Single-Flask Multicomponent Synthesis of Highly Substituted α-Pyrones via a Sequential Enolate Arylation and Alkenylation Strategy

Supporting Information

Michael Grigalunas, Olaf Wiest, and Paul Helquist*
Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556
phelquis@nd.edu

Table of Contents

General Experimental Details S1
Synthesis of Substrates S2
Three-Component Synthesis of α-Pyrones Experimental Details S4
Further Transformations of α-Pyrones S13
Mechanistic Details S18
Two-Component Synthesis of α-Pyrones Optimization and Scope S20
Two-Component Synthesis of α-Pyrones Experimental Details S21
X-Ray Structure Analyses S27
References S29
Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra S30
Selected Crude NMR spectra S111

I. General Experimental Details

All reactions were conducted in oven-dried glassware under an atmosphere of argon. Tetrahydrofuran (inhibitor-free) was purified by passage through a solvent purification system (Innovative Technology) and stored in a glovebox over $4 \AA$ molecular sieves. Dichloromethane was freshly distilled over CaH_{2} prior to use. Methyl (E)-3-bromo-2-methylacrylate, ${ }^{1}$ 1-(4-(dimethylamino)phenyl)propan-1-one, ${ }^{2}$ methyl (E)-3-bromoacrylate, ${ }^{3}$ methyl (Z)-3-bromoacrylate,, ${ }^{4}$ methyl (Z)-2,3-dibromoacrylate, ${ }^{5}$ methyl (Z)-3-bromo-2-methoxyacrylate, ${ }^{6}$ and 1,2bis(perfluorophenyl)ethyne ${ }^{7}$ were synthesized according to literature procedures. All other reagents were used as received from commercial sources. MPLC was performed to obtain analytically pure material using a Biotage Isolera Prime (Version 1.5.2) system with Silicycle, Inc. SiliaSep 12-g or 25-g cartridges (FLH-R10030B-ISO12 or FLH-R10030B-ISO25, respectively). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained using either a Bruker AVANCE III HD 400 instrument operating at 400 MHz and 100 MHz , respectively, or a Bruker AVANCE III HD 500 instrument operating at 500 MHz and 125 MHz , respectively. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectral data are reported in $\mathrm{ppm}(\delta)$ relative to the residual CDCl_{3} peak at 7.26 ppm and 77.23 ppm , respectively. ${ }^{19} \mathrm{~F}$ spectral data were obtained on a Bruker AVANCE III HD 500 instrument operating at 471 MHz . Coupling constants (J) are reported in Hz. High-resolution mass spectrometry (HRMS) was performed on a Bruker micrOTOF-Q II instrument. X-ray diffraction collections were obtained on a Bruker APEX-II diffractometer.

Synthesis of Substrates

Ethyl (E/Z)-3-bromo-2-phenylacrylate
The title compound was synthesized by a modified procedure reported by Vu, et. al. ${ }^{8}$
To an oven-dried two-neck flask under an atmosphere of Ar and equipped with a magnetic stirring bar was added ethyl 3,3-dibromo-2-phenylacrylate ${ }^{8}$ ($785 \mathrm{mg}, 2.35 \mathrm{mmol}$) in anhydrous diethyl ether (8 ml). The mixture was stirred and cooled to $-78{ }^{\circ} \mathrm{C}$, then $2 \mathrm{M} \mathrm{iPrMgCl}(1.17 \mathrm{ml}, 2.35 \mathrm{mmol})$ was added over 10 min . After stirring for 15 min at $-78{ }^{\circ} \mathrm{C}$, then $-50{ }^{\circ} \mathrm{C}$ for 1 h , brine (1 ml) was added dropwise, and the reaction was stirred at $22{ }^{\circ} \mathrm{C}$. After 14 h , brine (5 ml) was added and extracted with diethyl ether (3×10 ml). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude oil was purified by column chromatography (10% diethyl ether in hexanes) to afford 270 mg (45%) as a yellow oil. The purified compound was determined to be $\sim 1: 1$ mixture of cis/trans isomers by ${ }^{1} \mathrm{H}$ NMR. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.85$, 164.76, 141.27, 139.14, 135.27, 134.51, 129.58, 129.11, 129.01, 128.58, 128.28, 126.69, 124.08, 109.00, 61.97, 61.86, 14.38; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}] 255.0015$ \& 257.0079, found 255.0027 \& 257.0006

Methyl (E)-3-bromo-2,4-dimethylpent-2-enoate
The title compound was synthesized by a modified procedure reported by Vu, et. al. ${ }^{8}$
To an oven-dried two-neck flask under an atmosphere of Ar and equipped with a magnetic stirring bar was added methyl 3,3-dibromo-2-methylacrylate ${ }^{8}$ ($2.58 \mathrm{~g}, 10 \mathrm{mmol}$) in anhydrous diethyl ether (30 ml). The reaction mixture was stirred and cooled to $-78{ }^{\circ} \mathrm{C}$, then $2 M \mathrm{PrMgCl}(11.0 \mathrm{ml}, 22 \mathrm{mmol})$ was added over 30 min . After stirring for 15 min at $-78{ }^{\circ} \mathrm{C}$, then $-0{ }^{\circ} \mathrm{C}$ for 3 h , a solution of bromine ($1.08 \mathrm{ml}, 21$ $\mathrm{mmol})$ in diethyl ether (30 ml) was added over 1 h . The reaction was warmed to $22^{\circ} \mathrm{C}$ over a period of 14 h . The reaction mixture was quenched with brine and extracted with diethyl ether (3x). The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude residue was purified by column chromatography (5% diethyl ether in hexanes) to afford $470 \mathrm{mg}(21 \%)$ of a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{hept}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.00,135.12,128.00,52.29,32.49,21.39,17.01$; HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{BrO}_{2}[\mathrm{M}+\mathrm{H}] 221.0172$ \& 223.0085., found 221.0165 \& 223.0094.

2-(4-(Dimethylamino)phenyl)-1-phenylethan-1-one (3a)
In a glove box, $\mathrm{LiOtBu}_{(\mathrm{s})}(961 \mathrm{mg}, 12.0 \mathrm{mmol})$, 4-bromo-N,N-dimethylaniline ($600 \mathrm{mg}, 3.0 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(8.24 \mathrm{mg}, 0.009 \mathrm{mmol})$, and Q-Phos ($12.8 \mathrm{mg}, 0.018 \mathrm{mmol}$) were added to a $10-\mathrm{mL}$ crimp cap vial containing a stir bar. The vial was crimped, THF (6 mL) was added, and the vial was taken out of the glove box and stirred at $22{ }^{\circ} \mathrm{C}$. Acetophenone ($360 \mathrm{mg}, 3 \mathrm{mmol}$) was added dropwise to the stirred solution. After 5 min , bromobenzene (3 mmol) was added and stirred at $60^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (40 ml), and concentrated. Purification by MPLC (silica gel, hexane/EtOAc 90/10 to 85/15) afforded 669 mg (93%) of the title compound as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.21$ (s, 2H), 2.93 (s, 6H); ${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.57, 149.86, 137.06, 133.18, 130.31, 128.95, 128.83, 122.49, 113.25, 44.94, 40.89. (lit. ${ }^{9}{ }^{1} \mathrm{H}$ NMR)

1,2-Diphenylethan-1-one (3b)
In a glove box, $\mathrm{LiOtBu}_{(\mathrm{s})}(961 \mathrm{mg}, 12.0 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(8.24 \mathrm{mg}, 0.009 \mathrm{mmol})$, and $\mathrm{Q}-\mathrm{Phos}(12.8 \mathrm{mg}$, 0.018 mmol) were added to a $10-\mathrm{mL}$ crimp cap vial containing a stir bar. The vial was crimped, THF (6 mL) was added, and the vial was taken out of the glove box and stirred at $22^{\circ} \mathrm{C}$. Acetophenone (360 mg , 3 mmol) was added dropwise to the stirred solution. After 5 min , bromobenzene ($471 \mathrm{mg}, 3 \mathrm{mmol}$) was added and stirred at $22{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (40 ml), and concentrated. Purification by MPLC (silica gel, hexane/EtOAc 98/2) afforded $540 \mathrm{mg}(92 \%)$ of the title compound as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}$, 5H), 4.32 (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.88,136.92,134.92,133.48,129.83,128.99,128.97$, 128.93, 127.20, 45.78. (lit. ${ }^{10} \mathrm{H}$ NMR)

Three-Component Synthesis of $\boldsymbol{\alpha}$-Pyrones: Experimental Details

General Procedure for Three-Component Synthesis of α-Pyrones Employing a Palladium Catalyst
In a glove box, $\operatorname{LiOtBu}_{(s)}(160 \mathrm{mg}, 2.0 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025 \mathrm{mmol})$, and Q-Phos (3.6 mg , 0.005 mmol) were added to a $10-\mathrm{mL}$ crimp cap vial containing a stir bar. The vial was crimped, THF (2 mL) was added, and the vial was taken out of the glove box and stirred at $22^{\circ} \mathrm{C}$. A ketone (0.5 mmol) was added dropwise to the stirred solution. After 5 min , an aryl bromide (0.500 mmol) was added and stirred for $1-4 \mathrm{~h}$ at either $22^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$. After the starting ketone had been consumed, a β-bromoacrylate (0.525 mmol) was added and stirred at either $22^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$ for 16 h as a standard reaction time. The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Purification by MPLC (silica gel, hexane/EtOAc) afforded the coupled product.

5-(4-(Dimethylamino)phenyl)-3-methyl-6-(4-morpholinophenyl)-2H-pyran-2-one (6b)
Following the representative three-component procedure, 1a ($103 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathbf{2 a}(100 \mathrm{mg}, 0.500$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc $60 / 40$ to 50/50) to afford $181 \mathrm{mg}(93 \%)$ of $\mathbf{6 b}$ as a yellow solid. $\mathrm{mp}=189-191^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.84-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.20-3.14(\mathrm{~m}, 4 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 2.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.82,155.06,151.47,149.96,145.45,130.20,130.05,124.73,123.54,122.03$, 116.98, 114.08, 112.80, 66.88, 48.24, 40.59, 16.61; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 391.2016, found 391.2009.

5-(4-(Dimethylamino)phenyl)-3-methyl-6-phenyl-2H-pyran-2-one (6a)
Following the representative three-component procedure, $\mathbf{1 b}(60 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{2 a}(100 \mathrm{mg}, 0.500$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $4 \mathrm{a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc $95 / 5$ to 85/15) to afford $139 \mathrm{mg}(91 \%)$ of $\mathbf{6 a}$ as a yellow solid. $\mathrm{mp}=144-146{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{dd}, \mathrm{J}$
$=8.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H})$, $2.18(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.66,154.66,150.06,145.01,132.98,130.07$, 129.37, 129.20, 128.26, 124.00, 123.61, 118.33, 112.71, 40.58, 16.73; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$ [$\mathrm{M}+\mathrm{H}$] 306.1489, found 306.1477.

5-(4-(Dimethylamino)phenyl)-6-(4-fluorophenyl)-3-methyl-2H-pyran-2-one (6c)
Following the representative three-component procedure, $\mathbf{1 c}(103 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathbf{2 a}(100 \mathrm{mg}, 0.500$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $4 \mathbf{4}(94 \mathrm{mg}, 0.525 \mathrm{mmol}$) was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 90/10 to 85/15) to afford 142 mg (88%) of $\mathbf{6 c}$ as a yellow solid. $\mathrm{mp}=147-149{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38$ (dd, $J=8.9,5.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.64$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 2.17(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.50,163.15$ (d, $J=253.3 \mathrm{~Hz}), 153.62,150.12,144.96,131.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 130.02,129.12(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 123.68$, $123.65,118.23,115.41\left(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}\right.$), 112.71, 40.53, 16.72; ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.99$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNO}_{2}[\mathrm{M}+\mathrm{H}] 324.1394$, found 324.1381.

5-(4-(Dimethylamino)phenyl)-3-methyl-6-(4-(trifluoromethyl)phenyl)-2H-pyran-2-one (6d)
Following the representative three-component procedure, $\mathbf{1 d}(94 \mathrm{mg}, 0.50 \mathrm{mmol})$ and 2a (100 mg, 0.500 mmol) were stirred for 2 h at $22^{\circ} \mathrm{C}$. Then, 4 ($94 \mathrm{mg}, 0.525 \mathrm{mmol}$) was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 95/5 to 85/15) to afford $77 \mathrm{mg}(41 \%)$ of $\mathbf{6 d}$ as a yellow solid. A separate reaction was conducted in which the second coupling was conducted at $40{ }^{\circ} \mathrm{C}$ for 16 h , producing $87 \mathrm{mg}(47 \%)$ of $\mathbf{6 d} . \mathrm{mp}=48-50{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{q}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 6 \mathrm{H}), 2.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.18,152.62$, $150.32,144.72$, 136.40, 130.88 (q, $J=32.5 \mathrm{~Hz}$), 130.02, 129.40, $125.22(\mathrm{q}, ~ J=3.7 \mathrm{~Hz}), 124.82,124.05$ (q, $J=272.2 \mathrm{~Hz}$), 123.10, 119.59, 112.76, 40.49, 16.79; ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-66.01$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] 374.1362$, found 374.1346.

Following the representative three-component procedure, $\mathbf{1 e}(67 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{2 a}(100 \mathrm{mg}, 0.500$ mmol) were stirred for 2 h at $22^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 90/10 to 80/20) to afford $139 \mathrm{mg}(87 \%)$ of $\mathbf{6 e}$ as a yellow solid. $\mathrm{mp}=113-115^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, 2 H), $2.88(\mathrm{~s}, 6 \mathrm{H}), 2.20(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.77,155.55$, 149.79, 143.91, 137.30, 133.13, 130.71, 130.61, 129.57, 129.50, 125.87, 124.10, 123.29, 119.32, 112.35, 40.45, 20.08, 16.86; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] 320.1645$, found 320.1627.

5-(4-(Dimethylamino)phenyl)-3-methyl-6-propyl-2H-pyran-2-one (6f)
Following the representative three-component procedure, $\mathbf{1 f}(43 \mathrm{mg},(0.500 \mathrm{mmol})$ and $\mathbf{2 a}(100 \mathrm{mg}, 0.500$ mmol) were stirred for 2 h at $22^{\circ} \mathrm{C}$. Then, $4 \mathrm{a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc $95 / 5$ to 85/15) to afford $100 \mathrm{mg}(74 \%)$ of $\mathbf{6 f}$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}$), 6.74 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.99 (s, 6H), $2.51-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.68 (sex, $0.88 J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.38,159.74$, 150.09, 144.14, 129.81, 124.09, 122.21, 118.32, 112.54, 40.67, 33.24, 21.45, 16.64, 13.94; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$ 272.1645, found 272.1646.

5-(4-Methoxyphenyl)-3-methyl-6-phenyl-2H-pyran-2-one (6g)
Following the representative three-component procedure, 1b ($60 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{2 b}(94 \mathrm{mg}, 0.500$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc $95 / 5$ to 80/20) to afford $132 \mathrm{mg}(90 \%)$ of $\mathbf{6 g}$ as a white solid. $\mathrm{mp}=86-88{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 - 7.19 (m, 4H), 7.08 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 6.83 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 2.17 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.46,159.41,155.21,144.56,132.60,130.55,129.62$, 129.23, 128.86, 128.32, 123.81, 117.85, 114.55, 55.49, 16.74; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 293.1172, found 293.1186.

3-Methyl-5,6-diphenyl-2H-pyran-2-one (6h)
Following the representative three-component procedure, 1b ($60 \mathrm{mg}, 0.500 \mathrm{mmol}$) and 2c ($79 \mathrm{mg}, 0.500$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc $95 / 5$ to $85 / 15$) to afford $77 \mathrm{mg}(59 \%)$ of $\mathbf{6 h}$ as a colorless oil. A separate reaction was conducted in which the second coupling was conducted at $40{ }^{\circ} \mathrm{C}$ for 16 h , producing $80 \mathrm{mg}(61 \%)$ of $\mathbf{6 h} . \mathrm{mp}=93-95{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 5 \mathrm{H}), 6.46(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.88(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.37$, 155.64, 144.23, 136.83, 132.46, 129.76, 129.45, 129.31, 129.11, 128.32, 128.00, 123.96, 118.23, 16.70; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$ [$\mathrm{M}+\mathrm{H}$] 201.0910, found 201.0917. (lit. ${ }^{1213} \mathrm{C}$ NMR)

5-(4-Chlorophenyl)-3-methyl-6-phenyl-2H-pyran-2-one (6i)
Following the representative three-component procedure, 1b ($60 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{2 d}(96 \mathrm{mg}, 0.500$ mmol) were stirred for 3 h at $22^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $40^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc $95 / 5$ to $90 / 10$) to afford $33 \mathrm{mg}(22 \%)$ of $6 \mathbf{i}$ as a white solid. $\mathrm{mp}=63-65^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.22(\mathrm{~m}$, 8H), 7.11 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.19 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.04,157.84$, 145.55, 137.22, 136.02, 134.11, 132.70, 131.92, 131.29, 131.22, 130.40, 126.18, 118.94, 18.64; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClO}_{2}[\mathrm{M}+\mathrm{H}]$ 297.0677, found 297.0683.

3-Methyl-6-phenyl-5-(o-tolyl)-2H-pyran-2-one (6j)
Following the representative three-component procedure, $\mathbf{1 b}$ ($60 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathbf{2 e}(86 \mathrm{mg}, 0.500$ mmol) were stirred for 3 h at $40^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $40^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 95/5) to afford 75 $\mathrm{mg}(55 \%)$ of $\mathbf{6 j}$ as a white solid. $\mathrm{mp}=132-134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.09(\mathrm{~m}, 10 \mathrm{H})$, $2.18(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.50,155.17$, 144.52, 136.41, 136.19, 132.55, 130.93, 130.20, 129.73, 128.61, 128.37, 128.26, 126.83, 123.75, 117.29, 20.02, 16.72; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 277.1223, found 277.1217.

5-(2-Methoxyphenyl)-3-methyl-6-phenyl-2H-pyran-2-one (6k)
Following the representative three-component procedure, $\mathbf{1 b}(60 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{2 f}(94 \mathrm{mg}, 0.500$ mmol) were stirred for 3 h at $40^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $40^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 80/20 to 75/25)
to afford $121 \mathrm{mg}(83 \%)$ of $\mathbf{6 k}$ as a light orange solid. $\mathrm{mp}=135-137^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.34-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.86$ (m, 2H), 3.63 (s, 3H), 2.17 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.60,156.96,155.99$, 144.99, 133.04, 131.44, 129.90, 129.50, 128.47, 128.12, 125.50, 123.15, 121.27, 114.65, 111.52, 55.53, 16.71; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 293.1172, found 293.1154.

Following the representative three-component procedure, 1b ($60 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathbf{2 a}(100 \mathrm{mg}, 0.500$ $\mathrm{mmol})$ were stirred for 1 h at $22{ }^{\circ} \mathrm{C}$. Then, $\mathbf{4 b}(102 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 85/15 to $60 / 40)$ to afford $118 \mathrm{mg}(73 \%)$ of $\mathbf{6 l}$ as a orange solid. $\mathrm{mp}=141-143^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 7.39 - 7.33 (m, 2H), $7.25-7.18$ (m, 3H), 7.06 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.66$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.62$ (s, 1H), $3.86(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.99$, 150.21, 148.68, 144.35, 132.75, 130.14, 129.01, 128.93, 128.25, 124.26, 119.00, 117.83, 112.71, 56.47, 40.59; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}$ [$\mathrm{M}+\mathrm{H}$] 322.1438, found 322.1442 .

5-(4-(Dimethylamino)phenyl)-3,6-diphenyl-2H-pyran-2-one (6m)
Following the representative three-component procedure, $\mathbf{1 b}$ ($30 \mathrm{mg},(0.25 \mathrm{mmol}$) and $\mathbf{2 a}(50 \mathrm{mg}, 0.25$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $4 \mathrm{c}(67 \mathrm{mg}, 0.266 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 80/20) to afford $41 \mathrm{mg}(45 \%)$ of $\mathbf{6 m}$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.64 (s, 1H), 7.52 - 7.47 (m, 2H), 7.47 - 7.41 (m, 2H), 7.38 (t, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32-7.25$ (m, 3H), 7.10 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.68\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$), 2.98 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.74,156.08$, 150.19, 145.38, 134.93, 132.70, 130.13, 129.75, 129.32, 128.68, 128.47, 128.34, 125.58, 123.80, 118.98, 112.75, 40.57; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}] 368.1645$, found 368.1627 .

6-(3,4-Dimethoxyphenyl)-5-(4-methoxyphenyl)-3-methyl-2H-pyran-2-one (6n)
Following the representative three-component procedure, $\mathbf{1 g}(360 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathbf{2 b}(374 \mathrm{mg}, 2.0$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(376 \mathrm{mg}, 2.1 \mathrm{mmol}$) was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc $75 / 25$ to 55/45) to afford $585 \mathrm{mg}(83 \%)$ of $\mathbf{6 n}$ as a yellow solid. $\mathrm{mp}=134-136{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.58,159.37,155.21,150.18,148.37,144.77,130.65,129.46,124.99$, $122.95,122.53,117.05,114.63,112.03,110.68,56.05,55.78,55.56,16.69$; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$ 353.1384, found 353.1393.

6-(3,4-Dimethoxyphenyl)-5-(3,5-dimethoxyphenyl)-3-methyl-2H-pyran-2-one (60)
Following the representative three-component procedure, $\mathbf{1 g}(90 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathbf{2 g}(109 \mathrm{mg}, 0.500$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 70/30 to 55/45) to afford $160 \mathrm{mg}(84 \%)$ of $\mathbf{6 o}$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.07 (dd, $J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.34 (d, $J=2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.85 (s, 3H), 3.70 (s, 6H), 3.61 (s, 3H), 2.16 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.38,161.47,155.37,150.41,148.43,144.20,139.31,124.72,122.87,122.48,117.32$, $112.00,110.72,107.57,99.95,56.05,55.83,55.62,16.60$; HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]$ 405.1309, found 405.1321.

5-(3,4-Dimethoxyphenyl)-6-(4-methoxyphenyl)-3-methyl-2H-pyran-2-one (6p)
Following the representative three-component procedure, $\mathbf{1 h}(300 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathbf{2 h}(434 \mathrm{mg}, 2.0$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $4 \mathbf{a}(376 \mathrm{mg}, 2.1 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 70/30 to 55/45) to afford $587 \mathrm{mg}(83 \%)$ of $\mathbf{6 p}$ as a yellow solid. $\mathrm{mp}=131-133{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.69(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{~d}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $163.44,160.56,155.31,149.27,148.76,144.53,130.60,129.47,124.84,122.75,121.61,116.93,113.64$, 112.62, 111.67, 56.00, 55.98, 55.38, 16.53; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}] 353.1384$, found 353.1372.

5-(3,4-Dimethoxyphenyl)-3-methyl-6-(3,4,5-trimethoxyphenyl)-2H-pyran-2-one (6q)
Following the representative three-component procedure, $\mathbf{1 i}(420 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathbf{2 h}(434 \mathrm{mg}, 2.0$ mmol) were stirred for 1 h at $22^{\circ} \mathrm{C}$. Then, $4 \mathbf{a}(376 \mathrm{mg}, 2.1 \mathrm{mmol})$ was added to the reaction mixture and stirred for 16 h at $22^{\circ} \mathrm{C}$. Purification was achieved by MPLC (silica gel, hexane/EtOAc 70/30 to 55/45) to afford $665 \mathrm{mg}(81 \%)$ of $\mathbf{6 q}$ as a yellow solid. $\mathrm{mp}=140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}$, 2H), 3.83 (s, 3H), 3.77 (s, 3H), 3.70 (s, 3H), 3.57 (s, 6H), 2.13 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 163.24,154.90,152.83,149.52,148.96,144.41,139.29,129.60,127.43,123.46,121.83$, 117.74, 112.71, 111.84, 106.54, 61.06, 56.22, 56.19, 56.10, 16.65; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$ [M + H] 413.1595, found 413.1578.

3-Methyl-5-(2-methylprop-1-en-1-yl)-6-phenyl-2H-pyran-2-one (6r)
In a glove box, $\mathrm{LiOtBu}_{(\mathrm{s})}(160 \mathrm{mg}, 2.00 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.69 \mathrm{mg}, 0.000750 \mathrm{mmol})$, and Q -Phos $(1.07$ $\mathrm{mg}, 0.00150 \mathrm{mmol}$) were added to a $10-\mathrm{mL}$ crimp cap vial containing a stir bar. The vial was crimped, THF (1 mL) was added, and the vial was taken out of the glove box and stirred at $22{ }^{\circ} \mathrm{C}$. Then, $\mathbf{1 b}$ (60 $\mathrm{mg}, 0.500 \mathrm{mmol}$) was added dropwise to the stirred solution. After $5 \mathrm{~min}, \mathbf{2 i}(68 \mathrm{mg}, 0.500 \mathrm{mmol}$) was added and stirred for 3 h at $40^{\circ} \mathrm{C}$. Then, $4 \mathrm{a}\left(94 \mathrm{mg}, 0.525 \mathrm{mmol}\right.$) was added and stirred at $40^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Purification by MPLC (silica gel, hexane/EtOAc 95/5 to 85/15) to afford $83 \mathrm{mg}(69 \%)$ of $\mathbf{6 r}$ as a yellow solid. $\mathrm{mp}=91-93{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{dd}, \mathrm{J}=$ $7.6,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.87(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.84(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}$), 1.65 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.41,155.24$, 144.49, 137.96, 133.04, 129.68, 128.65, 128.37, 123.21, 119.88, 114.31, 25.91, 19.84, 16.70; HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 241.1223, found 241.1220.

6-(3,4-Dimethoxyphenyl)-3-methyl-5-(2-methylprop-1-en-1-yl)-2H-pyran-2-one (6s)
In a glove box, $\operatorname{LiOtBu}_{(\mathrm{s})}(640 \mathrm{mg}, 8.00 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.83 \mathrm{mg}, 0.002 \mathrm{mmol}), \mathrm{Q}-\mathrm{Phos}(2.84 \mathrm{mg}$, 0.004 mmol), and $\mathbf{1 g}$ ($360 \mathrm{mg}, 2.00 \mathrm{mmol}$) were added to a $10-\mathrm{mL}$ crimp cap vial containing a stir bar. The vial was crimped, THF (6 mL) was added, and the vial was taken out of the glove box and stirred at $22^{\circ} \mathrm{C}$ for 5 min . Then, $2 \mathbf{i}(270 \mathrm{mg}, 2.00 \mathrm{mmol})$ was added and stirred for 4 h at $40^{\circ} \mathrm{C}$. Then, $\mathbf{4 a}(376 \mathrm{mg}$, 2.10 mmol) was added and stirred at $40^{\circ} \mathrm{C}$ for 8 h . The reaction mixture was cooled to ambient temperature, diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (40 ml), and concentrated. Purification by MPLC (silica gel, hexane/EtOAc 85/15 to 75/25) to afford 465 mg (76%) of $\mathbf{6 s}$ as a viscous yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.24 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07$ (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.88 (s, 1H), 3.87 (s, 3H), 3.84 (s, 3H), 2.09 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.81 (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.35,154.98,150.18,148.53,144.64,137.35,125.47,122.14,122.01,120.28,113.28,111.22$, 110.59, 55.98, 55.96, 25.75, 19.70, 16.53; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}] 301.1434$, found 301.1450.

Further Transformations of $\boldsymbol{\alpha}$-Pyrones

7,10,11-Trimethoxy-3-methyl-2H-dibenzo[f,h]chromen-2-one (7)
Following the experimental procedure reported by Tohma, et. al, ${ }^{13}$ to a stirred solution of $\mathbf{6 n}$ (36 mg , 0.102 mmol) in dichloromethane (3 ml) under argon was added dropwise a solution of PIFA (48 mg , $0.112 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(32 \mathrm{mg}, 0.225 \mathrm{mmol})$ in dichloromethane (3 ml) at $-40^{\circ} \mathrm{C}$. The reaction was stirred at $-40{ }^{\circ} \mathrm{C}$ for 5 h , then quenched with $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification was achieved by MPLC (silica gel, hexane/EtOAc 65/35 to 15/85) to afford $33 \mathrm{mg}(92 \%)$ of 7 as a yellow solid. $\mathrm{mp}=218-$ $220 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, 1H), 7.65 (s, 2H), 7.22 (dd, $J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.10 (s, 3H), 4.06 (s, 3H), 4.01 (s, 3H), 2.29 (d, J = 1.0 $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.56,158.08,150.99,150.25,148.04,136.12,128.57,125.97$, 123.77, 123.67, 120.74, 118.26, 115.85, 109.95, 105.32, 103.50, 102.78, 56.56, 56.27, 55.76, 17.67; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$ 351.1227, found 351.1214.

60

$\mathrm{CH}_{2} \mathrm{Cl}_{2},-4022 \mathrm{C}$

6,6',8,8',10,10',11,11'-Octamethoxy-3,3'-dimethyl-2H,2'H-[5,5'-bidibenzo[f,h]chromene]-2,2'dione (8)

Following the experimental procedure reported by Tohma, et. al., ${ }^{13}$ to a stirred solution of $\mathbf{6 0}$ (46 $\mathrm{mg}, 0.120 \mathrm{mmol}$) in dichloromethane (3 ml) under argon was added dropwise a solution of PIFA ($57 \mathrm{mg}, 0.132 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(38 \mathrm{mg}, 0.265 \mathrm{mmol}\right.$) in dichloromethane (3 ml) at $-40{ }^{\circ} \mathrm{C}$. The reaction was stirred at $-40^{\circ} \mathrm{C}$ for 2 h , then was gradually warmed to $22^{\circ} \mathrm{C}$ over 12 h . The reaction mixture was quenched with NaHCO_{3} (aq) and extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification was achieved by MPLC (silica gel, hexane/EtOAc 45/55 to 5/95) to afford 20 mg (60% based on PIFA as the limiting reagent) of $\mathbf{8}$ as a yellow solid. $\mathrm{mp}>260{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.19(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (s, 1H), $4.23(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 4.10$ (s, 3H), 3.68 (s, 3H), 1.57 (d, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.96, 159.70, 156.02, 151.96, 150.67, 148.84, 139.47, 130.25, 127.21, 120.08, 117.91, 115.72, 114.65, 110.97,
109.60, 102.74, 95.97, 56.68, 56.59, 56.45, 56.05, 17.25; HRMS (ESI) calcd for $\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{O}_{12}$ [M + Na 781.2255, found 781.2268.

4'-(3,4-Dimethoxyphenyl)-2,2",3,3",4,4",5,5",6,6"-decafluoro-6'-methyl-3'-(3,4,5-trimethoxyphenyl)-1,1':2',1"-terphenyl (9a)

To a $10-\mathrm{ml}$ crimp cap vial equipped with a magnetic stirring bar was added $\mathbf{6 q}(82 \mathrm{mg}, 0.20 \mathrm{mmol}$), 1,2bis(perfluorophenyl)ethyne ($215 \mathrm{mg}, 0.60 \mathrm{mmol}$), and 1,2 -dichlorobenzene (0.5 ml). The vial was then crimped and an evacuation/backfill cycle with Ar was done three times. The vial was stirred and heated to $200^{\circ} \mathrm{C}$ for 48 h . The reaction was cooled, dissolved in dichloromethane and purified by MPLC (silica gel, hexane/EtOAc 80/20 to 60/40) to afford $135 \mathrm{mg}(93 \%)$ of 9a as a tan solid. $\mathrm{mp}=146-148{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.59 (d, J = $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.16 (s, 2H), 3.85 (s, 3H), 3.73 (s, 3H), 3.59 (s, 3H), 3.54 (s, 6H), 2.24 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.68$, 148.31, 148.23, 144.98 - 144.66 (m), 143.30 - $143.03(\mathrm{~m})$, 141.79 (dt, $J=58.5,13.6 \mathrm{~Hz}$) , $140.45-139.77$ (m), $138.55-137.76$ (m), 137.85, 137.21, 136.45 (dt, $J=$ $81.3,14.5 \mathrm{~Hz}$), 134.03, 133.49, 132.82, 127.75, 126.08, 121.94, 114.39 (td, $J=19.8,3.3 \mathrm{~Hz}$), $113.20-$ 112.95 (m), 113.01, 110.77, 107.32, 61.05, 56.13, 55.97, 55.78, 20.21; ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 140.98 - -141.49 (m), -142.03 - -142.52 (m), -155.72 (t, $J=21.0 \mathrm{~Hz}$), $-155.89(\mathrm{t}, J=21.1 \mathrm{~Hz}$), -163.89 (td, $J=23.0,8.4 \mathrm{~Hz}$), -165.11 (td, $J=23.1,8.1 \mathrm{~Hz}$); HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~F}_{10} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]$ 727.1537, found 727.1569.

Dimethyl 3,3",4,4",5"-pentamethoxy-5'-methyl-[1,1':2',1"-terphenyl]-3',4'-dicarboxylate (9b)
To a $10-\mathrm{ml}$ crimp cap vial equipped with a magnetic stirring bar was added $\mathbf{6 q}(129 \mathrm{mg}, 0.312 \mathrm{mmol}$), dimethyl but-2-ynedioate ($133 \mathrm{mg}, 0.936 \mathrm{mmol}$), and 1,2 -dichlorobenzene (0.7 ml). The vial was then crimped and an evacuation/backfill cycle with Ar was done three times. The vial was stirred and heated to $200^{\circ} \mathrm{C}$ for 48 h . The reaction was cooled, dissolved in dichloromethane, and concentrated. The crude oil was purified by MPLC (silica gel, hexane/EtOAc 60/40 to 45/55) to afford 150 mg (94%) of $\mathbf{9 b}$ as a yellow solid. mp = 84-86; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71$ (dd, $J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.79$
(s, 3H), $3.61(\mathrm{~s}, 6 \mathrm{H}), 3.55(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 6 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.48$, 168.30, 152.88, 148.49, 148.42, 143.58, 137.38, 136.83, 136.29, 134.73, 133.96, 133.85, 132.86, 129.73, 121.89, 113.22, 110.98, 107.92, 61.11, 56.28, 56.09, 55.91, 52.60, 52.48, 20.40; HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}] 511.1963$, found 511.1968.

1,2,3,10,11-Pentamethoxy-7-methyl-5,6-bis(perfluorophenyl)triphenylene (10a)

Following the experimental procedure reported by Tohma, et. al, ${ }^{13}$ to a stirred solution of 9a (45 mg , 0.062 mmol) in dichloromethane (4 ml) under argon was added dropwise a solution of PIFA (29.2 mg , $0.068 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(19.3 \mathrm{mg}, 0.136 \mathrm{mmol})$ in dichloromethane $(4 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$. The reaction was stirred at $-40{ }^{\circ} \mathrm{C}$ for 5 h , then quenched with $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification was achieved by MPLC (silica gel, hexane/EtOAc $75 / 25$) to afford $41 \mathrm{mg}(91 \%)$ of 10a as a tan solid. Crystals suitable for x-ray diffraction were obtained by slow vapor diffusion of hexane into ethyl acetate at $22{ }^{\circ} \mathrm{C} . \mathrm{mp}=199-$ $201{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H})$, 4.10 (s, 3H), 4.02 (s, 3H), 3.93 (s, 3H), 3.45 (s, 3H), 2.38 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.91$, 150.87, 149.87, 148.89, 145.85-144.89(m), 143.32, 143.24-142.77 (m), 142.77-141.97 (m), 140.32 $-139.49(\mathrm{~m}), 139.49-138.53(\mathrm{~m}), 137.01-136.05(\mathrm{~m}), 135.90,132.77,129.12,127.02,125.71,124.63$, 123.96, 123.35, 120.17, 117.68 (td, $J=19.1,4.1 \mathrm{~Hz}$), $113.70(\mathrm{td}, J=19.9,3.7 \mathrm{~Hz}), 109.35,108.80$, 105.44, 104.91, 61.42, 60.79, 56.24, 56.11, 55.21, 21.05; ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-140.80--$ $141.44(\mathrm{~m}),-141.53-142.04(\mathrm{~m}),-155.69(\mathrm{t}, \mathrm{J}=20.9 \mathrm{~Hz}),-156.17(\mathrm{t}, J=20.9 \mathrm{~Hz}),-163.93(\mathrm{td}, J=$ 22.9, 8.2 Hz), -164.13 (td, $J=23.2,8.3 \mathrm{~Hz}$); HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{22} \mathrm{~F}_{10} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}] 725.1380$, found 725.140.

Dimethyl 6,7,9,10,11-pentamethoxy-3-methyltriphenylene-1,2-dicarboxylate (10b)
Following the experimental procedure reported by Tohma, et. al, ${ }^{13}$ to a stirred solution of $\mathbf{9 b}$ (40 mg , 0.078 mmol) in dichloromethane (4 ml) under argon was added dropwise a solution of PIFA (37.1 mg , $0.086 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(24.5 \mathrm{mg}, 0.172 \mathrm{mmol})$ in dichloromethane $(4 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$. The reaction was
stirred at $-40{ }^{\circ} \mathrm{C}$ for 1 h , then quenched with $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification was achieved by MPLC (silica gel, hexane/EtOAc 50/50) to afford $36 \mathrm{mg}(90 \%)$ of $\mathbf{1 0 b}$ as a white solid. $\mathrm{mp}=129-131^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}$, 3 H), $4.06(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , CDCl_{3}) $\delta 171.85,169.46,151.79,151.46,149.68,148.57,143.42,133.46,132.28,131.37,130.33$, 126.02, 125.80, 125.40, 124.76, 122.91, 119.35, 109.13, 105.81, 104.59, 61.49, 60.76, 56.15, 56.06, 56.04, 53.13, 52.86, 20.58; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}] 471.1414$, found 471.1400.

Methyl 1,2,3,10,11-pentamethoxy-7-methyl-5-oxo-5H-phenanthro[1,10,9-cde]chromene-6-carboxylate (11)

To a stirred solution of $\mathbf{9 b}(37 \mathrm{mg}, 0.072 \mathrm{mmol})$ in dichloromethane (3 ml) under argon was added dropwise a solution of PIFA ($65.4 \mathrm{mg}, 0.152 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(43.2 \mathrm{mg}, 0.304 \mathrm{mmol})$ in dichloromethane (3 ml) at $-40^{\circ} \mathrm{C}$. The reaction was stirred at $-40^{\circ} \mathrm{C}$ for 5 h , then quenched with NaHCO_{3} (aq) and extracted with dichloromethane. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Purification was achieved by MPLC (silica gel, hexane/EtOAc 50/50) and could be recrystallized from hexanes/EtOAc to afford $32 \mathrm{mg}(90 \%)$ of $\mathbf{1 1}$ as a red solid. Crystals suitable for x-ray diffraction were obtained by slow vapor diffusion of pentane into dichloromethane at $-30^{\circ} \mathrm{C} . \mathrm{mp}=176$ $178{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 6 \mathrm{H}), 4.16(\mathrm{~s}, 3 \mathrm{H})$, $4.12(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 7 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.84,159.48$, 150.13, 149.33, 148.54, 147.81, 140.03, 139.67, 134.56, 134.37, 128.86, 128.73, 125.27, 123.87, 122.70, 117.90, 116.22, 109.69, 109.49, 104.39, 62.33, 62.07, 61.05, 56.13, 56.03, 53.21, 19.88; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]$ 493.1499, found 493.1498 .

8,9-Dimethoxy-3,6,6-trimethyl-5,6-dihydro-2H-benzo[h]chromen-2-one (12)
To a $100-\mathrm{ml}$ round-bottomed flask equipped with a magnetic stirring bar was added $\mathbf{6 s}(140 \mathrm{mg}, 0.466$ $\mathrm{mmol})$, $\mathrm{AcOH}(14 \mathrm{ml})$, and $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{ml})$. The flask was equipped with a reflux condenser, and the reaction was stirred and heated at $120^{\circ} \mathrm{C}$ for 24 hours. The mixture was cooled and concentrated. The residue was dissolved in dichloromethane, and the mixture was washed three times with $\mathrm{NaHCO}_{3}(\mathrm{aq})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. Purification was achieved by MPLC (silica gel, hexane/EtOAc $75 / 25$ to $55 / 45$) to afford $114 \mathrm{mg}(81 \%)$ of 12 as a yellow solid. $\mathrm{mp}=140-142{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, ~ J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$,
$2.48(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.81,152.40$, 150.66, 147.83, 142.82, 138.93, 122.24, 119.72, 109.70, 107.80, 106.12, 56.37, 56.11, 39.82, 34.06, 28.48, 16.93; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}] 301.1434$, found 301.1408.

Mechanistic Experimental Details

Experimental details for Table 1:

In an Ar filled glovebox, $\mathbf{5 a}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$ prepared by the standard published procedure ${ }^{11}$, LiOt - Bu ($5 \mathrm{mg}, 0.060 \mathrm{mmol}$), a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and Q-Phos ($15 \mu \mathrm{~L}, 0.005 M$ and $0.01 M$, respectively) in THF and THF ($85 \mu \mathrm{l}$) were added to a crimp vial. The vial was crimped, taken out of the glovebox, and stirred at $22{ }^{\circ} \mathrm{C}$. After 3 h , trimethoxybenzene ($44 \mu \mathrm{l}, 0.1 \mathrm{M}$ in toluene) was added as an internal standard. The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Crude NMR indicated that 50% of $\mathbf{6 a}$ was formed (Table 1, entry 1).

In an Ar filled glovebox, $\mathbf{5 a}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$ prepared by the standard published procedure ${ }^{11}$, LiOt - Bu ($5 \mathrm{mg}, 0.060 \mathrm{mmol}$), and THF (0.1 ml) were added to crimp vial. The vial was crimped, taken out of the glovebox, and stirred at $22{ }^{\circ} \mathrm{C}$. After 3 h , trimethoxybenzene ($44 \mu \mathrm{l}, 0.1 \mathrm{M}$ in toluene) was added as an internal standard. The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Crude NMR indicated that 52% of $\mathbf{6 a}$ was formed (Table 1, entry 2).

In an Ar filled glovebox, $\mathbf{5 a}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$ prepared by the standard published procedure ${ }^{11}$, $\mathrm{LiOt}-\mathrm{Bu}$ ($5 \mathrm{mg}, 0.060 \mathrm{mmol}$), a solution of $\operatorname{Pd}(\mathrm{OAc})_{2}(15 \mu \mathrm{~L}, 0.01 \mathrm{M}$ in THF, 0.00015 mmol$)$ and THF ($85 \mu \mathrm{l}$) were added to a crimp vial. The vial was crimped, taken out of the glovebox, and stirred at $22{ }^{\circ} \mathrm{C}$. After 3 h , trimethoxybenzene ($44 \mu \mathrm{l}, 0.1 \mathrm{M}$ in toluene) was added as an internal standard. The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Crude NMR indicated that 99% of $\mathbf{6 a}$ was formed (Table 1, entry 3).

In an Ar filled glovebox, $\mathbf{5 a}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$ prepared by the standard published procedure ${ }^{11}$, $\mathrm{LiOt}-\mathrm{Bu}$ ($5 \mathrm{mg}, 0.060 \mathrm{mmol}$), a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ and Q -Phos ($15 \mu \mathrm{~L}, 0.005 \mathrm{M}$ and 0.01 M , respectively) in THF and THF ($70 \mu \mathrm{l}$) were added to a crimp vial. The vial was crimped, taken out of the glovebox, $4 \mathbf{a}$ ($15 \mu \mathrm{~L}$, 0.05 M in THF, 0.00075 mmol) was added and stirred at $22^{\circ} \mathrm{C}$. After 3 h , trimethoxybenzene ($44 \mu \mathrm{l}, 0.1 \mathrm{M}$ in toluene) was added as an internal standard. The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Crude NMR indicated that 99% of $\mathbf{6 a}$ was formed (Table 1, entry 4).

Experimental details for Figure 2:

In an Ar filled glovebox, 3a ($120 \mathrm{mg}, 0.5 \mathrm{mmol}$), LiOt-Bu ($120 \mathrm{mg}, 1.5 \mathrm{mmol}$), and THF (2 ml) were added to a crimp vial. The vial was crimped, taken out of the glovebox, 4a ($94 \mathrm{mg}, 0.525 \mathrm{mmol}$) was added and stirred at $22{ }^{\circ} \mathrm{C}$. After 10 h , trimethoxybenzene ($0.5 \mathrm{ml}, 0.33 \mathrm{M}$ in toluene) was added as an internal standard. The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Crude NMR indicated that 20% of $\mathbf{6 a}$ was formed.

In an Ar filled glovebox, 3a (120 mg, 0.5 mmol), LiOt-Bu (120 mg, 1.5 mmol), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.3 \mathrm{mg}, 0.0025$ mmol) and Q-Phos ($3.6 \mathrm{mg}, 0.005 \mathrm{mmol}$) and THF (2 ml) were added to a crimp vial. The vial was crimped, taken out of the glovebox, $4 \mathbf{a}(94 \mathrm{mg}, 0.525 \mathrm{mmol})$ was added and stirred at $22{ }^{\circ} \mathrm{C}$. After 10 h , trimethoxybenzene ($0.5 \mathrm{ml}, 0.33 \mathrm{M}$ in toluene) was added as an internal standard. The reaction mixture was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Crude NMR indicated that 93% of $\mathbf{6 a}$ was formed. The same reaction was conducted for 16 h and resulted in the formation of 99% of $\mathbf{6 a}$, as determined by crude NMR.

Two-Component Synthesis of α-Pyrones Optimization and Scope

entry	X	base	time (h)	temperature (${ }^{\circ} \mathrm{C}$)	yield (\%)
1	0.5	LiOtBu	0.5	22	99
2	0.25	LiOtBu	1.5	22	93
3	0.001	LiOtBu	16	22	99
4	0	LiOtBu	16	22	99
5	0	LiOtBu	4	0	78
6	0	LiOtBu	16	$0 \rightarrow 22$	99
7	0.5	LiOtBu	16	$0 \rightarrow 22$	99
8	0	NaOtBu	16	22	23
9	0	KOtBu	16	22	18
10	0	LiHMDS	1	22	5
11	0	LiTMP	16	22	48

Reactions were conducted on a $0.5-\mathrm{mmol}$ scale. Yields are based on NMR internal standard.

6y, $\mathrm{R}^{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}$ $\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}_{3}$, 70\% (87\%)
6z, $\mathrm{R}^{1}=$ cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$, $\mathrm{R}^{2}=\mathrm{CH}_{3}, 63 \%$ (88\%)

> 6aa, 0\% (0\%)
$\mathbf{6 a b}, \mathrm{R}^{4}=\mathrm{H}, 0 \%(0 \%)$
6ac, $R^{4}=\mathrm{Br}, 0 \%(0 \%)$
6ad, $\mathrm{R}^{4}=\mathrm{OCH}_{3}, 46 \%$ (79\%)
$\mathbf{6 a e}^{\mathrm{a}}, \mathrm{R}^{4}=\mathrm{C}_{6} \mathrm{H}_{5}, 46 \%$ (83\%)

6af, 0\% (0\%)
was diluted with ethyl acetate (5 ml), passed through a silica plug with ethyl acetate as eluent (20 ml), and concentrated. Purification was achieved by MPLC (silica gel, hexane/EtOAc) to afford the α-pyrone.

3,5-Dimethyl-6-phenyl-2H-pyran-2-one (6t)
Following the representative catalyst- and ligand-free procedure, $\mathbf{1 j}$ ($67 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{4 a}(94 \mathrm{mg}$, 0.525 mmol) were stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to $22{ }^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc $95 / 5$ to $85 / 15$) to afford $89 \mathrm{mg}(89 \%)$ of $\mathbf{6 t}$ as a white solid. $\mathrm{mp}=93-95{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.76,155.18,144.95,132.88$, 129.64, 128.81, 128.51, 124.07, 111.56, 16.91, 16.59; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 201.0910, found 201.0917. (lit ${ }^{111} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR)

6-(4-(Dimethylamino)phenyl)-3,5-dimethyl-2H-pyran-2-one (6u)
Following the representative catalyst- and ligand-free procedure, $\mathbf{1 k}(89 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{4 a}(94 \mathrm{mg}$, 0.525 mmol) were stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to $22^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 90/10 to 80/20) to afford 111 mg (91%) of $\mathbf{6 u}$ as a yellow solid. $\mathrm{mp}=119-121$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=9.1 \mathrm{~Hz}$, 2H), 2.99 (s, 6H), 2.14 (s, 3H), 2.09 (d, $J=1.1 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.29,156.22$, 151.04, 145.75, 129.81, 121.82, 120.40, 111.52, 109.75, 40.32, 17.37, 16.47; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]$ 244.1332, found 244.1362.

3,5-Dimethyl-6-(4-(trifluoromethyl)phenyl)-2H-pyran-2-one (6v)
Following the representative catalyst- and ligand-free procedure, $\mathbf{1 1}(101 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{4 a}(94 \mathrm{mg}$, 0.525 mmol) were stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to $22{ }^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 95/5) to afford $84 \mathrm{mg}(63 \%)$ of $\mathbf{6 v}$ as a white solid.

Following the representative procedure employing a Pd catalyst, $104 \mathrm{mg}(78 \%)$ of $\mathbf{6 v}$ was obtained after MPLC purification. $\mathrm{mp}=99-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~s}, 4 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, 1H), 2.15 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.23,153.25,144.66,136.18,131.33$ (q, $J=32.8$ $\mathrm{Hz}), 129.12,125.486(\mathrm{q}, J=3.7 \mathrm{~Hz}), 125.20,124.00(\mathrm{q}, J=270.8 \mathrm{~Hz}), 112.75,16.83,16.61 ;{ }^{19} \mathrm{~F}$ NMR (471 MHz, CDCl_{3}) δ-66.03; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 269.0784, found 269.0760.

> 3,5-Dimethyl-6-(thiophen-2-yl)-2H-pyran-2-one (6w)

Following the representative catalyst- and ligand-free procedure, $\mathbf{1 m}(70 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{4 a}$ (94 $\mathrm{mg}, 0.525 \mathrm{mmol}$) were stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to $22{ }^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 95/5 to 80/20) to afford $90 \mathrm{mg}(87 \%)$ of $\mathbf{6 w}$ as a yellow solid. $\mathrm{mp}=95-$ $97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{dd}, J=3.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=5.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.83,150.25,145.62,135.27,128.39,128.30,127.76,123.41,110.63,17.79,16.64$; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]$ 207.0474, found 207.0450 .

3-Methyl-5,6-dihydro-2H-benzo[h]chromen-2-one (6x)
Following the representative catalyst- and ligand-free procedure, 1n ($73 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{4 a}$ (94 mg , 0.525 mmol) were stirred at $0^{\circ} \mathrm{C}$ and warmed to $22{ }^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc $90 / 10$ to $75 / 25$) to afford $92 \mathrm{mg}(87 \%)$ of $\mathbf{6 x}$ as a white solid. $\mathrm{mp}=125-127^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.54,152.82,142.20,136.78,129.80,128.41,128.03,127.29,123.95,122.92,112.46,27.73$, 24.69, 17.04; HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 213.0910, found 213.0887.

3-Methyl-5,6-diphenyl-2H-pyran-2-one (6h)
Following the representative catalyst- and ligand-free procedure, $\mathbf{3 b}$ ($98 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{4 a}$ (94 mg , 0.525 mmol) were stirred at $0^{\circ} \mathrm{C}$ and warmed to $22{ }^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 95/5 to 85/15) to afford $8 \mathrm{mg}(6 \%)$ of $\mathbf{6 h}$ as a white solid.

Following the representative procedure employing a Pd catalyst, $69 \mathrm{mg}(53 \%)$ of $\mathbf{6 h}$ was obtained after MPLC purification. $\mathrm{mp}=82-84{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.74(\mathrm{~m}, 11 \mathrm{H}), 2.20(\mathrm{~d}, \mathrm{~J}=1.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.42,155.61,144.30,136.77,132.41,129.77,129.43,129.30$, 129.11, 128.32, 128.00, 123.94, 118.23, 16.74; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}] 263.1067$, found 263.1083. (lit. ${ }^{14}{ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR)

Following the representative catalyst- and ligand-free procedure, $1 \mathbf{0}(51 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{4 a}(94 \mathrm{mg}$, 0.525 mmol) were stirred at $0^{\circ} \mathrm{C}$ and warmed to $22^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 95/5) to afford 63 mg (70\%) of $\mathbf{6 y}$ as a colorless oil.

Following the representative procedure employing a Pd catalyst, $78 \mathrm{mg}(87 \%)$ of $\mathbf{6 y}$ was obtained after MPLC purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=7.6,2 \mathrm{H}), 2.26(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{sex}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 164.42,158.64,143.03,122.92,116.83,32.38,22.69,21.34$, 16.55, 14.92, 13.84; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 181.1223, found 181.1198.

6-Cyclohexyl-3,5-dimethyl-2H-pyran-2-one (6z)
Following the representative catalyst- and ligand-free procedure, 1p ($70 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{4 a}(94 \mathrm{mg}$, 0.525 mmol) were stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to $22^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 95/5) to afford 65 mg (63%) of $\mathbf{6 z}$ as a colorless oil.

Following the representative procedure employing a Pd catalyst, 91 mg (88%) of $\mathbf{6 z}$ was obtained after MPLC purification. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.90(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~d}$, $J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 5 \mathrm{H}), 1.30-1.13(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.48,162.29,144.87,122.10,108.99,39.66,29.90,26.31,25.75,16.47,15.00$; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 207.1380, found 207.1400.

Following the representative catalyst- and ligand-free procedure, $\mathbf{1 j}$ ($67 \mathrm{mg}, 0.500 \mathrm{mmol}$) and $\mathbf{4 b}$ (102 $\mathrm{mg}, 0.525 \mathrm{mmol}$) were stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to $22{ }^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 80/20 to 40/60) to afford 50 mg (46%) of 6ad as a white solid.

Following the representative procedure employing a Pd catalyst, $85 \mathrm{mg}(79 \%)$ of $\mathbf{6 a d}$ was obtained after MPLC purification. $\mathrm{mp}=154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.32$ (m, 3H), $6.43(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{1} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.12$, 149.08, 144.56, 132.58, 129.29, 128.75, 128.51, 118.66, 111.30, 56.38, 17.59; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$ 217.0859, found 217.0862.

Following the representative catalyst- and ligand-free procedure, $\mathbf{1 j}(67 \mathrm{mg}, 0.500 \mathrm{mmol})$ and $\mathbf{4 c}(127 \mathrm{mg}$, 0.525 mmol) were stirred at $0{ }^{\circ} \mathrm{C}$ and warmed to $22^{\circ} \mathrm{C}$ over 16 h . Purification was achieved by MPLC (silica gel, hexane/EtOAc 90/10 to 65/35) to afford $60 \mathrm{mg}(46 \%)$ of $\mathbf{6 a e}$ as a white solid.

Following the representative procedure employing a Pd catalyst, 109 mg (83%) of $\mathbf{6 a e}$ was obtained after MPLC purification. $\mathrm{mp}=162-164{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 (dd, $J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.50-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta 161.90,156.76,145.43,134.83,132.61,130.02,128.91,128.72,128.67,128.62,128.45$, 126.04, 112.21, 17.20; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$ 263.1067, found 263.1055.

X-Ray Crystallographic Data

Table S1. Crystal data and structure refinement for 10a

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient (μ)
F(000)
Crystal color, habit
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\mathbf{~}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
nd1609
$\mathrm{C}_{76} \mathrm{H}_{52} \mathrm{~F}_{20} \mathrm{O}_{12}$
1537.17

120(2) K
0.71073 A

Monoclinic
$\mathrm{P}_{1} / \mathrm{n}$
$a=8.1826(9) \AA \alpha=90^{\circ}$
$b=25.666(3) \AA \beta=95.407(2)^{\circ}$
$c=31.715(4) \AA \gamma=90^{\circ}$
6631.0(13) \AA^{3}

4
1.540 g.cm ${ }^{-3}$
$0.140 \mathrm{~mm}^{-1}$
3136
colorless, rod
$0.237 \times 0.112 \times 0.078 \mathrm{~mm}^{3}$
1.022 to 26.378°
$-10 \leq \mathrm{h} \leq 10,-32 \leq \mathrm{k} \leq 32,-39 \leq 1 \leq 39$
113081
$13556\left[\mathrm{R}_{\text {int }}=0.0461\right]$
100.0 \%

Numerical
1.0000 and 0.9362

Full-matrix least-squares on F^{2}
13556 / 6 / 998
1.027
$\mathrm{R}_{1}=0.0545, \mathrm{wR}_{2}=0.1366$
$\mathrm{R}_{1}=0.0770, \mathrm{wR}_{2}=0.1502$
n/a
1.606 and $-0.830 \mathrm{e}^{-} . \AA^{-3}$

Table S2. Crystal data and structure refinement for $\mathbf{1 1}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient (μ)
F(000)
Crystal color, habit
Crystal size
θ range for data collection Index ranges
Reflections collected Independent reflections
Completeness to $\theta=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 \quad (I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{C}_{112} \mathrm{H}_{106} \mathrm{Cl}_{8} \mathrm{O}_{37}$
2327.56

120(2) K
$1.54184 \AA$
Monoclinic
$\mathrm{P}_{1} / \mathrm{c}$
$a=27.9493(7) \AA \quad \alpha=90^{\circ}$
$b=14.6228(4) \AA \quad \beta=105.0980(10)^{\circ}$
$c=26.5088(7) \AA \quad \gamma=90^{\circ}$
10460.1(5) \AA^{3}

4
$1.478 \mathrm{g.cm}^{-3}$
$2.727 \mathrm{~mm}^{-1}$
4840
yellow, tablet
$0.336 \times 0.156 \times 0.044 \mathrm{~mm}^{3}$
1.637 to 72.039°
$-34 \leq \mathrm{h} \leq 34,-17 \leq \mathrm{k} \leq 17,-32 \leq 1 \leq 32$
250239
$20394\left[\mathrm{R}_{\text {int }}=0.0470\right]$
99.8 \%

Numerical
0.8644 and 0.6454

Full-matrix least-squares on F^{2}
20394 / 0 / 1451
1.076
$\mathrm{R}_{1}=0.0722, \mathrm{wR}_{2}=0.1908$
$\mathrm{R}_{1}=0.0756, \mathrm{wR}_{2}=0.1934$
n/a
1.842 and $-1.934 \mathrm{e}^{-} . \AA^{-3}$

References

(1) Li, X.; Zeng, X. Tetrahedron Lett. 2006, 47, 6839-6842.
(2) Cosner, C. C.; Helquist, P. Org. Lett. 2011, 13, 3564-3567.
(3) Weir, J. R.; Patel, B. A.; Heck, R. F. J. Org. Chem. 1980, 45, 4926-4931.
(4) Nec, M.; Trbušek, M.; Ytre-arne, M.; Dalhus, B.; Bjorås, M.; Paruch, K. Tetrahedron Lett. 2014, 55, 3713-3716.
(5) Martín, R.; Rivero, M. R.; Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 7079-7082.
(6) Conde, J. J.; Mcguire, M.; Wallace, M. Tetrahedron Lett. 2003, 44, 3081-3084.
(7) Matsuo, D.; Yang, X.; Hamada, A.; Morimoto, K.; Kato, T.; Yahiro, M.; Adachi, C.; Orita, A.; Otera, J. Chem. Lett. 2010, 39, 1300-1302.
(8) Vu, V. A.; Marek, I.; Knochel, P. Synthesis (Stuttg). 2003, 12, 1797-1802.
(9) Cao, C.; Wang, L.; Cai, Z.; Zhang, L.; Guo, J.; Pang, G.; Shi, Y. Eur. J. Org. Chem. 2011, 15701574.
(10) Liang, S.; Hammond, G. B.; Xu, B. Chem. Commun. 2015, 51, 903-906.
(11) Grigalunas, M.; Ankner, T.; Norrby, P.-O.; Wiest, O.; Helquist, P. Org. Lett. 2014, 16, 39703973.
(12) Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2012, 48, 2030-2032.
(13) Tohma, H.; Morioka, H.; Takizawa, S.; Arisawa, M.; Kita, Y. Tetrahedron 2001, 57, 345-352.
(14) Itoh, M.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2013, 78, 11427-11432.

1	T	1	1	1	T	1	1	1	1	1	1	1	1	+	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
																						31	

$\underbrace{\text { Nin }}_{\text {- }}$
$\stackrel{\Omega}{\square}$
$\stackrel{\infty}{\infty}$

$\stackrel{\text { Nิ }}{\substack{\text { in } \\ 1}}$

1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	100	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
																				SI	

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

6c

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
70	60	50	40	30	20	10	0	-10	-20	-30	-40	$\stackrel{-50}{\mathrm{f} 1}(\mathrm{ppm})$	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170
																						SI 40		

6d

T	1	1	1	1	1	1	1	1	1	1	1	+ 1 1	1	1	1	1	1	1	1	,	1	1	1	\top
70	60	50	40	30	20	10	0	-10	-20	-30	-40	$\begin{aligned} & -50 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170
																						SI 43		

$6 e$

\&
!
98.91 —
$80^{\circ} 02$ —
$6 e$

6f
-164.38
-159.74
-150.09
-144.14

-129.81
$乙_{124.09}^{122.21}$
-118.32
-112.54

Γ	1	1	1	1	1	1		1	1	1		1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

\square
$6 j$

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ f 1 \end{array}$	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	,	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\stackrel{\infty}{i} \stackrel{\text { - }}{i}$

Γ	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
																					SI	

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	100	90	80	70	60	50	40	30	20	10	
																				SI 65	

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
																				SI	

 $\underbrace{\text { ヘั }}$

Γ	1	1	T	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1	1	1	,	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
70	60	50	40	30	20	10	0	-10	-20	-30	-40	$\stackrel{-50}{\mathrm{f} 1}{ }_{(\mathrm{ppm})}$	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170
																						SI 80		

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	100	90	80	70	60	50	40	30	20	10	0
																					SI 84	

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
70	60	50	40	30	20	10	0	-10	-20	-30	-40	$\begin{aligned} & -50 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170
																						SI 85		

12

12

6t

Γ	1	1	1		1	1	1	1	1	,	1	1	1		1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
																					SI 95	

-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	I
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T	1	T
70	60	50	40	30	20	10	0	-10	-20	-30	-40	$\mathrm{f} 1 \stackrel{-50}{(\mathrm{ppm})}$	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170
																						SI 98		

ペベベベベペべべべへ
$6 w$

$6 x$

$6 y$
※ $\underbrace{\sim}$

$\stackrel{\infty}{\sim}$
$6 y$

Γ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
220	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} 1 \end{array}$	100	90	80	70	60	50	40	30	20	10	0

$6 z$

6ae

6a-CRUDE

6t - CRUDE

$6 w-$ CRUDE

$6 \mathrm{x}-\mathrm{CRUDE}$

