.3,15.5$, $19.7,22.3,25.3,34.1,38.2,41.2,49.0,52.0,54.2,81.5,86.0,125.6,126.4,129.8,133.4,134.1$,
134.3, 140.4, 147.3, 170.0, 177.7. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{Se}: \mathrm{C}, 56.10 ; \mathrm{H}, 5.53 ; \mathrm{N}, 2.84$. Found: C, 56.07; H, 5.10; N, 2.68.

Compound 5. Compound 9 ($18 \mathrm{mg}, 0.036 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(4 \mathrm{~mL})$ and treated with a solution of $\mathrm{NaIO}_{4}(16 \mathrm{mg}, 0.075 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$. The reaction mixture was stirred for 45 min at room temperature, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. Chromatography of the residue on SiO_{2} gave $5(3.4 \mathrm{mg}, 32 \%$, eluted out with EtOAc/hexane, 1:10) as a colorless oil, along with unreacted $9(9.3 \mathrm{mg}, 52 \%$, eluted out with EtOAc/hexane, 1:3). The effective yield of this step was figured out to be 66% if the recovered starting material was taken into account. Compound 5: $[\alpha]^{20}{ }_{D}-35.5$ (c 1.03, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23-1.31\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.40-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.15(\mathrm{~m}, 2 \mathrm{H})$, $2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.23-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{td}, 1 \mathrm{H}, J=13.1,4.2 \mathrm{~Hz}), 4.22(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 1), 4.76(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 6), 6.29(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 2), 6.36(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 3) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.3,14.1,18.7,22.4,24.7,38.7,41.4,50.4$, 61.1, 80.9, 86.1, 133.2, 135.4, 136.9, 143.9, 170.3, 178.3; Anal. Calad for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}$: C, 70.32; H, 7.64. Found: C, 70.40; H, 7.82.

Compound 6. Diene $5(43.2 \mathrm{mg}, 0.149 \mathrm{mmol})$ was allowed to stand (to undergo automatic dimerization) under an N_{2} atmosphere at room temperature for 10 days. The reaction mixture was chromatographed $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ hexane, $\left.1: 10\right)$ to give $6(31 \mathrm{mg}, 72 \%)$ as colorless crystals along with unreacted diene $5(10 \mathrm{mg}, 23 \%)$ as a colorless oil. Compound 6: mp (EtOAc) $188{ }^{\circ} \mathrm{C}$ (dec.); $[\alpha]^{20}{ }_{\mathrm{D}}+18.7\left(c 0.99, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.21-1.30\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.32-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.77-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.93-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.08-2.31(\mathrm{~m}, 2 \mathrm{H})$, 2.31-2.45 (m, 1H), 2.45-2.56 (m, 1H), 2.56-2.61 (m, 1H), 2.65-2.75 (m, 1H), $2.85(\mathrm{~s}, 1 \mathrm{H})$, 3.19-3.31 (m, 2H), 4.39 (d, $J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 6$ '), 4.46 (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 6$), 5.55 (s, $1 \mathrm{H}, \mathrm{CH}, \mathrm{C} 3) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.1,12.8,13.4,17.7,21.6,22.4,22.4,24.3,25.6$, $27.1,37.9,39.6,41.8,41.9,44.5,46.7,46.9,48.9,54.3,60.8,62.6,69.4,81.1,82.4,86.0,88.0$, $123.9,134.7,142.2,145.1,170.1,170.5,178.0,178.6$; Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{O}_{8}$: C, 70.32; H, 7.64. Found: C, 70.40; H, 7.62.

Compound 10. A solution of $6(260 \mathrm{mg}, 0.448 \mathrm{mmol})$ in $10 \mathrm{wt} \% \mathrm{KOH} / \mathrm{MeOH}(50 \mathrm{~mL})$ was stirred overnight, acidified with 6 M hydrochloric acid to pH 2 , and extracted with EtOAc to give a residue, which was purified by column silica gel chromatography using EtOAc/hexane (3:1) to afford 10 ($178 \mathrm{mg}, 80 \%$) as colorless crystals: $\mathrm{mp}(\mathrm{EtOAc}) 150-152{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;[\alpha]^{20}{ }_{\mathrm{D}}+113.4$ (c $0.98, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, pyridine- d_{5}) $\delta 1.07\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.10(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.17-1.34\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.66-2.17(\mathrm{~m}, 10 \mathrm{H}), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 2.22-2.42 (m, 3H), 2.79 ($\mathrm{s}, 1 \mathrm{H}), 3.29-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{CH}, \mathrm{C} 3$ '), 4.53-4.70 (m, 2H, 2CH, C6', C6), 5.68 ($\mathrm{s}, 1 \mathrm{H}, 1 \mathrm{CH}, \mathrm{C} 3$), 5.73-5.92 (br m, 2H, 2OH); ${ }^{13} \mathrm{C}$ NMR (pyridine- $d_{5}, 75 \mathrm{MHz}$) $\delta 12.3,13.0,14.0,18.4,23.1,25.2,27.1,28.2,42.0,42.2,46.0,46.0,46.6$, $47.3,47.6,49.5,59.6,60.9,63.0,72.2,74.6,74.9,81.9,83.5,125.4,137.0,142.3,144.1,178.6$, 178.9; Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{6} 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.64 ; \mathrm{H}, 8.33$. Found: C, 67.94; H, 8.27.

Compound 11. To a solution of $\mathbf{1 0}(209 \mathrm{mg}, 0.421 \mathrm{mmol})$ in dry THF (7 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ $(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$, the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$. A cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{SOCl}_{2}(0.8 \mathrm{~mL}$, $11 \mathrm{mmol})$ in anhydrous THF (2 mL) was added dropwise followed by stirring for 7 h . After being poured to cold ether/water, the mixture was thoroughly extracted with EtOAc, washed sequentially with saturated aqueous sodium carbonate solution, water, and brine, and dried over
MgSO_{4}. Filtration and concentration afforded the crude product of the bis(terminal alkene) which used directly without purification.

To a solution of the above bis(terminal alkene) in acetone $/ \mathrm{H}_{2} \mathrm{O}(8: 1,6 \mathrm{~mL})$ were added NMO ($50 \mathrm{wt} \%$ in water, $0.35 \mathrm{~mL}, 1.7 \mathrm{mmol}$) and $\mathrm{OsO}_{4}\left(4 \mathrm{wt} \%\right.$ in $\mathrm{H}_{2} \mathrm{O}, 0.15 \mathrm{~mL}, 0.024 \mathrm{mmol}$). The mixture was stirred for 3 h at room temperature, diluted with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (5 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{PrOH}(3: 1)$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to afford the crude product of the tetraol, which was used directly without purification.

The above crude tetraol was dissolved in acetone (5 mL), and a solution of $\mathrm{NaIO}_{4}(360 \mathrm{mg}, 1.68$ $\mathrm{mmol})$ in water (7.5 mL) was added. After being stirred for 2 h at room temperature, the resulting mixture was diluted with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (2 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a residue. Purification by column chromatography using EtOAc/hexane (1:3) gave $\mathbf{1 1}(151 \mathrm{mg}, 77.2 \%$ from 10) as colorless crystals: mp 226-228 ${ }^{\circ} \mathrm{C}$ (dec.); $[\alpha]^{20}{ }_{\mathrm{D}}=+404.4$ (c 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23-1.38\left(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 1.41-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.03-2.26(\mathrm{~m}, 4 \mathrm{H}), 2.26-2.64(\mathrm{~m}, 6 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 3.03-3.10(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.18(\mathrm{~m}, 1 \mathrm{H})$, 3.18-3.25 (m, 1H), 3.59 (d, J = 6.3 Hz, 1H, 1CH, C1'), 4.56-4.65 (m, 2H, 2CH, C6', C6), 5.75 (s, $1 \mathrm{H}, 1 \mathrm{CH}, \mathrm{C} 3) ;{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}$) $\delta 12.4,12.9,14.1,16.8,24.3,25.0,42.1,42.7,42.8$, $42.9,43.0,46.3,46.6,48.1,60.5,60.9,62.6,72.4,79.2,80.3,126.3,132.0,140.8,145.9,177.3$, 178.0, 208.2, 210.7; MS (ESI) $465(\mathrm{M}+1), 482\left(\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right)$; HRMS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{6}+$ Na 487.2105 , found 487.2091.
(+)-Absinthin (1). To a solution of $\mathbf{1 1}(58.8 \mathrm{mg}, 0.127 \mathrm{mmol})$ in dry THF (6 mL) was added dropwise a solution of $\mathrm{MeLi}\left(0.16 \mathrm{~mL}, 0.27 \mathrm{mmol}, 1.7 \mathrm{M}\right.$ in ether) at $-78{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at this temperature for 30 min and quenched with saturated aqueous NaHCO_{3} solution (2 mL). After being warmed to room temperature, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / i-\mathrm{PrOH}(3: 1)$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a residue. Purification by column chromatography using EtOAc/hexane (1:5) gave $1(55.9 \mathrm{mg}, 89 \%)$ as colorless crystals: mp $165-166{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ;[\alpha]_{\mathrm{D}}^{20}+107.0\left(c 1.9, \mathrm{CHCl}_{3}\right)$; $[\alpha]^{20}{ }_{\mathrm{D}}+103.5\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20-1.28(\mathrm{~m}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43-1.53(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{OH}), 1.53-2.00(\mathrm{~m}, 10 \mathrm{H}), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.92(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.76-2.88(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{CH}, \mathrm{C} 3$ '), $4.59(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{CH}, \mathrm{C} 6$ '), 4.71 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{CH}, \mathrm{C} 6), 5.55(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{CH}, \mathrm{C} 3)$; ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.1,13.0,13.7,18.3,23.5,27.4,29.3,32.2,42.0,42.2,42.4,43.6,45.6,46.4$, $46.6,49.3,57.0,58.8,64.0,71.3,71.9,74.0,81.4,82.6,122.1,134.9,147.3,148.2,178.5,178.8$; MS (ESI) $497(\mathrm{M}+1), 514\left(\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right)$; HRMS (ESI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{6}+\mathrm{Na} 519.2720$, found 519.2717.

References

1. Beauharie, J.; Fourrey, J. L.; Vuilhorgne, M. Tetrahedron Lett. 1980, 21, 3191.
