Supporting Information

A Confined Fabrication of Perovskite Quantum Dots in Oriented MOF Thin Film

Zheng Chen^{\dagger ‡}, Zhi-Gang Gu^{*†}, Wen-Qiang Fu^{\dagger}, Fei Wang^{\dagger} and Jian Zhang^{*†}

[†]State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
[‡]College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China.

Contacts:

Zhi-Gang Gu: zggu@fjirsm.ac.cn and Jian Zhang: zhj@fjirsm.ac.cn

Table of content

Figure S1. The optical images of powder sample MAPbI₂X (X= Cl, Br and I).

Figure S2. XRD of powder sample MAPbI₂X (X= Cl, Br and I)

Figure S3. TEM images of pristine HKUST-1 thin film

Figure S4. The XRD data of pre-synthesized HKUST1-1 thin film by LPE approach,

PbI₂@HKUST-1 thin film and MAPbI₂Cl@HKUST-1 thin film.

Figure S5. The XRD data of pre-synthesized HKUST1-1 thin film by LPE approach,

PbI₂@HKUST-1 thin film and MAPbI₃@HKUST-1 thin film.

Figure S6 . SEM images (a, b) of MAPbI₂Br@HKUST-1 thin film.

Figure S7. Electron mapping (c,d,f~h) of Pb, I, Br and C in MAPbI₂Br@HKUST-1 thin film.

Table S1. The luminecence lifetimes of $Ln(pdc)_3$ powder MAPbI₂X (X = Cl, Br and I) and

MAPbI₂X QDs loaded into HKUST-1 thin film (MAPbI₂X@HKUST-1).

Figure S8. The XRD of MAPbI₂Br was prepared in HKUST-1 precursors Cu(OAC)₂ (1 mM),

H₃BTC (0.2 mM) and pervoskite CH₃NH₃Br (1 mM) and PbI₂ (1 mM) precursors solutions.

Figure S9. The EDS of PbI₂@HKUST-1 thin film after immersing into PbI₂ (1 mM) for 2 min.

Figure S10. The EDS of PbI₂@HKUST-1 thin film after immersing into PbI₂ (1 mM) for 5 min.

Figure S11. The EDS of PbI₂@HKUST-1 thin film after immersing into PbI₂ (1 mM) for 15 min.

Figure S12. The Pb/Cu ratio in the composite thin film after immersing into PbI₂ (1 mM) for 2, 5 and 15 min.

Figure S13. The XRD of powder MAPbI₂Br after exposing to moist air with 70% humidity for 2 and 4 days.

Figure S14. The XRD of powder MAPbI₂Cl after exposing to moist air with 70% humidity for 2 and 4 days.

Figure S15. The XRD of MAPbI₂Br@HKUST-1 thin film after exposing to moist air with 70% humidity for 2 and 4 days.

Figure 16. The TEM image with lattice spacing of MAPbI₂Br QDs@HKUST-1 thin film after exposing to moist air with 70% humidity for 4 days.

Figure S17. The solid-state photoluminescent life time of the MAPbI₂X@HKUST-1 thin films and their powder samples.: (a) X = Cl; (b) X = Br and (c) X = I.

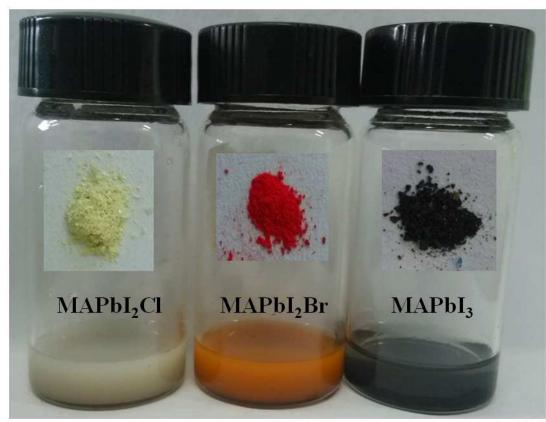
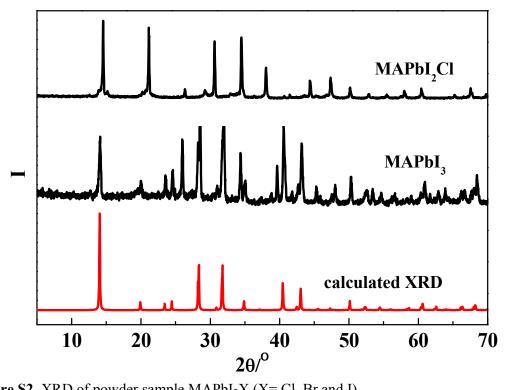



Figure S1. The optical images of powder sample $MAPbI_2X$ (X= Cl, Br and I).

Figure S2. XRD of powder sample MAPbI₂X (X= Cl, Br and I).

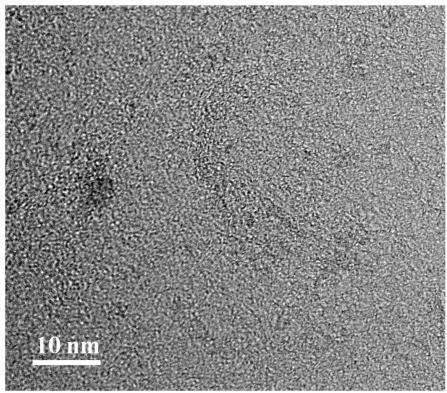
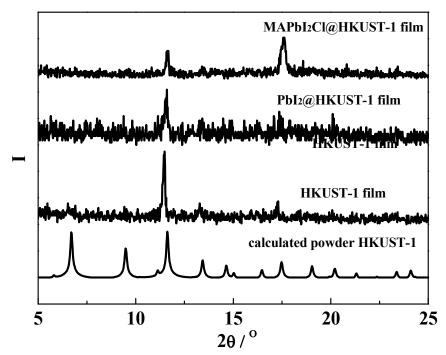
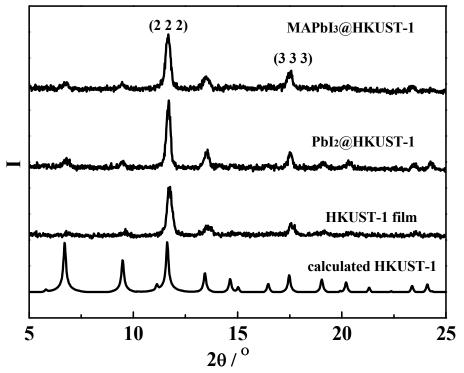




Figure S3. TEM images of pristine HKUST-1 thin film.

Figure S4. The XRD data of pre-synthesized HKUST1-1 thin film by LPE approach, PbI₂@HKUST-1 thin film and MAPbI₂Cl@HKUST-1 thin film.

Figure S5. The XRD data of pre-synthesized HKUST1-1 thin film by LPE approach, PbI₂@HKUST-1 thin film and MAPbI₃@HKUST-1 thin film.

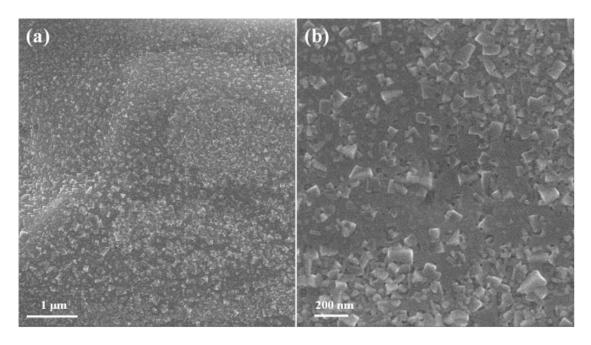
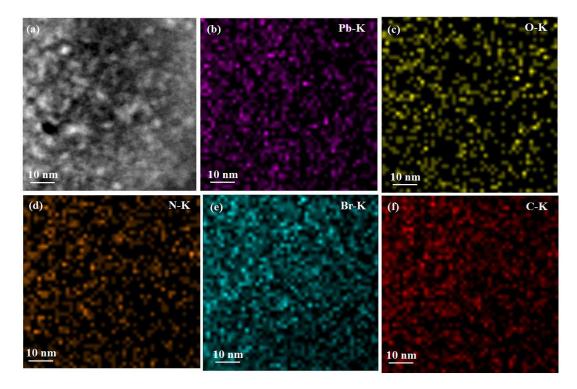
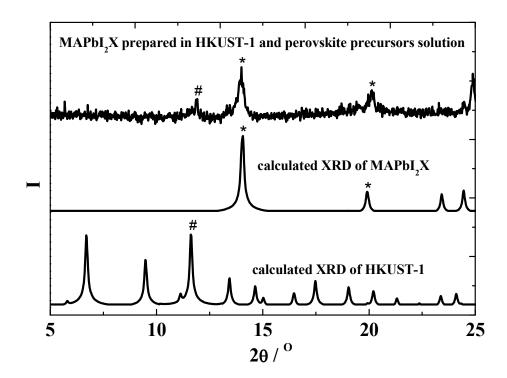


Figure S6. SEM images (a, b) of MAPbI₂Br@HKUST-1 thin film.

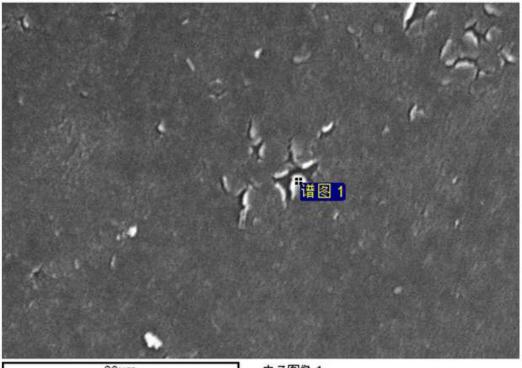

Figure S7. Electron mapping (c,d,f~h) of Pb, I, Br and C in MAPbI₂Br@HKUST-1 thin film.

Table S1. The luminecence lifetimes of $Ln(pdc)_3$ powder MAPbI₂X (X = Cl, Br and I) and MAPbI₂X QDs loaded into HKUST-1 thin film (MAPbI₂X@HKUST-1).

	Luminecence lifetimes
Powder MAPbI ₂ Cl	1.872µs
Powder MAPbI ₂ Br	1.949 μs
Powder MAPbI ₃	2.03 µs
MAPbI ₂ Cl@HKUST-1 film	1.992 μs
MAPbI ₂ Br@HKUST-1 film	2.175 μs
MAPbI ₃ @HKUST-1 film	2.10 µs

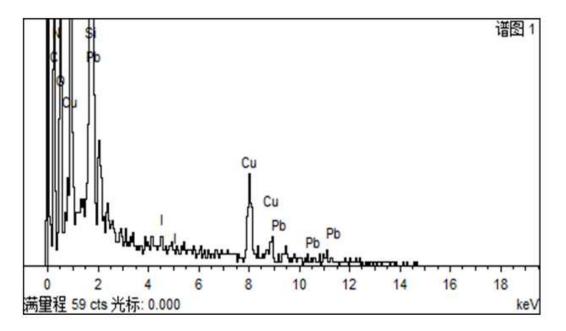
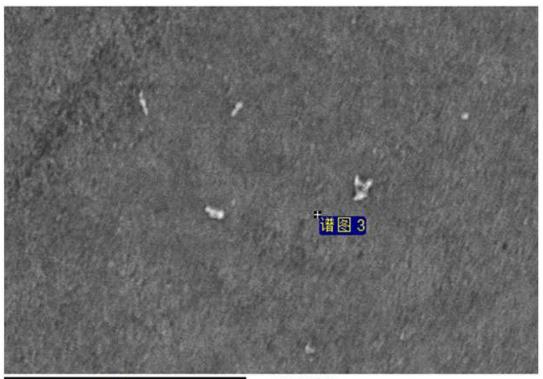
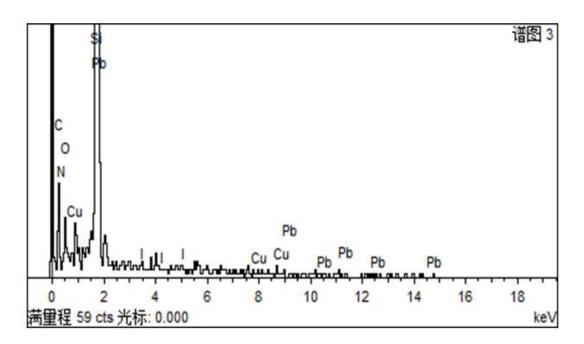


Figure S8. The XRD of MAPbI₂Br was prepared in HKUST-1 precursors $Cu(OAC)_2$ (1 mM), H₃BTC (0.2 mM) and pervoskite CH₃NH₃Br (1 mM) and PbI₂ (1 mM) precursors solutions.

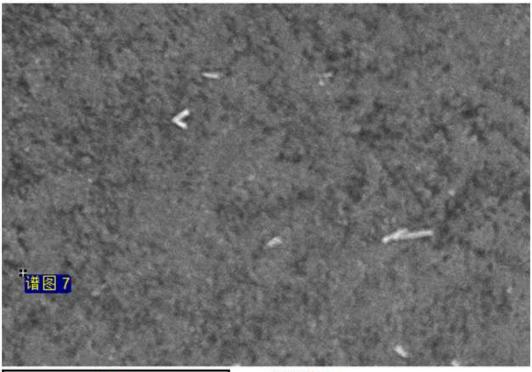

80µm

电子图像 1

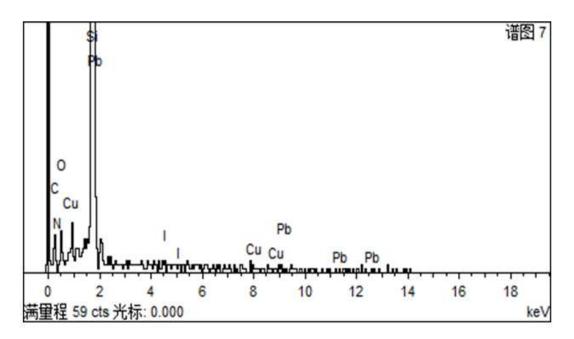


Pb:Cu = 0.0688

Figure S9. The EDS of $PbI_2@HKUST-1$ thin film after immersing into PbI_2 (1 mM) for 2 min.

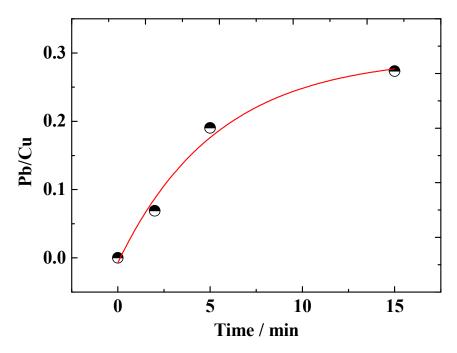


70µm 电子图像 1



Pb:Cu = 0.1904

Figure S10. The EDS of $PbI_2@HKUST-1$ thin film after immersing into PbI_2 (1 mM) for 5 min.



60µm 电子图像 1

Pb:Cu = 0.2735

Figure S11. The EDS of $PbI_2@HKUST-1$ thin film after immersing into PbI_2 (1 mM) for 15 min.

Figure S12. The Pb/Cu ratio in the composite thin film after immersing into PbI_2 (1 mM) for 2, 5 and 15 min.

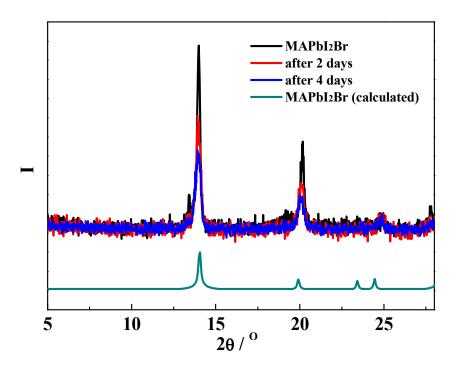
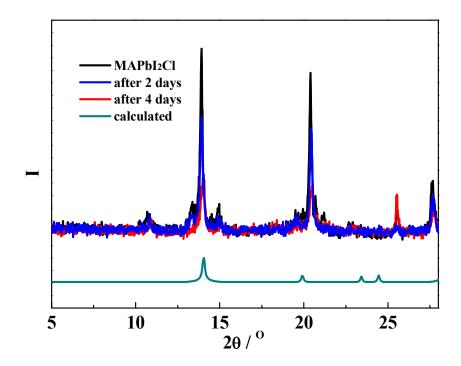



Figure S13. The XRD of powder $MAPbI_2Br$ after exposing to moist air with 70% humidity for 2 and 4 days.

Figure S14. The XRD of powder MAPbI₂Cl after exposing to moist air with 70% humidity for 2 and 4 days.

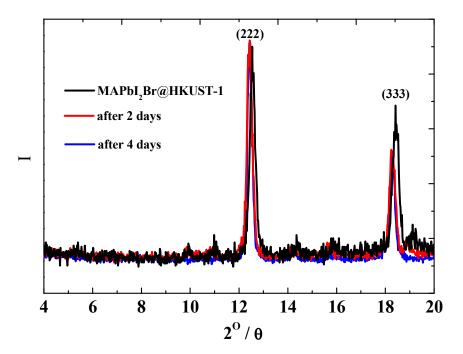
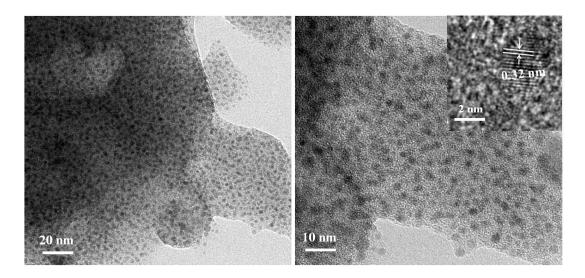
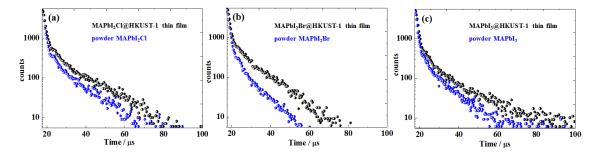




Figure S15. The XRD of MAPbI₂Br@HKUST-1 thin film after exposing to moist air with 70% humidity for 2 and 4 days.

Figure 16. The TEM image with lattice spacing of MAPbI₂Br QDs@HKUST-1 thin film after exposing to moist air with 70% humidity for 4 days.

Figure S17. The solid-state photoluminescent life time of the MAPbI₂X@HKUST-1 thin films and their powder samples.: (a) X = Cl; (b) X = Br and (c) X = I.