Chiral Aryliodine-Mediated Enantioselective Organocatalytic Spirocyclization: Synthesis of Spirofurooxindoles via Cascade Oxidative C–O and C–C Bond Formation

Yang Cao,[†] Xiang Zhang,[†] Guangyu Lin,[†] Daisy Zhang-Negrerie,[†] and Yunfei Du^{*,†,‡} *† Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China ‡ Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China*

duyunfeier@tju.edu.cn

Supporting Information

	Page
I. General Information	S2
II. Mechanistic Studies	S2–S3
III. Preparation of Substrate 1	S4–S5
IV. Preparation of the Optically Inactive Spirofurooxindoles 2	S5–S6
V. Preparation of Chiral Iodobenzene 3	S6–S7
VI. Preparation of the Optically Active Spirofurooxindoles 2	S7–S30
VII. References	S 31
VIII. ¹ H-NMR, ¹³ C-NMR Spectra and HPLC Data	S32–S147
IX. X-ray Structure and Data of 2a and (<i>R</i>)- 2b	S148–S166

I. General Information

All reactions were carried out at room temperature under air unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on 600 MHz or 400 MHz spectrometer at 25 °C. Chemical shifts values are given in ppm and referred as the internal standard to TMS: 0.00 ppm. The peak patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; qui, quintet; m, multiplet and dd, doublet of doublets, brs, broad singlet. The coupling constants J, are reported in Hertz (Hz). High resolution mass spectrometry (HRMS) was obtained on a Q-TOF micro spectrometer. Melting points were determined with a Micromelting point apparatus without corrections. Infrared spectra were measured on a FT/IR instrument. HPLC analysis was conducted using Ultimate 3000 and chiral column of Daicel CHIRALCEL AD-H (4.6 mm \times 25 cm), OJ-H (4.6 mm \times 25 cm) and OD-H (4.6 mm \times 25 cm). Organic solutions were concentrated by rotary evaporation below 40 °C in vacuum. TLC plates were visualized by exposure to ultraviolet light. Reagents and solvents were purchased as reagent grade and were used without further purification. All reactions were performed in standard glassware, heated at 70 °C for 3 h before use. Flash column chromatography was performed over silica gel 200-300 m and the eluent was a mixture of ethyl acetate (EA) and petroleum ether (PE).

II. Mechanistic Studies

a. Preparation of intermediate A

To a solution of substrate 1p (1.0 mmol) in TFE (10 mL) was slowly added PIFA (1.0 equiv) with stirring. The resulting mixture was maintained at room temperature, and the process of the reaction was monitored by TLC. Upon completion, the reaction solvent was removed under vacuum and the residue was purified by silica gel chromatography, using a mixture of PE/EA (30% EA/PE) to afford the intermediate A (89%, 257mg).

b. Preparation of the optically active spirofurooxindoles 2p

To a reaction tube filled with the intermediate **A** (0.2 mmol), chiral organoiodine **3d** (10 mol%), *m*CPBA (1.3 equiv) and TFE/CH₃CN (4.0 mL) was added CF₃CO₂H (4.0 equiv). The resulting mixture was allowed to be stirred at room temperature for 8 h. The mixture was filtered, washed with CH₃CN (2 mL × 2), the combined organic phase was removed *in vacuo*. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 3/1) to afford optically active spirofurooxindoles **2p** as a white solid (75%, 43 mg).

c. Preparation of the optically active intermediate A

To a reaction tube filled with substrate **1p** (1.0 mmol), chiral organoiodine **3d** (10 mol%), *m*CPBA (1.3 equiv) and TFE/CH₃CN (4.0 mL) was added CF₃CO₂H (4.0 equiv). The resulting mixture was allowed to be stirred at room temperature for 8 h. Then, the mixture was filtered, washed with CH₃CN (2 mL × 2), the combined organic phase was removed *in vacuo*. The residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 3/1) to afford intermediate **A** as a white solid (81%, 234 mg).

III. Preparation of Substrate 1.¹

a. Preparation of 3-oxoglutaric anhydride

3-Oxoglutaric acid (100 g, 0.68 mol) was added by portions to a solution of acetic acid (150 mL) and acetic anhydride (100 mL) at 5 °C and stirred below 10 °C. The acid dissolved slowly and a pale yellow solid precipitated over 3 h. The product was filtered, washed with acetic acid (100 mL), and followed by methylbenzene (100 mL \times 3). The resultant white powder was dried at high vacuum to afford 76 g (86.7%) of the desired 3-oxoglutairc anhydride, which was used directly in the following step.

b. Preparation of monoester 3-oxoglutarate

To 3-oxoglutairc anhydride (2 g, 16 mmol) was add cold dry alcohol (12 mL). The mixture was stirred at room temperature for 2 h and the solvent was evaporated to give a brown liquid product with quantitative yield, which was used directly for the next step without further purification.

c. General procedure for the preparation of ethyl 3-oxopentanioate monoamide derivatives

Aniline derivatives (12.0 mmol), DMAP (1.0 mmol) and monoester 3-oxoglutarate (10.0 mmol) was mixed in CH₂Cl₂ (20 mL) with an ice bath. Then DCC (12.0 mmol) was added by portions. After addition, the ice bath was removed and the reaction was maintained at room temperature for 12 hours. The mixture was filtered, washed with minimum amount of CH₂Cl₂ for several times (10 mL \times 3). The combined organic phase was washed with 10% HCl solution and saturated brine, dried over Na₂SO₄ and

evaporation of the solvent under reduced pressure and purification of the crude residue by flash column chromatography on silica gel (EA/PE) afforded the desired amides.

IV. Preparation of the Optically Inactive Spirofurooxindoles 2

a. Optimization of the reaction conditions.^a

O O O O O O O O O O O O O O O O O O O						
	 1a			 2a		
Entry	Oxidant	Additive (equiv)	Solvent	<i>t</i> (°C)	Yield $(\%)^b$	
1	PIDA	BF3 [·] Et ₂ O (0.1)	DCE	rt	25	
2	PIDA	none	DCE	75	46	
3	PIFA	none	DCE	rt	32	
4	PIFA	none	DCE	75	50	
5	PIFA	none	C_2H_5O	rt	0^c	
6	PIFA	none	CH ₃ CN	rt	81	
7	PIFA	none	HFIP	rt	33	
8	PIFA	none	CH ₃ NO ₂	rt	78	
9	PIFA	none	TFE	rt	85	
10	PIFA	DBU (4)	TFE	rt	0^{c}	
11	PIFA	Et ₃ N (4)	TFE	rt	0^{c}	
12	PIFA	$Na_2CO_3(2)$	TFE	rt	0^{c}	
13	PIFA	NaHCO ₃ (4)	TFE	rt	81	

^{*a*} Reaction conditions: **1a** (0.5 mmol) and oxidant (2.2 mmol), in solvent (5 mL). ^{*b*} Isolated yield. ^{*c*} Decomposition

b. General procedure for the synthesis of the optically inactive spirofurooxindoles 2

To a solution of substrate 1 (0.5 mmol) in TFE (5 mL) was slowly added PIFA (2.2 equiv) with stirring. The resulting mixture was maintained at room temperature, and the process of the reaction was monitored by TLC. Upon completion, the reaction solvent was removed under vacuum and the residue was purified by silica gel

chromatography, using a mixture of PE/EA to afford the desired product 2.

c. Investigation of a substrate of an ester^{*a*}

 $\left[\right]$

O 1q	o €O	Oxidant (2.2	equiv)	OEt OO 2q
Entry	Oxidant	Solvent	t (°C)	Yield $(\%)^b$
1	PIDA	DCE	rt	0^c
2	PIDA	DCE	-10	0^c
3	PIDA	DCE	-20	0^c
4	PIFA	DCE	rt	0^c
5	PIFA	C_2H_5O	rt	0^c
6	PIFA	CH ₃ CN	rt	0^c
7	PIFA	HFIP	rt	0^c
8	PIFA	TFE	rt	0^c
9	PIFA	TFE	-20	0^c
10	PIFA	CH ₃ NO ₂	rt	0^c

^a Reaction conditions: 1q (0.5 mmol) and oxidant (2.2 mmol),

in solvent (5 mL). ^b Isolated yield. ^c Decomposition

```
V. Preparation of chiral iodobenzene 3<sup>2-5</sup>
```


(2R,2'R)-Diethyl 2,2'-(2-iodo-1,3-phenylene)bis(oxy)dipropanoate (3a): To a solution of 2-iodoresorcinol (2.36 g, 10.0 mmol), PPh₃ (6.56 g, 25.0 mmol) and (-)-lactic acid ethylester (2.80 mL, 25.0 mmol) in THF (50 mL) was added slowly

diisopropyl azodicarboxylate (DIAD, 1.9 M in toluene, 25.0 mmol, 13.2 mL) at 0°C. The reaction mixture was allowed to warm to room temperature. After stirring for 6 h, the resulting mixture was concentrated *in vacuo*. The residue was purified by flash column chromatography on silica gel (eluent: hexane–EtOAc = 15:1) to give (3.93 g, 9.0 mmol) in 90% yield. Colorless oil; TLC, $R_f = 0.33$ (hexane–EtOAc = 4:1).

(2*R*,2'*R*)-2,2'-(2-Iodo-1,3-phenylene)bis(oxy)dipropanoic acid (3b): To a solution of 3a (3.93 g, 9.0 mmol) in THF (25.0 mL) and MeOH (25.0 mL) was added 2N NaOH (25 mL) and stirred overnight at room temperature. The reaction mixture was cooled to 0 °C, quenched with 1N HCl and extracted with EtOAc (30 mL × 3). The organic layers were dried over anhydrous MgSO₄ and the solvents were removed *in vacuo* to give analytically pure 3b (3.42 g, 9.0 mmol) in >99% yield. White solid; TLC, $R_f = 0.15$ (hexane–EtOAc–CHCl₃ = 1:2:1 with a few drops of AcOH).

General procedure for preparation of 3c-j: To a solution of (2R,2'R)-2,2'-((2-iodo-1,3-phenylene)bis(oxy))dipropanoic acid (0.87 g, 2.29 mmol) in CH₂Cl₂ (10 mL) and DMF (1 drop) was added oxalyl chloride (1.57 mL, 18.32 mmol) and the mixture was stirred overnight under N₂. The resulting mixture was concentrated under vacuum. The residue was dissolved in CH₂Cl₂ (6 mL) at 0 °C and amine derivative (4.17 mmol) was added. After 0.5 h, Et₃N (1.16 mL, 8.34 mmol) was added. After stirring overnight, the reaction mixture was poured into aqueous HCl (1 M, 20 mL) and extracted with brine and CH₂Cl₂ (10 mL × 2). The organic layers were dried with MgSO₄, filtered and the solvent was removed under vacuum to give the product as a white solid.

VI. Preparation of the Optically Active Spirofurooxindoles 2

To a reaction tube filled with ethyl 5-(methyl(phenyl)amino)-3,5-dioxopentanoate **1a** (0.2 mmol), chiral organoiodine **3d** (20 mol%), *m*CPBA (2.5 equiv) and TFE/CH₃CN (4.0 mL) was added CF₃CO₂H (4.0 equiv). The resulting mixture was allowed to be stirred at room temperature for 8 h. The mixture was filtered, washed with CH₃CN (2 mL \times 2), the combined organic phase was removed *in vacuo*. The

residue was purified by flash column chromatography on silica gel (eluent: petroleum ether/EtOAc = 3/1) to afford (*R*)-5-ethoxy-1'-methyl-3H-spiro[furan-2,3'-indoline] -2',3- dione **2a** as a white solid.

Ethyl 5-(methyl(phenyl)amino)-3,5-dioxopentanoate (1a)

Following the general procedure, **1a** was purified by silica gel chromatography (20% EA/PE). Yield: 71% (1.87 g), colorless oil. IR (KBr) 2934, 1740, 1649, 1594, 1469, 1384, 775, 702 cm⁻¹. Mixture of enol and keto form: ¹H NMR (600 MHz, CDCl₃) δ 14.37 (s, 0.28), 12.07 (s, 0.01H), 7.43 (t, *J* = 6.3 Hz, 2H), 7.38 (d, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 5.01 (s, 0.04H), 4.82 (s, 0.34H), 4.20 – 4.09 (m, 2H), 3.51 (s, 1H), 3.44 (s, 1H), 3.30 (d, *J* = 8.6 Hz, 3H), 3.06 (s, 0.8H), 1.29 – 1.18 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 197.20, 172.4, 171.6, 171.4, 168.6, 168.4, 167.0, 166.3, 143.3, 143.0, 130.0, 129.9, 129.7, 128.4, 127.9, 127.3, 127.2, 91.8, 90.9, 61.4, 61.2, 60.2, 49.2, 48.9, 41.6, 40.5, 37.6, 37.3, 36.5, 14.2, 14.1. HRMS (ESI) calcd for C₁₄H₁₇NNaO₄⁺ [M + Na⁺] 286.1050, found 286.1052.

Ethyl 5-(ethyl(phenyl)amino)-3,5-dioxopentanoate (1b)

Following the general procedure, **1b** was purified by silica gel chromatography (20% EA/PE). Yield: 63% (1.75 g), colorless oil. IR (KBr) 2980, 1741, 1650, 1593, 1495, 1369, 771, 702 cm⁻¹. Mixture of enol and keto form: ¹H NMR (600 MHz, CDCl₃) δ 14.46 (s, 0.23H), 12.06 (s, 0.02H), 7.44 (t, *J* = 7.1 Hz, 2H), 7.39 (d, *J* = 6.5 Hz, 1H), 7.18 (d, *J* = 7.4 Hz, 2H), 5.00 (s, 0.04H), 4.69 (s, 0.33H), 4.16 – 4.08 (m, 2H), 3.77 (d, *J* = 6.9 Hz, 2H), 3.50 (s, 1H), 3.38 (s, 1H), 3.04 (s, 0.8H), 1.25 – 1.20

(m, 3H), 1.14 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 197.3, 172.4, 171.8, 171.0, 168.6, 168.5, 167.0, 166.6, 165.8, 141.6, 141.4, 129.9, 129.8, 129.7, 128.6, 128.5, 128.3, 128.0, 91.8, 91.2, 61.3, 61.2, 49.3, 49.2, 44.2, 43.5, 41.6, 40.9, 14.1, 13.1, 12.9. HRMS (ESI) calcd for C₁₅H₁₉NNaO₄⁺ [M + Na⁺] 300.1206, found 300.1205.

Ethyl 5-(isopropyl(phenyl)amino)-3,5-dioxopentanoate (1c)

Following the general procedure, **1c** was purified by silica gel chromatography (20% EA/PE). Yield: 56% (1.63 g), colorless oil. IR (KBr) 2979, 1742, 1645, 1590, 1494, 1317, 772, 705 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.54 (s, 0.31H), 12.03 (s, 0.03H), 7.46 – 7.38 (m, 3H), 7.15 – 7.08 (m, 2H), 4.98 (dt, *J* = 13.5, 6.8 Hz, 1H), 4.46 (s, 0.31H), 4.21 – 4.05 (m, 2H), 3.45 (s, 1.33H), 3.27 (s, 1.34H), 3.00 (s, 0.66H), 2.89 (s, 0.09H), 1.27 – 1.16 (m, 3H), 1.07 (t, *J* = 6.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.4, 171.9, 171.0, 168.5, 168.4, 167.0, 166.5, 165.8, 137.9, 137.6, 130.5, 130.4, 130.2, 129.5, 129.4, 129.3, 128.8, 128.4, 91.8, 61.3, 61.1, 60.1, 49.9, 49.2, 46.4, 45.6, 41.5, 21.0, 20.9, 14.2, 14.1. HRMS (ESI) calcd for C₁₆H₂₁NNaO₄⁺ [M + Na⁺] 314.1363, found 314.1361.

Ethyl 5-(butyl(phenyl)amino)-3,5-dioxopentanoate (1d)

Following the general procedure, **1d** was purified by silica gel chromatography (20% EA/PE). Yield: 61% (1.86 g), colorless oil. IR (KBr) 2960, 1742, 1650, 1593, 1495, 1369, 774, 702 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz,

CDCl₃) δ 14.47 (s, 0.31H), 12.05 (s, 0.02H), 7.46 – 7.41 (m, 2H), 7.38 – 7.36 (m, 1H), 7.20 – 7.16 (m, 2H), 5.00 (s, 0.03H), 4.70 (s, 0.33H), 4.19 – 4.06 (m, 2H), 3.72 (dd, *J* = 14.3, 6.7 Hz, 2H), 3.50 (s, 1.66H), 3.37 (s, 1.66H), 3.04 (s, 0.66H), 3.00 (s, 0.10H), 1.57 – 1.45 (m, 2H), 1.38 – 1.28 (m, 2H), 1.28 – 1.16 (m, 3H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 171.2, 168.6, 168.5, 167.0, 166.0, 141.9, 141.6, 129.9, 129.8, 129.7, 128.4, 128.4, 128.2, 128.0, 91.8, 91.1, 61.3, 61.2, 60.1, 50.3, 49.3, 49.3, 49.2, 49.1, 48.4, 41.6, 40.9, 29.9, 29.7, 20.0, 20.0, 14.1, 13.8. HRMS (ESI) calcd for C₁₇H₂₃NNaO₄⁺ [M + Na⁺] 328.1519, found 328.1516.

Ethyl 5-(benzyl(phenyl)amino)-3,5-dioxopentanoate (1e)

Following the general procedure, **1e** was purified by silica gel chromatography (20% EA/PE). Yield: 67% (2.27 g), a light yellow solid, mp. 63 – 66 °C. IR (KBr) 2982, 1737, 1647, 1594, 1495, 1329, 763, 703 cm⁻¹. Mixture of enol and keto form: ¹H NMR (600 MHz, CDCl₃) δ 14.40 (s, 0.28H), 12.07 (s, 0.05H), 7.32 (s, 3H), 7.27 – 7.23 (m, 3H), 7.21 (d, *J* = 6.6 Hz, 2H), 7.05 – 6.98 (m, 2H), 4.91 (d, *J* = 11.6 Hz, 2H), 4.76 (s, 0.33H), 4.15 – 4.09 (m, 2H), 3.49 (s, 1.13H), 3.45 (s, 1H), 3.06 (s, 0.8H), 1.31 – 1.16 (m, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 197.2, 171.3, 169.1, 168.5, 166.9, 166.4, 141.5, 141.5, 137.1, 136.8, 129.8, 129.6, 128.9, 128.8, 128.6, 128.6, 128.5, 128.4, 128.4, 128.1, 127.6, 127.5, 92.0, 91.1, 61.4, 61.3, 60.2, 53.4, 53.1, 52.3, 49.2, 49.1, 41.6, 40.8, 14.3, 14.1. HRMS (ESI) calcd for C₂₀H₂₁NNaO₄⁺ [M + Na⁺] 362.1363, found 362.1365.

Ethyl 5-(methyl(p-tolyl)amino)-3,5-dioxopentanoate (1f)

Following the general procedure, **1f** was purified by silica gel chromatography (20% EA/PE). Yield: 73% (2.02 g), colorless oil. IR (KBr) 2981, 1742, 1651, 1514, 1466, 1327, 783, 722 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.37 (s, 0.21H), 12.06 (s, 0.01H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 5.01 (s, 0.04H), 4.82 (s, 0.34H), 4.18 – 4.11 (m, 2H), 3.51 (s, 1.11H), 3.43 (s, 1.17H), 3.27 (s, 3H), 3.05 (s, 0.77H), 2.38 (s, 3H), 1.29 – 1.21 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 172.4, 171.8, 171.5, 168.4 167.3, 167.0, 166.4, 141.0, 140.7, 140.5, 138.4, 137.8, 130.6, 130.5, 130.3, 127.1, 126.9, 91.8, 90.9, 61.3, 61.2, 60.1, 49.2, 48.9, 41.5, 40.4, 37.6, 37.3, 36.5, 21.1, 14.2, 14.0. HRMS (ESI) calcd for C₁₅H₁₉NNaO₄⁺ [M + Na⁺] 300.1206, found 300.1203.

Ethyl 5-((4-methoxyphenyl)(methyl)amino)-3,5-dioxopentanoate (1g)

Following the general procedure, **1g** was purified by silica gel chromatography (20% EA/PE). Yield: 76% (2.23 g), colorless oil. IR (KBr) 2980, 1741, 1650, 1512, 1467, 1369, 840, 783 cm⁻¹. Mixture of enol and keto form: ¹H NMR (600 MHz, CDCl₃) δ 14.39 (s, 0.31H), 12.05 (s, 0.08H), 7.12 (dd, *J* = 9.0, 3.0 Hz, 2H), 6.92 (dd, *J* = 8.9, 2.4 Hz, 2H), 5.01 (s, 0.03H), 4.80 (s, 0.32H), 4.13 (dt, *J* = 12.8, 6.6 Hz, 2H), 3.83 (d, *J* = 5.0 Hz, 3H), 3.51 (s, 1.22H), 3.42 (s, 1.20H), 3.26 (d, *J* = 8.8 Hz, 3H), 3.05 (s, .0.77H), 1.23 (dt, *J* = 20.9, 7.1 Hz, 3H). ¹³C NMR (150MHz, CDCl₃) δ 197.3, 171.7, 168.5, 168.4, 167.0, 166.7, 159.3, 159.0, 136.1, 135.8, 128.4, 128.3, 115.1, 115.0, 114.9, 91.7, 90.9, 61.3, 61.2, 55.5, 49.2, 48.9, 41.6, 37.5, 36.6, 14.0. HRMS (ESI) calcd for C₁₅H₁₉NNaO₅⁺ [M + Na⁺] 316.1155, found 316.1156.

Following the general procedure, **1h** was purified by silica gel chromatography (20% EA/PE). Yield: 53% (1.84 g), colorless oil. IR (KBr) 2985, 1742, 1659, 1507, 1370, 1260, 788, 740 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.29 (s, 0.40H), 12.08 (s, 0.04H), 7.33 – 7.20 (m, 4H), 5.00 (s, 0.05H), 4.81 (s, 0.37H), 4.23 – 4.09 (m, 2H), 3.53 (s, 1.10H), 3.45 (s, 1.11H), 3.30 (d, *J* = 7.5 Hz, 3H), 3.09 (s, 0.70H), 3.07 (s, 0.16H), 1.41 (td, *J* = 7.1, 2.4 Hz, 0.26H), 1.28 – 1.18 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 174.2, 172.3, 171.4, 171.1, 169.2, 168.3, 166.9, 166.14 (s), 164.1, 162.3, 148.7, 148.2, 141.8, 141.5, 128.9, 124.2, 122.4, 122.2, 121.6, 119.1, 116.5, 92.0, 90.5, 82.1, 77.7, 65.1, 64.9, 61.4, 61.2, 60.2, 49.1, 48.8, 41.5, 40.5, 37.6, 37.4, 36.5, 14.2, 14.1, 14.0. HRMS (ESI) calcd for C₁₅H₁₆F₃NNaO₅⁺ [M + Na⁺] 370.0873, found 370.0871.

Ethyl 5-((4-fluorophenyl)(methyl)amino)-3,5-dioxopentanoate (1i)

Following the general procedure, **1i** was purified by silica gel chromatography (20% EA/PE). Yield: 57% (1.60 g), colorless oil. IR (KBr) 2983, 1741, 1651, 1510, 1469, 1370, 847, 727 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.31 (s, 0.32H), 12.07 (s, 0.03H), 7.22 (tt, *J* = 11.4, 5.7 Hz, 2H), 7.12 (dt, *J* = 8.7, 2.6 Hz, 2H), 5.00 (s, 0.05H), 4.78 (s, 0.34H), 4.23 – 4.04 (m, 2H), 3.52 (s, 1H), 3.43 (s, 1.12H), 3.28 (d, *J* = 5.8 Hz, 3H), 3.07 (s, 0.6H), 3.04 (s, 0.2H), 1.29 – 1.17 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 172.3, 171.5, 171.3, 168.9, 168.4, 167.2, 166.9, 166.3, 163.2, 163.0, 160.8, 160.5, 139.3, 139.0, 129.2, 129.1, 117.0, 116.8, 116.6, 93.1, 91.9, 90.7, 61.4, 61.2, 60.2, 49.1, 48.9, 41.5, 40.5, 38.9, 37.7, 37.5,

36.6, 14.2, 14.0. HRMS (ESI) calcd for $C_{14}H_{16}FNNaO_4^+$ [M + Na⁺] 304.0956, found 304.0958.

Ethyl 5-((4-chlorophenyl)(methyl)amino)-3,5-dioxopentanoate (1j)

Following the general procedure, **1j** was purified by silica gel chromatography (20% EA/PE). Yield: 65% (1.93 g), colorless oil. IR (KBr) 2982, 1740, 1656, 1544, 1491, 1369, 841, 724 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.26 (s, 0.36H), 12.07 (s, 0.04H), 7.41 (d, *J* = 8.3 Hz, 2H), 7.24 – 7.13 (m, 2H), 5.01 (s, 0.05H), 4.80 (s, 0.36H), 4.20 – 4.07 (m, 2H), 3.53 (s, 1H), 3.45 (s, 1H), 3.28 (d, *J* = 6.9 Hz, 3H)., 3.08 (s, 0.66H), 3.05 (s, 0.15H), 1.30 – 1.17 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 172.3, 171.4, 171.2, 169.1, 168.4, 166.9, 166.2, 141.8, 141.6, 134.3, 133.6, 130.2, 130.0, 128.7, 92.0, 90.7, 61.5, 61.3, 60.3, 49.2, 48.9, 42.0, 41.5, 40.5, 37.7, 37.4, 36.5, 14.2, 14.1. HRMS (ESI) calcd for C₁₄H₁₆³⁵CINNaO₄⁺ [M + Na⁺] 320.0660, found 320.0664.

Ethyl 5-((4-bromophenyl)(methyl)amino)-3,5-dioxopentanoate (1k)

Following the general procedure, **1k** was purified by silica gel chromatography (20% EA/PE). Yield: 70% (2.39 g), colorless oil. IR (KBr) 2982, 1740, 1565, 1587, 1475, 1369, 791, 698 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.25 (s, 0.43H), 12.08 (s, 0.03H), 7.51 (t, *J* = 9.0 Hz, 1H), 7.41 – 7.37 (m, 1H), 7.35 – 7.26 (m, 1H), 7.18 (t, *J* = 6.5 Hz, 1H), 5.01 (s, 0.05H), 4.83 (s, 0.39H), 4.18 – 4.10 (m, 2H), 3.54 (s, 1H), 3.45 (s, 1H), 3.28 (d, *J* = 6.7 Hz, 3H)., 3.10 (s, 1H), 1.24 (dt, *J* = 10.3, 7.1 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 197.0, 171.3, 169.3, 168.3, 166.9, 166.1, 144.5, 144.3, 131.6, 131.3, 131.0, 131.0, 130.6, 130.5, 126.2,

126.1, 123.2, 122.9, 92.0, 90.6, 61.5, 61.4, 60.3, 49.2, 48.8, 41.6, 37.4, 36.5, 14.1. HRMS (ESI) calcd for $C_{14}H_{16}^{79}BrNNaO_4^+$ [M + Na⁺] 364.0155, found 364.0152.

Ethyl 5-((3,4-dichlorophenyl)(methyl)amino)-3,5-dioxopentanoate (11)

Following the general procedure, **11** was purified by silica gel chromatography (20% EA/PE). Yield: 61% (2.02 g), colorless oil. IR (KBr) 2982, 1740, 1658, 1588, 1473, 1368, 711, 679 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.19 (s, 0.43H), 12.09 (s, 0.03H), 7.51 (dd, J = 8.5, 2.8 Hz, 1H), 7.41 – 7.33 (m, 1H), 7.15 – 7.08 (m, 1H), 5.01 (s, 0.06H), 4.85 (s, 0.38H), 4.15 (qd, J = 7.1, 1.9 Hz, 2H), 3.54 (s, 1H), 3.47 (s, 1H), 3.28 (d, J = 7.7 Hz, 3H), 3.11 (s, 1H), 1.27 – 1.21 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 172.3, 171.3, 170.8, 169.7, 168.2, 166.9, 166.0, 142.6, 142.4, 133.8, 133.5, 132.8, 131.6, 131.4, 129.4, 126.8, 92.1, 90.5, 61.5, 61.3, 60.3, 49.1, 48.8, 41.5, 37.4, 36.5, 14.2, 14.1. HRMS (ESI) calcd for C₁₄H₁₅³⁵Cl₂NNaO₄⁺ [M + Na⁺] 354.0270, found 354.0267.

Ethyl 5-(methyl(o-tolyl)amino)-3,5-dioxopentanoate (1m)

Following the general procedure, **1m** was purified by silica gel chromatography (20% EA/PE). Yield: 51% (1.41 g), colorless oil. IR (KBr) 2982, 1741, 1651, 1579, 1493, 1370, 733, 728 cm⁻¹. Mixture of enol and keto form: ¹H NMR (600 MHz, CDCl₃) δ 14.40 (s, 0.24H), 12.03 (s, 0.02H), 7.32 – 7.24 (m, 3H), 7.16 – 7.12 (m, 1H), 4.98 (s, 0.04H), 4.61 (s, 0.38H), 4.20 – 4.02 (m, 2H), 3.51 (s, 1H), 3.37 – 3.26 (m, 1.22H), 3.22 (d, J = 7.1 Hz, 3H), 3.04 (s, 0.79H), 2.23 (d, J = 20.1 Hz, 3H), 1.21 (d, J = 27.4 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 197.1, 171.5, 168.8, 168.4, 167.0, 166.6, 141.7, 141.5, 135.8, 135.4, 131.7, 131.6, 131.4, 129.0, 128.6, 128.1, 128.1,

127.7, 127.5, 92.0, 90.5, 61.4, 61.2, 60.2, 49.3, 48.5, 41.5, 40.2, 36.2, 36.0, 35.2, 17.4, 17.3, 14.2, 14.1. HRMS (ESI) calcd for $C_{15}H_{19}NNaO_4^+$ [M + Na⁺] 300.1206, found 300.1207.

Methyl 5-(methyl(phenyl)amino)-3,5-dioxopentanoate (1n)

Following the general procedure, **1n** was purified by silica gel chromatography (20% EA/PE). Yield: 75% (1.87 g), colorless oil. IR (KBr) 2953, 1745, 1649, 1593, 1496, 1385, 755, 702 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.38 (s, 0.31H), 11.98 (s, 0.01H), 7.47 – 7.40 (m, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.21 (d, *J* = 7.5 Hz, 2H), 5.03 (s, 0.04H), 4.82 (s, 0.36H), 3.72 – 3.66 (m, 3H), 3.53 (s, 1.12H), 3.43 (s, 1.14H), 3.30 (d, J = 6.9 Hz, 3H), 3.07 (s, 0.78H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 171.7, 171.4, 168.9, 168.3, 167.4, 167.1, 166.3, 143.3, 143.0, 130.0, 129.9, 129.8, 128.4, 128.3, 127.9, 127.3, 127.2, 91.5, 91.1, 52.3, 52.3, 51.3, 48.9, 41.3, 40.5, 37.6, 37.3, 36.5. HRMS (ESI) calcd for C₁₃H₁₅NNaO₄⁺ [M + Na⁺] 272.0893, found 272.0890.

Isopropyl 5-(methyl(phenyl)amino)-3,5-dioxopentanoate (10)

Following the general procedure, **10** was purified by silica gel chromatography (20% EA/PE). Yield: 55% (1.52 g), colorless oil. IR (KBr) 2982, 1735, 1651, 1593, 1496, 1376, 774, 701 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.38 (s, 0.22H), 12.13 (s, 0.04H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.37 (d, *J* = 6.8 Hz, 1H), 7.23 – 7.17 (m, 2H), 5.02 – 4.93 (m, 1H), 4.81 (s, 0.31), 3.47 (s, 1H), 3.43 (s, 1.10H), 3.30 (s, 3H), 3.05 (s, 0.77H), 1.22 (dt, *J* = 17.0, 8.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 172.0, 171.5, 171.4, 168.9, 167.9, 167.2, 166.5, 166.3, 143.3,

143.1, 130.0, 129.9, 129.7, 128.4, 127.8, 127.3, 127.2, 92.2, 90.6, 69.0, 68.7, 67.6, 49.5, 48.9, 41.8, 40.4, 37.3, 36.5, 21.9, 21.6. HRMS (ESI) calcd for $C_{15}H_{19}NNaO_4^+$ [M + Na⁺] 300.1206, found 300.1202.

Butyl 5-(methyl(phenyl)amino)-3,5-dioxopentanoate (1p)

Following the general procedure, **1p** was purified by silica gel chromatography (20% EA/PE). Yield: 58% (1.52 g), colorless oil. IR (KBr) 2961, 1741, 1650, 1593, 1496, 1383, 774, 701 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 14.36 (s, 0.29H), 12.07 (s, 0.01H), 7.47 – 7.41 (m, 2H), 7.37 (t, *J* = 7.3 Hz, 1H), 7.21 (d, *J* = 7.7 Hz, 2H), 5.02 (s, 0.05H), 4.82 (s, 0.33H), 4.18 – 3.94 (m, 2H), 3.51 (s, 1.14H), 3.43 (s, 1.15H), 3.30 (d, *J* = 6.6 Hz, 3H)., 3.06 (s, 0.82H), 1.67 – 1.49 (m, 2H), 1.43 – 1.25 (m, 2H), 0.92 (td, *J* = 7.4, 5.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.2, 172.5, 171.6, 171.4, 168.6, 168.5, 167.0, 166.3, 143.3, 143.0, 130.0, 129.9, 129.7, 128.4, 127.8, 127.3, 127.2, 91.8, 90.9, 65.2, 65.1, 64.0, 49.2, 48.9, 41.6, 40.5, 37.6, 37.3, 36.5, 30.6, 30.4, 19.1, 19.0, 13.7. HRMS (ESI) calcd for C₁₆H₂₁NNaO₄⁺ [M+Na⁺] 314.1363, found 314.1366.

1-Ethyl 5-phenyl 3-oxopentanedioate (1q)

Following the general procedure, **1q** was purified by silica gel chromatography (20% EA/PE). Yield: 51% (1.27 g), colorless oil. IR (KBr) 2984, 1743, 1661, 1593, 1492, 1369, 753, 691 cm⁻¹. Mixture of enol and keto form: ¹H NMR (400 MHz, CDCl₃) δ 12.19 (s, 0.10H), 11.83 (s, 0.14H), 7.39 (t, *J* = 7.3 Hz, 2H), 7.29 – 7.20 (m, 1H), 7.12 (dt, *J* = 8.7, 1.6 Hz, 2H), 5.40 (s, 0.16H), 5.23 (s, 0.11H). 4.22 (m, 2H), 3.86 (d, *J* = 1.2 Hz, 1.47H), 3.67 (s, *J* = 1.1 Hz, 1.55H), 3.60 (d, *J* = 0.9 Hz, 0.24H), 3.46 (s, 0.10H)

0.23H), 3.31 (s, 0.30H), 1.37 – 1.18 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 172.3, 171.9, 169.2, 167.8, 166.7, 165.5, 150.5, 150.0, 129.6, 129.5, 126.3, 126.2, 121.6, 121.4, 115.3, 92.4, 91.6, 61.8, 61.7, 60.5, 49.1, 49.0, 48.9, 41.2, 41.0, 14.1. HRMS (ESI) calcd for C₁₃H₁₄NaO₅⁺ [M+Na⁺] 273.0733, found 273.0735.

(2*S*,2'*S*)-Dimethyl1,1'-((2*R*,2'*R*)-2,2'-((2-iodo-1,3-phenylene)bis(oxy))bis(propano yl))bis(pyrrolidine-2-carboxylate) (3d)

Following the general procedure, **3d** was purified by silica gel chromatography (PE/EA = 3/1 to 1/1). Yield: 85% (1.17 g), white solid, mp. $179 - 181 \,{}^{\circ}C.^{4}$ IR (KBr) 2983, 2956, 2892, 1743, 1655, 1462, 1421, 1254, 1141, 1096, 775 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.18 (td, J = 8.3, 5.7 Hz, 1H), 6.48 (d, J = 8.3 Hz, 2H), 4.82 (q, J = 6.8 Hz, 2H), 4.46 (dd, J = 8.0, 3.1 Hz, 2H), 3.91 (td, J = 6.9, 3.6 Hz, 2H), 3.73 (s, 6H), 3.48 (dt, J = 10.5, 7.8 Hz, 2H), 3.31 (s, 1H), 2.07 – 1.88 (m, 8H), 1.72 (dd, J = 6.8, 3.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 170.0, 157.5, 130.4, 106.2, 76.3, 59.6, 52.2, 46.9, 28.1, 25.2, 17.3. HRMS (ESI) calcd for C₂₄H₃₁IN₂NaO₈⁺ [M + Na⁺] 625.1017, found 625.1010. [α]_D²⁵ = -181.4 (c = 0.54, CHCl₃).

(*R*)-*N*-((*R*)-1,1-Dioxidotetrahydrothiophen-3-yl)-2-(3-(((*R*)-1-(((*S*)-1,1-dioxidotetr ahydrothiophen-3-yl)amino)-1-oxopropan-2-yl)oxy)-2-iodophenoxy) propanamide (3e)

Following the general procedure, **3e** was purified by silica gel chromatography (PE/EA = 3/1 to 1/1). Yield: 81% (1.14 g), white solid, mp. 88 – 90 °C. IR (KBr) 3378, 2986, 2937, 1663, 1585, 1553, 1459, 1305, 1250, 1116, 767 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 7.1 Hz, 2H), 7.34 – 7.23 (m, 1H), 6.52 (d, J = 8.3

Hz, 2H), 4.87 – 4.72 (m, 4H), 3.50 (dd, J = 13.6, 7.5 Hz, 2H), 3.16 (dtd, J = 26.3, 13.5, 6.3 Hz, 6H), 2.57 (td, J = 13.5, 6.7 Hz, 2H), 2.27 (td, J = 14.6, 7.5 Hz, 2H), 1.64 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 156.7, 130.6, 107.1, 81.0, 75.8, 55.9, 50.3, 46.0, 29.3, 18.2. HRMS (ESI) calcd for C₂₀H₂₈IN₂O₈S₂⁺ [M + H⁺] 615.0326, found 615.0324. [α]_D²⁵ = -57.9 (c = 0.14, CHCl₃).

(2*R*,2'*R*)-2,2'-((2-Iodo-1,3-phenylene)bis(oxy))bis(*N*,*N*-diisopropylpropanamide) (3 h)

Following the general procedure, **3h** was purified by silica gel chromatography (PE/EA = 3/1 to 1/1). Yield: 77% (962 mg), white solid, mp. 127 – 130 °C.⁵ IR (KBr) 2967, 2936, 1743, 1643, 1623, 1585, 1460, 1376, 1345, 1237, 1106, 770 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, J = 8.0 Hz, 1H), 6.53 (d, J = 8.2 Hz, 2H), 4.85 (q, J = 6.5 Hz, 2H), 4.55 (dt, J = 12.5, 6.1 Hz, 2H), 3.31 (dt, J = 13.1, 6.4 Hz, 2H), 1.68 (d, J = 6.0 Hz, 6H), 1.42 (d, J = 6.6 Hz, 6H), 1.30 (d, J = 6.6 Hz, 6H), 1.20 (d, J = 6.3 Hz, 6H), 0.91 (t, J = 5.7 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 157.6, 129.9, 106.1, 106.0, 78.5, 77.9, 47.6, 46.5, 20.9, 20.6, 20.6, 19.9, 18.0. HRMS (ESI) calcd for C₂₄H₄₀IN₂O₄⁺ [M+H⁺] 547.2027, found 547.2023. [α]_D²⁵ = -157.1 (c = 0.14, CHCl₃).

(2*R*,2'*R*)-2,2'-((2-Iodo-1,3-phenylene)bis(oxy))bis(*N*,*N*-diallylpropanamide) (3i)

Following the general procedure, **3h** was purified by silica gel chromatography (PE/EA = 3/1 to 1/1). Yield: 82% (1.01 g), white solid, mp. 110 - 112 °C. IR (KBr) 3080, 2983, 2945, 2921, 1743, 1658, 1639, 1588, 1461, 1379, 1365, 1256, 1135, 858, 781 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, *J* = 8.3 Hz, 1H), 6.51 (d, *J* = 8.3 Hz,

2H), 5.82 - 5.51 (m, 4H), 5.26 - 4.90 (m, 10H), 4.18 - 4.03 (m, 4H), 3.95 (qd, J = 15.3, 5.7 Hz, 4H), 1.69 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 157.7, 133.1, 132.3, 130.0, 117.7, 117.3, 106.8, 79.8, 76.0, 48.7, 47.7, 18.1. HRMS (ESI) calcd for C₂₄H₃₂IN₂O₄⁺ [M + H⁺] 539.1401, found 539.1405. [α]_D²⁵ = -142.9 (c = 0.28, CHCl₃).

(2*R*,2'*R*)-2,2'-((2-Iodo-1,3-phenylene)bis(oxy))bis(1-(3,4-dihydroisoquinolin-2(1 *H*)-yl)propan-1-one) (3j)

Following the general procedure, **3j** was purified by silica gel chromatography (PE/EA = 3/1 to 1/1). Yield: 72% (969 mg), white solid, mp. 95 – 98 °C. IR (KBr) 2985, 2933, 1657, 1585, 1460, 1373, 1283, 1251, 1136, 1095, 751 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.21 – 7.03 (m, 9H), 6.48 (dd, *J* = 18.7, 8.5 Hz, 2H), 5.14 – 4.94 (m, 3H), 4.78 (d, *J* = 17.5 Hz, 1H), 4.62 (dd, *J* = 16.8, 9.8 Hz, 2H), 4.25 – 3.89 (m, 2H), 3.84 – 3.44 (m, 2H), 2.98 – 2.71 (m, 3H), 2.70 – 2.47 (m, 1H), 1.86 – 1.59 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 169.5, 157.5, 157.3, 134.5, 133.9, 132.7, 132.6, 130.6, 130.5, 128.8, 128.4, 126.9, 126.6, 126.5, 126.5, 126.3, 126.1, 106.2, 106.1, 78.5, 47.0, 45.1, 42.7, 41.1, 40.3, 29.7, 28.2, 18.1, 18.0. HRMS (ESI) calcd for C₃₀H₃₂IN₂O₄⁺ [M + H⁺] 611.1401, found 611.1405. [α]_D²⁵ = -181.8 (c = 0.22, CHCl₃).

(*R*)-5-Ethoxy-1'-methyl-3*H*-spiro[furan-2,3'-indoline]-2',3-dione (2a)

Following the general procedure, 2a was purified by silica gel chromatography

(30% EA/PE). Yield: 63% (33 mg), white solid, mp. 135 – 138 °C. IR (KBr) 3112, 2933, 1735, 1702, 1583, 1352, 1002, 879, 771 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (t, *J* = 7.8 Hz, 1H), 7.20 (d, *J* = 7.4 Hz, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.9 Hz, 1H), 4.96 (s, 1H), 4.42 (q, *J* = 7.1 Hz, 2H), 3.24 (s, 3H), 1.52 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 186.4, 168.8, 145.3, 131.5, 124.1, 123.5, 122.7, 109.2, 89.2, 79.9, 68.9, 26.9, 14.3. HRMS (ESI) calcd for C₁₄H₁₃NNaO₄⁺ [M + Na⁺] 282.0737, found 282.0735. [α]_D²⁵ = -48.4 (c = 0.12, CHCl₃). Enantiomeric excess: 87%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 15.29 min (major), t_R = 18.19 min (minor). The absolute configuration was tentatively assigned by analogy.

(*R*)-5-Ethoxy-1'-ethyl-3*H*-spiro[furan-2,3'-indoline]-2',3-dione (2b)

Following the general procedure, **2b** was purified by silica gel chromatograohy (30% EA/PE). Yield: 71% (39 mg), white solid, mp. 151 – 153 °C. IR (KBr) 3108, 2986, 1731, 1698, 1580, 1347, 1010, 881, 766 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.39 (t, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 1H), 7.08 (t, *J* = 7.3 Hz, 1H), 6.91 (d, *J* = 7.7 Hz, 1H), 4.95 (s, 1H), 4.41 (dd, *J* = 13.1, 6.3 Hz, 2H), 3.80 (td, *J* = 13.7, 6.9 Hz, 1H), 3.73 (td, *J* = 13.6, 6.7 Hz, 1H), 1.52 (t, *J* = 6.3 Hz, 3H), 1.30 (t, *J* = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.6, 186.4, 168.4, 144.4, 131.4, 124.3, 123.3, 123.0, 109.3, 89.2, 79.8, 68.9, 35.5, 14.3, 12.5. HRMS (ESI) calcd for C₁₅H₁₅NNaO₄⁺ [M + Na⁺] 296.0893, found 296.0891. [α]_D²⁵ = -34.1 (c = 0.15, CHCl₃). Enantiomeric excess: 87%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 15.40 min (major), t_R = 19.34 min (minor). The absolute configuration was determined by X-ray crystallography analysis.

Following the general procedure, **2c** was purified by silica gel chromatography (30% EA/PE). Yield: 65% (37 mg), white solid, mp. 118 – 121 °C. IR (KBr) 3087, 2961, 1732, 1708, 1582, 1344, 1030, 884, 753 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (td, *J* = 7.9, 1.1 Hz, 1H), 7.19 (d, *J* = 7.3 Hz, 1H), 7.05 (dd, *J* = 14.6, 7.7 Hz, 2H), 4.94 (s, 1H), 4.51 (dt, *J* = 14.0, 7.0 Hz, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.51 (dd, *J* = 9.5, 3.9 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 186.4, 168.4, 144.2, 131.2, 124.4, 123.2, 122.9, 110.6, 89.3, 79.7, 68.9, 45.1, 19.5, 19.1, 14.2. HRMS (ESI) calcd for C₁₆H₁₇NNaO₄⁺ [M + Na⁺] 310.1050, found 310.1046. [α]_D²⁵ = -21.4 (c = 0.15, CHCl₃). Enantiomeric excess: 82%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 10.46 min (major), t_R = 16.06 min (minor). The absolute configuration was tentatively assigned by analogy.

(*R*)-1'-Butyl-5-ethoxy-3*H*-spiro[furan-2,3'-indoline]-2',3-dione (1d)

Following the general procedure, **2d** was purified by silica gel chromatography (30% EA/PE). Yield: 57% (34 mg), white solid, mp. 97 – 100 °C. IR (KBr) 3115, 2960, 1732, 1698, 1579, 1348, 1039, 885, 766 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (td, *J* = 7.8, 1.1 Hz, 1H), 7.20 (d, *J* = 7.4 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.9 Hz, 1H), 4.95 (s, 1H), 4.41 (q, *J* = 7.1 Hz, 2H), 3.71 (td, *J* = 7.4, 2.2 Hz, 2H), 1.67 (ddd, *J* = 10.4, 7.0, 3.8 Hz, 2H), 1.52 (t, *J* = 7.1 Hz, 3H), 1.41 (dd, *J* = 14.8, 300 Hz, 200 H

7.4 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.7, 186.4, 168.7, 144.8, 131.4, 124.3, 123.2, 122.9, 109.5, 89.2, 79.8, 68.9, 40.4, 29.3, 20.0, 14.3, 13.7. HRMS (ESI) calcd for C₁₇H₁₉NNaO₄⁺ [M + Na⁺] 324.1206, found 324.1206. [α]_D²⁵ = -57.1 (c = 0.11, CHCl₃). Enantiomeric excess: 86%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 16.62 min (major), t_R = 21.57 min (minor). The absolute configuration was tentatively assigned by analogy.

(R)-1'-Benzyl-5-ethoxy-3H-spiro[furan-2,3'-indoline]-2',3-dione (2e)

Following the general procedure, **2e** was purified by silica gel chromatograohy (30% EA/PE). Yield: 77% (52 mg), white solid, mp. 109 – 112 °C. IR (KBr) 3117, 2927, 1743, 1579, 1488, 1345, 1106, 882, 751 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 3.5 Hz, 4H), 7.26 (t, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 7.4 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.72 (d, *J* = 7.9 Hz, 1H), 4.98 (t, *J* = 7.9 Hz, 2H), 4.86 (d, *J* = 15.9 Hz, 1H), 4.42 (q, *J* = 6.8 Hz, 2H), 1.52 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 192.6, 186.5, 169.0, 144.3, 134.6, 131.4, 129.0, 127.8, 127.1, 124.2, 123.5, 122.8, 110.3, 89.3, 79.7, 69.1, 44.3, 14.3. HRMS (ESI) calcd for C₂₀H₁₇NNaO₄⁺ [M+Na⁺] 358.1050, found 358.1053. [α]_D²⁵ = -44.1 (c = 0.21, CHCl₃). Enantiomeric excess: 90%, determined by HPLC (Chiracel-OJ, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 25.88 min (major), t_R = 35.09 min (minor). The absolute configuration was tentatively assigned by analogy.

(R)-5-Ethoxy-1',5'-dimethyl-3H-spiro[furan-2,3'-indoline]-2',3-dione (2f)

Following the general procedure, **2e** was purified by silica gel chromatography (30% EA/PE). Yield: 58% (32 mg), white solid, mp. 132 – 135 °C. IR (KBr) 3120, 2960, 1735, 1707, 1586, 1379, 1003, 888, 767 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.20 (d, *J* = 7.8 Hz, 1H), 7.03 (s, 1H), 6.78 (d, *J* = 7.9 Hz, 1H), 4.95 (s, 1H), 4.41 (q, *J* = 6.9 Hz, 2H), 3.21 (s, 3H), 2.31 (s, 3H), 1.52 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.8, 186.4, 168.7, 142.9, 133.2, 131.8, 124.9, 122.7, 109.0, 89.3, 79.9, 68.9, 26.9, 21.0, 14.3. HRMS (ESI) calcd for C₁₅H₁₅NNaO₄⁺ [M + Na⁺] 296.0893, found 296.0891. [α]_D²⁵ = -25.3 (c = 0.20, CHCl₃). Enantiomeric excess: 86%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 14.17 min (major), t_R = 18.91 min (minor). The absolute configuration was tentatively assigned by analogy.

(*R*)-5-Ethoxy-5'-methoxy-1'-methyl-3*H*-spiro[furan-2,3'-indoline]-2',3-dione (2g)

Following the general procedure, **2g** was purified by silica gel chromatography (30% EA/PE). Yield: 55% (32 mg), white solid, mp. 150 – 153 °C. IR (KBr) 3117, 2944, 1730, 1704, 1584, 1496, 1344, 1029, 881, 804, 765 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 6.92 (d, *J* = 8.0 Hz, 1H), 6.80 (d, *J* = 8.9 Hz, 2H), 4.96 (s, 1H), 4.41 (dd, *J* = 12.8, 6.1 Hz, 2H), 3.76 (s, 3H), 3.20 (s, 3H), 1.51 (t, *J* = 6.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.6, 186.5, 168.5, 156.5, 138.5, 123.7, 116.22, 111.0, 109.8, 89.4, 79.8, 69.0, 55.9, 27.0, 14.3. HRMS (ESI) calcd for C₁₅H₁₅NNaO₅⁺ [M + Na⁺]

312.0842, found 312.0844. $[\alpha]_D^{25} = -80.9$ (c = 0.27, CHCl₃). Enantiomeric excess: 90%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 18.80 min (major), t_R = 29.53 min (minor). The absolute configuration was tentatively assigned by analogy.

(*R*)-5-Ethoxy-1'-methyl-5'-(trifluoromethoxy)-3*H*-spiro[furan-2,3'-indoline]-2',3 -dione (2h)

Following the general procedure, **2h** was purified by silica gel chromatography (30% EA/PE). Yield: 62% (43 mg), white solid, mp. 108 – 111 °C. IR (KBr) 3117, 2990, 1740, 1716, 1586, 1472, 1348, 1104, 881, 861, 774 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.23 (m, 1H), 7.10 (d, *J* = 1.6 Hz, 1H), 6.90 (d, *J* = 8.5 Hz, 1H), 4.96 (s, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 3.24 (s, 3H), 1.54 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 191.6, 186.5, 168.6, 145.07 (d, *J* _{*C*-*F*}= 2.0 Hz), 143.9, 124.6, 124.03 (s), 123.0 (d, *J* _{*C*-*F*}= 257.4 Hz), 120.4 (d, *J* _{*C*-*F*}= 257.4 Hz), 118.1, 117.9 (d, *J* _{*C*-*F*}= 257.3 Hz), 109.9, 88.6, 79.6, 69.3, 27.1, 14.2. HRMS (ESI) calcd for C₁₅H₁₂F₃NNaO₅⁺ [M + Na⁺] 366.0560, found 366.0564. [α]_D²⁵ = -40.8 (c = 0.18, CHCl₃). Enantiomeric excess: 89%, determined by HPLC (Chiracel-OD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 19.01 min (minor), t_R = 23.01 min (major). The absolute configuration was tentatively assigned by analogy.

(*R*)-5-Ethoxy-5'-fluoro-1'-methyl-3*H*-spiro[furan-2,3'-indoline]-2',3-dione (2i)

Following the general procedure, **2i** was purified by silica gel chromatography (30% EA/PE). Yield: 74% (41 mg), white solid, mp. 126 – 128 °C. IR (KBr) 3122, 2949, 1733, 1699, 1579, 1494, 1349, 1005, 878, 765 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.12 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 6.0 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 4.95 (s, 1H), 4.42 (d, *J* = 6.6 Hz, 2H), 3.22 (s, 3H), 1.52 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 191.9, 186.5, 168.5, 159.4 (d, *J* _{*C*-*F*} = 243.1 Hz), 141.3, 124.0 (d, *J*_{*C*-*F*} = 8.4 Hz), 117.8 (d, *J*_{*C*-*F*} = 23.5 Hz), 112.4 (d, *J*_{*C*-*F*</sup> = 25.5 Hz), 109.9 (d, *J*_{*C*-*F*</sup> = 8.0 Hz), 88.8, 79.7, 69.2, 27.0, 14.2. HRMS (ESI) calcd for C₁₄H₁₂FNNaO₄⁺ [M + Na⁺] 300.0643, found 300.0640. [α]_D²⁵ = -39.7 (c = 0.23, CHCl₃). Enantiomeric excess: 89%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 14.74 min (major), t_R = 18.15 min (minor). The absolute configuration was tentatively assigned by analogy.}}

(R)-5'-Chloro-5-ethoxy-1'-methyl-3H-spiro[furan-2,3'-indoline]-2',3-dione (2j)

Following the general procedure, **2j** was purified by silica gel chromatography (30% EA/PE). Yield: 67% (39 mg), white solid, mp. 158 – 161 °C. IR (KBr) 3129, 2934, 1739, 1712, 1585, 1489, 1378, 1044, 884, 731 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 6.9 Hz, 1H), 7.19 (s, 1H), 6.83 (d, J = 8.3 Hz, 1H), 4.96 (s, 1H), 4.77 – 4.21 (m, 2H), 3.22 (d, J = 6.4 Hz, 3H), 1.52 (t, J = 6.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 191.9, 186.5, 168.4, 143.8, 131.4, 128.8, 124.6, 124.2,

110.3, 88.6, 79.7, 69.3, 27.0, 14.2. HRMS (ESI) calcd for $C_{14}H_{12}^{35}CINNaO_4^+$ [M + Na⁺] 316.0347, found 316.0343. [α]_D²⁵ = -28.6 (c = 0.14, CHCl₃). Enantiomeric excess: 88%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 13.86 min (major), t_R = 15.88 min (minor). The absolute configuration was tentatively assigned by analogy.

(R)-5'-Bromo-5-ethoxy-1'-methyl-3H-spiro[furan-2,3'-indoline]-2',3-dione (2k)

Following the general procedure, **2k** was purified by silica gel chromatography (30% EA/PE). Yield: 69% (46 mg), white solid, mp. 158 – 161 °C. IR (KBr) 3127, 2987, 1740, 1711, 1585, 1487, 1377, 1043, 885, 738 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 6.7 Hz, 1H), 6.79 (t, *J* = 7.5 Hz, 1H), 4.96 (d, *J* = 7.8 Hz, 1H), 4.63 – 4.22 (m, 2H), 3.22 (d, *J* = 7.9 Hz, 3H), 1.54 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (150MHz, CDCl₃) δ 191.8, 186.5, 168.3, 144.3, 134.2, 127.3, 124.6, 116.0, 110.7, 88.5, 79.7, 69.2, 27.0, 14.3. HRMS (ESI) calcd for C₁₄H₁₂⁷⁹BrNNaO₄⁺ [M + Na⁺] 359.9842, found 359.9843. [α]_D²⁵ = -23.1 (c = 0.13, CHCl₃). Enantiomeric excess: 90%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 16.02 min (major), t_R = 17.99 min (minor). The absolute configuration was tentatively assigned by analogy.

(R)-4',5'-Dichloro-5-ethoxy-1'-methyl-3H-spiro[furan-2,3'-indoline]-2',3-dione
(2l) and (R)-5',6'-dichloro-5-ethoxy-1'-methyl-3H-spiro[furan-2,3'-indoline]
-2',3- dione (2l')

Following the general procedure, **21** and **21'** were isolated and purified as a mixture by silica gel chromatography (30% EA/PE). Yield: 58% (38 mg), white solid, mp. 134 – 137 °C. IR (KBr) 3097, 2987, 1741, 1703, 1580, 1460, 1347, 1043, 875, 747 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 1.21H), 7.28 (d, *J* = 1.1 Hz, 1.20H), 7.00 (s, 0.96H), 6.77 (d, *J* = 8.4 Hz, 1.21H), 5.08 (s, 1.19H), 4.96 (s, 1H), 4.43 (p, *J* = 7.2 Hz, 4.48H), 3.21 (s, 6.63H), 1.53 (td, *J* = 7.1, 2.0 Hz, 6.62H). ¹³C NMR (100MHz, CDCl₃) δ 191.6, 190.9, 186.5, 186.1, 168.2, 167.8, 145.3, 144.6, 135.6, 132.9, 130.4, 127.5, 127.1, 126.0, 122.3, 121.8, 111.4, 108.3, 88.4, 88.0, 81.2, 79.7, 69.5, 69.2, 27.1, 14.3, 14.2. HRMS (ESI) calcd for C₁₄H₁₁.³⁵C₁₂NNaO₄⁺ [M + Na⁺] 349.9957, found 349.9961. [α]_D²⁵ = -26.3 (c = 0.19, CHCl₃). Enantiomeric excess: **21**: 91%, **21':** 86%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 90/10, flow rate 1.0 mL/min, T = 25 °C, 254 nm): **21**: t_R = 42.30 min (minor), t_R = 52.63 min (major). **21'**: t_R = 32.28 min (minor), t_R = 38.22 min (major). The absolute configuration was tentatively assigned by analogy.

(*R*)-5-Ethoxy-1',7'-dimethyl-3H-spiro[furan-2,3'-indoline]-2',3-dione (2m)

Following the general procedure, **2m** were purified by silica gel chromatography (30% EA/PE). Yield: 46% (25 mg), white solid, mp. 107 – 110 °C. IR (KBr) 3095, 2933, 1730, 1699, 1576, 1456, 1379, 1076, 860, 749 cm⁻¹. ¹H NMR (600 MHz, CDCl₃) δ 7.12 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 7.2 Hz, 1H), 6.97 (t, *J* = 7.5 Hz, 1H), 4.94 (s, 1H), 4.41 (q, *J* = 7.0 Hz, 2H), 3.49 (s, 3H), 2.56 (s, 3H), 1.51 (t, *J* = 7.0 Hz, 2H), 3.49 (s, 3H), 2.56 (s, 3H), 1.51 (t, *J* = 7.0 Hz, 2H), 3.49 (s, 3H), 2.56 (s, 3H), 1.51 (t, *J* = 7.0 Hz, 2H), 3.49 (s, 3H), 2.56 (s, 3H), 1.51 (t, *J* = 7.0 Hz, 2H), 3.49 (s, 3H), 2.56 (s, 3H), 1.51 (t, *J* = 7.0 Hz, 2H), 3.49 (s, 3H), 2.56 (s, 3H), 1.51 (t, *J* = 7.0 Hz, 2H), 3.49 (s, 3H), 3.

3H). ¹³C NMR (150MHz, CDCl₃) δ 192.8, 186.4, 169.5, 142.9, 135.3, 123.4, 123.3, 122.0, 121.0, 89.1, 79.8, 68.9, 30.2, 18.9, 14.3. HRMS (ESI) calcd for C₁₅H₁₅NNaO₄⁺ [M + Na⁺] 296.0893, found 296.0891. [α]_D²⁵ = -33.3 (c = 0.12, CHCl₃). Enantiomeric excess: 74%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 14.70 min (major), t_R = 25.36 min (minor). The absolute configuration was tentatively assigned by analogy.

(R)-5-Methoxy-1'-methyl-3H-spiro[furan-2,3'-indoline]-2',3-dione (2n)

Following the general procedure, **2n** were purified by silica gel chromatography (30% EA/PE). Yield: 51% (25 mg), white solid, mp. 164 – 167 °C. IR (KBr) 3122, 2956, 1731, 1702, 1586, 1494, 1363, 987, 928, 767 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.38 (m, 1H), 7.24 – 7.16 (m, 1H), 7.10 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.9 Hz, 1H), 4.99 (s, 1H), 4.11 (d, *J* = 0.9 Hz, 3H), 3.23 (d, *J* = 0.8 Hz, 3H). ¹³C NMR (100MHz, CDCl₃) δ 192.5, 187.3, 168.7, 145.3, 131.6, 124.2, 123.5, 122.6, 109.2, 89.5, 79.7, 58.9, 26.9. HRMS (ESI) calcd for C₁₃H₁₁NNaO₄⁺ [M + Na⁺] 268.0580, found 268.0583. [α]_D²⁵ = -37.0 (c = 0.13, CHCl₃). Enantiomeric excess: 88%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 17.85 min (major), t_R = 19.31 min (minor). The absolute configuration was tentatively assigned by analogy.

(R)-5-Isopropoxy-1'-methyl-3H-spiro[furan-2,3'-indoline]-2',3-dione (20)

Following the general procedure, **20** were purified by silica gel chromatography (30% EA/PE). Yield: 55% (30 mg), white solid, mp. 124 – 127 °C. IR (KBr) 3098, 2941, 1745, 1693, 1566, 1490, 1346, 1089, 976, 906, 800 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (td, *J* = 7.8, 1.1 Hz, 1H), 7.23 – 7.17 (m, 1H), 7.09 (t, *J* = 7.5 Hz, 1H), 6.89 (d, *J* = 7.9 Hz, 1H), 4.93 (s, 1H), 4.89 (dt, *J* = 12.3, 6.2 Hz, 1H), 3.23 (s, 3H), 1.50 (d, *J* = 2.7 Hz, 3H), 1.49 (d, *J* = 2.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 192.6, 185.7, 168.9, 145.3, 131.5, 124.1, 123.5, 122.9, 109.2, 89.0, 80.3, 77.9, 26.9, 21.9, 21.8. HRMS (ESI) calcd for C₁₅H₁₅NNaO₄⁺ [M + Na⁺] 296.0893, found 296.0891. [α]_D²⁵ = -35.6 (c = 0.45, CHCl₃). Enantiomeric excess: 89%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 12.26 min (major), t_R = 15.30 min (minor). The absolute configuration was tentatively assigned by analogy.

(*R*)-5-Butoxy-1'-methyl-3H-spiro[furan-2,3'-indoline]-2',3-dione (2p)

Following the general procedure, **2p** were purified by silica gel chromatography (30% EA/PE). Yield: 59% (34 mg), white solid, mp. 132 – 134 °C. IR (KBr) 3130, 2946, 1730, 1698, 1575, 1492, 1354, 1044, 847, 778, 769 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 11.3, 4.3 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 4.95 (s, 1H), 4.34 (t, J = 6.5 Hz, 2H), 3.23 (s, 3H), 1.94 – 1.78 (m, 2H), 1.68 – 1.38 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C NMR

(100MHz, CDCl₃) δ 192.6, 186.6, 168.8, 145.3, 131.5, 124.1, 123.5, 122.8, 109.2, 89.2, 79.8, 72.7, 30.6, 26.9, 18.8, 13.6. HRMS (ESI) calcd for C₁₆H₁₇NNaO₄⁺ [M + Na⁺] 310.1050, found 310.1052. [α]_D²⁵ = -29.4 (c = 0.17, CHCl₃). Enantiomeric excess: 88%, determined by HPLC (Chiracel-AD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 13.29 min (major), t_R = 17.88 min (minor). The absolute configuration was tentatively assigned by analogy.

5-Butoxy-N-methyl-3-oxo-N-phenyl-2,3-dihydrofuran-2-carboxamide (A)

A were purified by silica gel chromatography (30% EA/PE). Yield: 81% (234 mg), white solid, mp. 65– 67 °C. IR (KBr) 2966, 2876, 1697, 1665, 1601, 1471, 1392, 981, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, *J* = 7.7 Hz, 4H), 7.39 (d, *J* = 8.6 Hz, 1H), 5.17 (s, 1H), 4.76 (s, 1H), 4.20 (qd, *J* = 7.8, 3.3 Hz, 2H), 3.36 (s, 3H), 1.82 – 1.70 (m, 2H), 1.45 (dd, *J* = 15.1, 7.5 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 193.9, 186.4, 163.0, 142.0, 130.0, 128.6, 127.7, 80.1, 80.0, 72.3, 38.1, 30.5, 18.7, 13.6. HRMS (ESI) calcd for C₁₆H₁₉NNaO₄⁺ [M + Na⁺] 312.1206, found 312.1203. [α]_D²⁵ = 0 (c = 0.23, CHCl₃). Enantiomeric excess: < 3%, determined by HPLC (Chiracel-OD, hexane / isopropanol = 80/20, flow rate 1.0 mL/min, T = 25 °C, 254 nm): t_R = 11.69 min, t_R = 14.40 min.

VII. References

1. Li, W.; Ma, X.; Fan, W.; Tao, X.; Li, X.; Xie, Z.; Zhang, Z. Org. Lett. 2011, 13, 3876.

2. Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; MinamitsuJi, Y.; FuJioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem., Int. Ed. 2008, 47, 3787.

3. Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175.

4. Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem., Int. Ed. 2014, 53, 3466.

5. Alhalib, A.; Kamouka, S.; Moran, W. J. Org. Lett. 2015, 17, 1453.

VIII. ¹H-NMR, ¹³C-NMR Spectra and HPLC Data

S34

S36

AP PROV

S81

$$\begin{array}{c} < 7.5153 \\ < 7.4943 \\ < 7.2817 \\ < 7.2790 \\ - 7.0045 \\ - 7.0045 \\ < 6.7788 \end{array}$$

S95

---0.0000

8.0

S105

0000000000000	L0040L00400004LL0L0 0L0000000000	
0010002040000	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
10000404000000	000400000404000400400400440040004000	
N00444	000000000000000000000000000000000000000	
~~~~~~~~~~	ののののななななななななななななななのののののののののののです。	





0000.0---










reak	<b>Net I IIIIe</b>	rype	vv luuli	Alta	Height	Alta
#	[min]		[min]	mAu *s	[mAu]	%
1	15.28	$BMB^{\star}$	0.369	157.6620	394.12	50.07
2	18.42	$BMB^{\star}$	0.435	157.2273	331.57	49.93





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	15.29	$BMB^{\star}$	0.365	114.5106	288.59	93.78
2	18.19	$BMB^{\star}$	0.430	7.5977	16.41	6.22



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	15.53	$BMB^{\star}$	0.394	95.9105	225.18	49.86
2	19.47	$BMB^{\star}$	0.505	96.4636	175.23	50.14

**2b** 

**2b** 



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	15.40	$BMB^{\star}$	0.389	135.5745	320.87	93.32
2	19.34	$BMB^{\star}$	0.488	9.7012	18.75	6.68



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	10.50	$BMB^{\star}$	0.245	858.0904	3206.08	50.66
2	16.02	$BMB^{\star}$	0.415	853.7206	1859.07	49.34





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	10.46	$BMB^{\star}$	0.260	263.8111	937.31	90.89
2	16.06	$BMB^{\star}$	0.400	26.4302	62.07	9.11





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	16.63	$BMB^{\star}$	0.442	61.4744	128.30	50.29
2	21.60	$BMB^{\star}$	0.580	60.7541	96.82	49.71





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	16.62	$BMB^{\star}$	0.435	23.7391	50.43	92.80
2	21.57	$BMB^{\star}$	0.571	1.8412	3.01	7.20





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	25.58	$BMB^{\star}$	1.268	651.6989	459.21	50.22
2	33.62	$BMB^{\star}$	1.903	646.0428	298.24	49.78





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	25.89	$BMB^{\star}$	1.241	220.7252	156.73	94.75
2	35.09	$BMB^{\star}$	2.053	12.2295	5.30	5.25





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.15	$BMB^{\star}$	0.368	99.7924	249.31	50.13
2	18.84	$BMB^{\star}$	0.494	99.2606	184.88	49.87





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.17	$BMB^{\star}$	0.365	51.9919	130.51	92.70
2	18.91	$BMB^{\star}$	0.499	4.0969	7.50	7.30





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	18.61	$BMB^{\star}$	0.492	88.6177	164.27	49.83
2	28.96	$BMB^{\star}$	0.754	89.2242	108.20	50.17



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	18.80	$BMB^{\star}$	0.499	99.2181	180.90	94.86
2	29.53	$BMB^{\star}$	0.755	5.3753	6.72	5.14





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	17.68	$BMB^{\star}$	0.776	84.5080	99.14	50.29
2	22.06	$BMB^{\star}$	0.995	83.5449	80.94	49.71



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	19.01	$BMB^{\star}$	0.822	12.0799	13.47	5.65
2	23.01	$BMB^{\star}$	1.016	201.8550	180.90	94.35

**2h** 





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.77	$BMB^{\star}$	0.374	4.9480	12.05	50.06
2	18.13	$BMB^{\star}$	0.475	4.9352	9.46	49.94





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.74	$BMB^{\star}$	0.371	61.1405	151.32	94.90
2	18.15	$BMB^{\star}$	0.474	3.2840	6.43	5.10



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	13.89	$BMB^{\star}$	0.342	88.6503	238.57	49.99
2	15.85	$BMB^{\star}$	0.398	88.7015	204.09	50.01



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	13.89	$BMB^{\star}$	0.342	192.0053	515.47	94.05
2	15.85	$BMB^{\star}$	0.396	12.1561	28.09	5.95



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	16.00	$BMB^{\star}$	0.409	94.1555	212.36	50.39
2	17.91	$BMB^{\star}$	0.466	92.7144	183.41	49.61

2k



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	16.02	$BMB^{\star}$	0.409	93.4072	209.47	94.78
2	17.99	$BMB^{\star}$	0.465	5.1473	10.44	5.22





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	31.85	$BMB^{\star}$	0.837	71.1203	77.60	23.85
2	38.00	$BMB^{\star}$	0.943	68.8646	67.69	23.10
3	41.97	$BMB^{\star}$	1.072	78.9083	67.34	26.47
4	52.64	$BMB^{\star}$	1.374	79.2540	58.85	26.58





Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	32.28	$BMB^{\star}$	0.847	6.1198	6.59	3.24
2	38.22	$BMB^{\star}$	0.948	94.7447	92.18	50.10
3	42.30	$BMB^{\star}$	1.032	3.7100	3.35	1.96
4	52.63	$BMB^{\star}$	1.366	84.5221	57.74	44.70





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.74	$BMB^{\star}$	0.384	38.5650	91.88	50.05
2	25.41	$BMB^{\star}$	0.688	38.4804	51.38	49.95





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.70	$BMB^{\star}$	0.382	64.9926	155.32	86.82
2	25.36	$BMB^{\star}$	0.684	9.8652	13.30	13.18



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	18.10	$BMB^{\star}$	0.465	8.9133	17.78	50.15
2	19.50	$BMB^{\star}$	0.499	8.8605	16.35	49.85

**2n** 





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	17.85	$BMB^{\star}$	0.456	95.1504	191.41	93.78
2	19.31	$BMB^{\star}$	0.460	6.3148	13.25	6.22



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	12.26	$BMB^{\star}$	0.302	167.6284	509.84	49.97
2	15.25	$BMB^{\star}$	0.382	167.8541	403.71	50.03



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	12.26	$BMB^{\star}$	0.302	236.7526	717.13	94.42
2	15.30	$BMB^{\star}$	0.367	13.9937	36.22	5.58

20



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	13.18	$BMB^{\star}$	0.323	10.1563	28.83	50.00
2	17.67	$BMB^{\star}$	0.451	10.1550	20.74	50.00



Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	13.29	$BMB^{\star}$	0.334	52.8272	145.12	94.05
2	17.88	$BMB^{\star}$	0.454	3.3446	6.92	5.95





Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.10	$BMB^{\star}$	0.334	52.8272	145.12	94.05
2	17.18	$BMB^{\star}$	0.454	3.3446	6.92	5.95

## **2b** (after recrystallization)



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	13.46	$BMB^{\star}$	0.326	862.0079	2441.53	100.00

## 2d (after recrystallization)



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.59	$BMB^{\star}$	0.367	67.2341	169.88	49.87
2	18.70	$BMB^{\star}$	0.477	67.5776	130.27	50.13
# 2d (after recrystallization)



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	14.69	$BMB^{\star}$	0.373	88.3537	218.94	99.04
2	18.88	$BMB^{\star}$	0.451	0.8557	1.85	0.96

## Intermediate A



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	11.44	$BMB^{\star}$	0.438	73.7198	153.64	50.13
2	14.08	$BMB^{\star}$	0.564	73.3414	119.60	49.87

## Intermediate A



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAu *s	[mAu]	%
1	11.69	$BMB^{\star}$	0.471	66.2338	130.03	49.74
2	14.40	$BMB^{\star}$	0.595	66.9163	103.17	50.26

#### IX. X-Ray Structure and Data of 2a and (*R*)-2b

1. X-ray and Data Structure of Compound 2a



Data of Compound 2a

## Table 1. Crystal data and structure refinement for 2a

Identification code	2a
Empirical formula	$C_{14}H_{13}NO_4$
Formula weight	259.25
Temperature	113(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 9.625(3) A alpha = 90 deg.
	b = 16.950(5) A beta = 114.355(6) deg.
	c = 8.295(3) A gamma = 90 deg.
Volume	1232.8(7) A^3
Z, Calculated density	4, 1.397 Mg/m^3
Absorption coefficient	0.103 mm^-1
F(000)	544
Crystal size	0.20 x 0.18 x 0.12 mm
Theta range for data collection	3.34 to 25.02 deg.
Limiting indices	-9<=h<=11, -20<=k<=20, -9<=l<=9
Reflections collected / unique	10260 / 2160 [R(int) = 0.0523]
Completeness to theta $= 25.02$	99.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9877 and 0.9796
Refinement method	Full-matrix least-squares on F^2

Data / restraints / parameters	2160 / 0 / 174
Goodness-of-fit on F^2	1.050
Final R indices [I>2sigma(I)]	R1 = 0.0631, wR2 = 0.2530
R indices (all data)	R1 = 0.0757, wR2 = 0.2627
Largest diff. peak and hole	0.340 and -0.280 e.A^-3

Table 2. Atomic coordinates (  $x\ 10^{4}$ ) and equivalent isotropic displacement parameters (A^2 x 10^3) for 2a

	Х	у	Z	U(eq)
	) 10293(3)	) 1374(2)	1972(4)	26(1)
0(3	3) 9266(3)	679(2)	3440(4)	26(1)
O(1	9006(4	1280(2)	6697(4)	40(1)
O(2	2) 5690(4)	) 1531(2)	2685(4)	36(1)
N(1	) 7475(4)	) 180(2)	6168(4)	24(1)
C(1	6813(4	-365(2)	4768(5)	23(1)
C(2	2) 6021(5	-1049(2)	4751(5)	27(1)
C(3	3) 5530(5	-1504(2)	3217(6)	31(1)
C(4	<ul><li>5812(5</li></ul>	) -1284(3)	1771(6)	30(1)
C(5	5) 6582(5	-582(2)	1805(5)	29(1)
C(6	5) 7091(5	-130(2)	3323(5)	24(1)
C(7	7900(5)	647(2)	3762(5)	24(1)
C(8	8) 8253(5)	751(2)	5744(5)	27(1)
C(9	) 7450(5)	115(2)	7899(5)	28(1)
C(1	0) 6934(5)	1366(2)	2714(5)	26(1)
C(1	1) 7817(5)	1729(2)	1913(5)	27(1)
C(1	2) 9116(5)	1305(2)	2374(5)	23(1)
C(1	3) 10217(5)	2041(2)	794(5)	27(1)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

C(14)	11635(5)	2022(3)	468(6)	35(1)

O(4)-C(12)	1.310(5)
O(4)-C(13)	1.477(5)
O(3)-C(12)	1.350(5)
O(3)-C(7)	1.447(5)
O(1)-C(8)	1.218(5)
O(2)-C(10)	1.221(5)
N(1)-C(8)	1.356(5)
N(1)-C(1)	1.413(5)
N(1)-C(9)	1.450(5)
C(1)-C(2)	1.385(6)
C(1)-C(6)	1.390(5)
C(2)-C(3)	1.394(6)
C(2)-H(2)	0.9500
C(3)-C(4)	1.386(6)
C(3)-H(3)	0.9500
C(4)-C(5)	1.396(6)
C(4)-H(4)	0.9500
C(5)-C(6)	1.379(6)
C(5)-H(5)	0.9500
C(6)-C(7)	1.497(6)
C(7)-C(8)	1.545(5)
C(7)-C(10)	1.561(5)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800

Table 3. Bond lengths [A] and angles [deg] for 2a.

C(10)-C(11)	1.417(6)
C(11)-C(12)	1.354(6)
C(11)-H(11)	0.9500
C(13)-C(14)	1.496(6)
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800

C(12)-O(4)-C(13)	115.1(3)
C(12)-O(3)-C(7)	106.9(3)
C(8)-N(1)-C(1)	111.3(3)
C(8)-N(1)-C(9)	123.2(3)
C(1)-N(1)-C(9)	125.3(3)
C(2)-C(1)-C(6)	122.1(4)
C(2)-C(1)-N(1)	128.0(3)
C(6)-C(1)-N(1)	109.9(3)
C(1)-C(2)-C(3)	116.8(4)
C(1)-C(2)-H(2)	121.6
C(3)-C(2)-H(2)	121.6
C(4)-C(3)-C(2)	121.8(4)
C(4)-C(3)-H(3)	119.1
C(2)-C(3)-H(3)	119.1
C(3)-C(4)-C(5)	120.3(4)
C(3)-C(4)-H(4)	119.9
C(5)-C(4)-H(4)	119.9
C(6)-C(5)-C(4)	118.5(4)
C(6)-C(5)-H(5)	120.7

C(4)-C(5)-H(5)	120.7
C(5)-C(6)-C(1)	120.4(4)
C(5)-C(6)-C(7)	131.6(4)
C(1)-C(6)-C(7)	107.9(3)
O(3)-C(7)-C(6)	114.1(3)
O(3)-C(7)-C(8)	112.0(3)
C(6)-C(7)-C(8)	102.9(3)
O(3)-C(7)-C(10)	104.2(3)
C(6)-C(7)-C(10)	114.9(3)
C(8)-C(7)-C(10)	108.8(3)
O(1)-C(8)-N(1)	127.0(4)
O(1)-C(8)-C(7)	125.9(4)
N(1)-C(8)-C(7)	107.0(3)
N(1)-C(9)-H(9A)	109.5
N(1)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
N(1)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
O(2)-C(10)-C(11)	131.7(4)
O(2)-C(10)-C(7)	122.9(4)
C(11)-C(10)-C(7)	105.4(3)
C(12)-C(11)-C(10)	107.4(4)
C(12)-C(11)-H(11)	126.3
C(10)-C(11)-H(11)	126.3
O(4)-C(12)-O(3)	111.5(3)
O(4)-C(12)-C(11)	132.5(4)
O(3)-C(12)-C(11)	116.0(3)
O(4)-C(13)-C(14)	107.6(3)

O(4)-C(13)-H(13A)	110.2
C(14)-C(13)-H(13A)	110.2
O(4)-C(13)-H(13B)	110.2
C(14)-C(13)-H(13B)	110.2
H(13A)-C(13)-H(13B)	108.5
C(13)-C(14)-H(14A)	109.5
C(13)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(13)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for 2a.

The anisotropic displacement factor exponent takes the form:

	U11	U22	U33	U23	U13	U12
O(4)	30(2)	24(2)	28(2)	5(1)	15(1)	1(1)
O(3)	29(2)	24(2)	28(2)	6(1)	14(1)	1(1)
O(1)	57(2)	31(2)	32(2)	-6(1)	19(2)	-13(2)
O(2)	40(2)	35(2)	43(2)	11(1)	27(2)	10(1)
N(1)	32(2)	23(2)	21(2)	1(1)	14(1)	1(1)
C(1)	25(2)	21(2)	22(2)	2(2)	10(2)	4(2)
C(2)	27(2)	25(2)	30(2)	6(2)	14(2)	2(2)
C(3)	29(2)	24(2)	36(2)	0(2)	10(2)	-1(2)
C(4)	30(2)	28(2)	30(2)	-7(2)	10(2)	-1(2)

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

C(5)	31(2)	32(2)	24(2)	0(2)	13(2)	3(2)
C(6)	27(2)	23(2)	23(2)	3(2)	11(2)	3(2)
C(7)	27(2)	24(2)	26(2)	1(2)	15(2)	2(2)
C(8)	35(2)	21(2)	26(2)	3(2)	13(2)	2(2)
C(9)	39(2)	26(2)	22(2)	2(2)	16(2)	3(2)
C(10)	35(2)	22(2)	25(2)	3(2)	16(2)	6(2)
C(11)	34(2)	25(2)	26(2)	4(2)	16(2)	2(2)
C(12)	31(2)	19(2)	20(2)	-1(1)	12(2)	-2(2)
C(13)	33(2)	22(2)	26(2)	4(2)	14(2)	0(2)
C(14)	35(2)	36(2)	37(2)	10(2)	18(2)	-3(2)

Table 5. Hydrogen coordinates (  $x\ 10^{4}$ ) and isotropic displacement parameters(A^2 x 10^3) for 2a.

	X	У	Z	U(eq)
 H(2)	5821	-1200	5738	32
H(3)	4987	-1979	3161	37
H(4)	5481	-1612	753	36
H(5)	6752	-419	805	34
H(9A)	8327	-197	8680	42
H(9B)	6505	-146	7786	42
H(9C)	7500	643	8401	42
H(11)	7547	2186	1186	33
H(13A)	10152	2546	1358	32
H(13B)	9305	1992	-338	32
H(14A)	12531	2028	1603	53
H(14B)	11658	2484	-230	53
H(14C)	11644	1540	-182	53

----

C(8)-N(1)-C(1)-C(2)	175.7(4)
C(9)-N(1)-C(1)-C(2)	0.4(6)
C(8)-N(1)-C(1)-C(6)	-3.0(5)
C(9)-N(1)-C(1)-C(6)	-178.3(4)
C(6)-C(1)-C(2)-C(3)	1.0(6)
N(1)-C(1)-C(2)-C(3)	-177.5(4)
C(1)-C(2)-C(3)-C(4)	-0.3(6)
C(2)-C(3)-C(4)-C(5)	-1.2(7)
C(3)-C(4)-C(5)-C(6)	2.0(6)
C(4)-C(5)-C(6)-C(1)	-1.3(6)
C(4)-C(5)-C(6)-C(7)	-178.1(4)
C(2)-C(1)-C(6)-C(5)	-0.3(6)
N(1)-C(1)-C(6)-C(5)	178.5(4)
C(2)-C(1)-C(6)-C(7)	177.3(3)
N(1)-C(1)-C(6)-C(7)	-4.0(4)
C(12)-O(3)-C(7)-C(6)	125.7(3)
C(12)-O(3)-C(7)-C(8)	-118.0(3)
C(12)-O(3)-C(7)-C(10)	-0.5(4)
C(5)-C(6)-C(7)-O(3)	-53.0(6)
C(1)-C(6)-C(7)-O(3)	129.9(3)
C(5)-C(6)-C(7)-C(8)	-174.5(4)
C(1)-C(6)-C(7)-C(8)	8.4(4)
C(5)-C(6)-C(7)-C(10)	67.4(6)
C(1)-C(6)-C(7)-C(10)	-109.8(4)
C(1)-N(1)-C(8)-O(1)	-176.1(4)
C(9)-N(1)-C(8)-O(1)	-0.8(7)
C(1)-N(1)-C(8)-C(7)	8.4(4)

C(9)-N(1)-C(8)-C(7)	-176.2(3)
O(3)-C(7)-C(8)-O(1)	51.3(5)
C(6)-C(7)-C(8)-O(1)	174.3(4)
C(10)-C(7)-C(8)-O(1)	-63.4(5)
O(3)-C(7)-C(8)-N(1)	-133.1(3)
C(6)-C(7)-C(8)-N(1)	-10.1(4)
C(10)-C(7)-C(8)-N(1)	112.2(4)
O(3)-C(7)-C(10)-O(2)	-179.6(4)
C(6)-C(7)-C(10)-O(2)	54.7(5)
C(8)-C(7)-C(10)-O(2)	-60.0(5)
O(3)-C(7)-C(10)-C(11)	0.1(4)
C(6)-C(7)-C(10)-C(11)	-125.6(4)
C(8)-C(7)-C(10)-C(11)	119.7(4)
O(2)-C(10)-C(11)-C(12)	-180.0(5)
C(7)-C(10)-C(11)-C(12)	0.4(4)
C(13)-O(4)-C(12)-O(3)	179.5(3)
C(13)-O(4)-C(12)-C(11)	0.3(6)
C(7)-O(3)-C(12)-O(4)	-178.6(3)
C(7)-O(3)-C(12)-C(11)	0.8(4)
C(10)-C(11)-C(12)-O(4)	178.5(4)
C(10)-C(11)-C(12)-O(3)	-0.7(5)
C(12)-O(4)-C(13)-C(14)	-179.4(3)

# 2. X-ray and Data Structure of Compound (*R*)-2b



S156

## Data of Compound (**R**)-2b

# Table 1. Crystal data and structure refinement for (R)-2b

Identification code	p20160406a
Empirical formula	C15 H15 N O4
Formula weight	273.28
Temperature	293(2) K
Wavelength	1.54184 A
Crystal system, space group	Orthorhombic, $P2(1)2(1)2(1)$
Unit cell dimensions	a = 8.56310(8) A alpha = 90 deg.
	b = 11.52249(11) A beta = 90 deg.
	c = 13.97167(11) A gamma = 90 deg.
Volume	1378.56(2) A^3
Z, Calculated density	4, 1.317 Mg/m^3
Absorption coefficient	0.797 mm^-1
F(000)	576
Crystal size	0.240 x 0.180 x 0.160 mm
Theta range for data collection	4.975 to 79.088 deg.
Limiting indices	-10<=h<=10, -14<=k<=14, -11<=l<=17
Reflections collected / unique	11908 / 2942 [R(int) = 0.0187]
Completeness to theta $= 67.684$	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.80907
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2942 / 0 / 184
Goodness-of-fit on F^2	1.027
Final R indices [I>2sigma(I)]	R1 = 0.0293, $wR2 = 0.0834$
R indices (all data)	R1 = 0.0298, wR2 = 0.0839
Absolute structure parameter	0.08(7)

Extinction coefficient	0.0140(12)
Largest diff. peak and hole	0.140 and -0.153 e.A^-3

Table 2. Atomic coordinates ( x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for (R)-2b.

	X	У	Z	U(eq)
 O(1)	9162(2)	7298(1)	2201(1)	64(1)
O(2)	5851(2)	6585(1)	2422(1)	46(1)
O(3)	6875(1)	9048(1)	3788(1)	51(1)
O(4)	3999(2)	7068(1)	1421(1)	51(1)
N(1)	9254(2)	6470(1)	3701(1)	44(1)
C(1)	8543(2)	6972(1)	2931(1)	43(1)
C(2)	6788(2)	7076(1)	3177(1)	39(1)
C(3)	6296(2)	8361(1)	3227(1)	39(1)
C(4)	5100(2)	8487(1)	2528(1)	43(1)
C(5)	4916(2)	7440(1)	2099(1)	40(1)
C(6)	6657(2)	6437(1)	4104(1)	38(1)
C(7)	8151(2)	6116(1)	4392(1)	40(1)
C(8)	8399(2)	5532(2)	5240(1)	49(1)
C(9)	7099(2)	5286(2)	5799(1)	56(1)
C(10)	5611(2)	5610(2)	5527(1)	54(1)
C(11)	5379(2)	6205(2)	4671(1)	47(1)
C(12)	10940(2)	6273(2)	3753(1)	52(1)
C(13)	11397(3)	5146(3)	3325(3)	103(1)
C(14)	2857(2)	7891(2)	1048(1)	59(1)
C(15)	1989(3)	7307(3)	263(2)	84(1)

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

 O(1)-C(1)	1.210(2)
O(2)-C(5)	1.3479(18)
O(2)-C(2)	1.4413(18)
O(3)-C(3)	1.2190(19)
O(4)-C(5)	1.3030(19)
O(4)-C(14)	1.459(2)
N(1)-C(1)	1.364(2)
N(1)-C(7)	1.411(2)
N(1)-C(12)	1.464(2)
C(1)-C(2)	1.546(2)
C(2)-C(6)	1.493(2)
C(2)-C(3)	1.542(2)
C(3)-C(4)	1.422(2)
C(4)-C(5)	1.356(2)
C(4)-H(4)	0.9300
C(6)-C(11)	1.378(2)
C(6)-C(7)	1.391(2)
C(7)-C(8)	1.378(2)
C(8)-C(9)	1.389(3)
C(8)-H(8)	0.9300
C(9)-C(10)	1.381(3)
C(9)-H(9)	0.9300
C(10)-C(11)	1.393(3)
C(10)-H(10)	0.9300
C(11)-H(11)	0.9300
C(12)-C(13)	1.483(3)
C(12)-H(12A)	0.9700

Table 3. Bond lengths [A] and angles [deg] for (*R*)-2b.

C(12)-H(12B)	0.9700
C(13)-H(13A)	0.9600
C(13)-H(13B)	0.9600
C(13)-H(13C)	0.9600
C(14)-C(15)	1.486(3)
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600

C(5)-O(2)-C(2)	106.79(11)
C(5)-O(4)-C(14)	116.69(14)
C(1)-N(1)-C(7)	111.33(13)
C(1)-N(1)-C(12)	123.05(15)
C(7)-N(1)-C(12)	125.52(14)
O(1)-C(1)-N(1)	126.96(16)
O(1)-C(1)-C(2)	126.10(15)
N(1)-C(1)-C(2)	106.93(13)
O(2)-C(2)-C(6)	113.58(12)
O(2)-C(2)-C(3)	104.95(11)
C(6)-C(2)-C(3)	114.40(12)
O(2)-C(2)-C(1)	110.38(12)
C(6)-C(2)-C(1)	103.14(12)
C(3)-C(2)-C(1)	110.50(12)
O(3)-C(3)-C(4)	131.94(15)
O(3)-C(3)-C(2)	122.78(14)
C(4)-C(3)-C(2)	105.27(12)
C(5)-C(4)-C(3)	107.29(13)

C(5)-C(4)-H(4)	126.4
C(3)-C(4)-H(4)	126.4
O(4)-C(5)-O(2)	111.11(13)
O(4)-C(5)-C(4)	133.23(15)
O(2)-C(5)-C(4)	115.66(14)
C(11)-C(6)-C(7)	120.79(14)
C(11)-C(6)-C(2)	130.84(14)
C(7)-C(6)-C(2)	108.28(13)
C(8)-C(7)-C(6)	121.40(15)
C(8)-C(7)-N(1)	128.74(14)
C(6)-C(7)-N(1)	109.85(13)
C(7)-C(8)-C(9)	117.31(15)
C(7)-C(8)-H(8)	121.3
C(9)-C(8)-H(8)	121.3
C(10)-C(9)-C(8)	122.01(16)
C(10)-C(9)-H(9)	119.0
C(8)-C(9)-H(9)	119.0
C(9)-C(10)-C(11)	120.01(16)
C(9)-C(10)-H(10)	120.0
С(11)-С(10)-Н(10)	120.0
C(6)-C(11)-C(10)	118.45(15)
C(6)-C(11)-H(11)	120.8
C(10)-C(11)-H(11)	120.8
N(1)-C(12)-C(13)	112.12(18)
N(1)-C(12)-H(12A)	109.2
C(13)-C(12)-H(12A)	109.2
N(1)-C(12)-H(12B)	109.2
C(13)-C(12)-H(12B)	109.2
H(12A)-C(12)-H(12B)	107.9

S161

C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
O(4)-C(14)-C(15)	107.72(19)
O(4)-C(14)-H(14A)	110.2
C(15)-C(14)-H(14A)	110.2
O(4)-C(14)-H(14B)	110.2
C(15)-C(14)-H(14B)	110.2
H(14A)-C(14)-H(14B)	108.5
C(14)-C(15)-H(15A)	109.5
C(14)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(14)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5

Table 4. Anisotropic displacement parameters  $(A^2 \times 10^3)$  for (R)-2b.

#### The anisotropic displacement factor exponent takes the form:

	U11	U22	U33	U23	U13	U12
O(1)	57(1)	77(1)	58(1)	13(1)	18(1)	15(1)
O(2)	50(1)	40(1)	48(1)	-5(1)	-12(1)	9(1)
O(3)	45(1)	47(1)	60(1)	-10(1)	0(1)	-3(1)

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

O(4)	50(1)	54(1)	49(1)	1(1)	-13(1)	1(1)
N(1)	31(1)	51(1)	50(1)	-1(1)	1(1)	5(1)
C(1)	40(1)	44(1)	46(1)	-1(1)	5(1)	7(1)
C(2)	34(1)	42(1)	42(1)	-2(1)	-3(1)	5(1)
C(3)	32(1)	39(1)	44(1)	0(1)	4(1)	2(1)
C(4)	40(1)	39(1)	51(1)	4(1)	-2(1)	8(1)
C(5)	36(1)	44(1)	40(1)	4(1)	-1(1)	4(1)
C(6)	32(1)	38(1)	45(1)	-1(1)	-3(1)	2(1)
C(7)	33(1)	40(1)	46(1)	-2(1)	-3(1)	0(1)
C(8)	42(1)	52(1)	52(1)	4(1)	-11(1)	1(1)
C(9)	61(1)	57(1)	49(1)	10(1)	-4(1)	-4(1)
C(10)	51(1)	56(1)	54(1)	6(1)	7(1)	-8(1)
C(11)	33(1)	50(1)	58(1)	1(1)	1(1)	1(1)
C(12)	31(1)	63(1)	63(1)	-9(1)	1(1)	7(1)
C(13)	70(2)	105(2)	135(3)	-55(2)	-20(2)	44(2)
C(14)	48(1)	70(1)	58(1)	10(1)	-14(1)	6(1)
C(15)	76(1)	95(2)	82(2)	10(1)	-39(1)	-8(1)

Table 5. Hydrogen coordinates ( x 10⁴) and isotropic displacement parameters (A² x 10³) for (R)-2b.

	Х	У	Z	U(eq)
 H(4)	4547	9162	2391	52
H(8)	9397	5311	5429	59
H(9)	7235	4891	6373	67
H(10)	4763	5431	5916	64
H(11)	4384	6440	4487	56
H(12A)	11266	6290	4418	63

H(12B)	11476	6895	3421	63
H(13A)	11096	5131	2663	155
H(13B)	10884	4526	3659	155
H(13C)	12508	5050	3374	155
H(14A)	3380	8578	807	71
H(14B)	2142	8124	1551	71
H(15A)	2685	7156	-260	126
H(15B)	1154	7800	50	126
H(15C)	1565	6588	493	126

Table 6. Torsion angles [deg] for (R)-2b.

C(7)-N(1)-C(1)-O(1)	-175.19(17)
C(12)-N(1)-C(1)-O(1)	1.3(3)
C(7)-N(1)-C(1)-C(2)	6.14(17)
C(12)-N(1)-C(1)-C(2)	-177.33(15)
C(5)-O(2)-C(2)-C(6)	123.96(13)
C(5)-O(2)-C(2)-C(3)	-1.71(15)
C(5)-O(2)-C(2)-C(1)	-120.78(14)
O(1)-C(1)-C(2)-O(2)	52.9(2)
N(1)-C(1)-C(2)-O(2)	-128.47(13)
O(1)-C(1)-C(2)-C(6)	174.51(17)
N(1)-C(1)-C(2)-C(6)	-6.80(16)
O(1)-C(1)-C(2)-C(3)	-62.8(2)
N(1)-C(1)-C(2)-C(3)	115.89(14)
O(2)-C(2)-C(3)-O(3)	-179.09(14)
C(6)-C(2)-C(3)-O(3)	55.75(19)
C(1)-C(2)-C(3)-O(3)	-60.10(19)
O(2)-C(2)-C(3)-C(4)	1.83(16)

C(6)-C(2)-C(3)-C(4)	-123.33(14)
C(1)-C(2)-C(3)-C(4)	120.82(14)
O(3)-C(3)-C(4)-C(5)	179.78(16)
C(2)-C(3)-C(4)-C(5)	-1.26(18)
C(14)-O(4)-C(5)-O(2)	176.33(14)
C(14)-O(4)-C(5)-C(4)	-3.5(3)
C(2)-O(2)-C(5)-O(4)	-178.83(13)
C(2)-O(2)-C(5)-C(4)	1.03(19)
C(3)-C(4)-C(5)-O(4)	-179.97(16)
C(3)-C(4)-C(5)-O(2)	0.2(2)
O(2)-C(2)-C(6)-C(11)	-58.8(2)
C(3)-C(2)-C(6)-C(11)	61.6(2)
C(1)-C(2)-C(6)-C(11)	-178.31(17)
O(2)-C(2)-C(6)-C(7)	124.61(13)
C(3)-C(2)-C(6)-C(7)	-114.92(14)
C(1)-C(2)-C(6)-C(7)	5.13(15)
C(11)-C(6)-C(7)-C(8)	1.6(2)
C(2)-C(6)-C(7)-C(8)	178.60(14)
C(11)-C(6)-C(7)-N(1)	-178.77(15)
C(2)-C(6)-C(7)-N(1)	-1.80(17)
C(1)-N(1)-C(7)-C(8)	176.64(16)
C(12)-N(1)-C(7)-C(8)	0.2(3)
C(1)-N(1)-C(7)-C(6)	-2.92(18)
C(12)-N(1)-C(7)-C(6)	-179.35(15)
C(6)-C(7)-C(8)-C(9)	-0.6(2)
N(1)-C(7)-C(8)-C(9)	179.91(17)
C(7)-C(8)-C(9)-C(10)	-0.1(3)
C(8)-C(9)-C(10)-C(11)	-0.2(3)
C(7)-C(6)-C(11)-C(10)	-1.9(3)

C(2)-C(6)-C(11)-C(10)	-178.09(15)
C(9)-C(10)-C(11)-C(6)	1.2(3)
C(1)-N(1)-C(12)-C(13)	-87.4(3)
C(7)-N(1)-C(12)-C(13)	88.6(3)
C(5)-O(4)-C(14)-C(15)	177.74(18)