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Because the classical function η(q, p) = sign(p) is non-
analytic, the matrix representation of its quantal coun-
terpart η̂ cannot be obtained by a procedure like the one
used in Sec. 5. Here we instead construct the matrix rep-
resentation of η by equating its classical and quantum
auto-correlation functions.

Consider a quantum particle in a box with a flat base
(s = 0) and hard walls at q = 0 and q = L, described
by the Hamiltonian Ĥ ′ = p̂2/2m + Θ(q̂; 0, L). Following
Ref. [1], we write the quantum auto-correlation function
of η̂, for the eigenstate |α〉, as

Cα(τ) = 〈α|η̂ exp

(
iĤ ′τ

~

)
η̂ exp

(
− iĤ

′τ

~

)
|α〉

=
∑
β

|η̃αβ |2 exp

[
i(Eβ − Eα)τ

~

]
, (S1)

where η̃αβ = 〈α|η̂|β〉, and Eα is the energy corresponding
to the eigenstate |α〉. The Fourier transform of the auto-
correlation function is

Cα(ω) =
∑
β

|η̃αβ |2δ(ω − ωαβ), (S2)

where

ωαβ ≡
Eβ − Eα

~
. (S3)

For a classical particle evolving under the equivalent
Hamiltonian, η = sign(p) is a square wave pulse with unit
amplitude over a time period around the energy shell.
The functions ηE0 (t) and ηEτ (t) describe the dependence of
η on time for a particle of energy E that starts from L = 0
at times t = 0 and t = −τ respectively, as depicted in
Fig.1. The classical auto-correlation function, CE(τ) =

(1/T )
∫ T
0
dt ηE0 (t)ηEτ (t), is a triangular wave given by

CE(τ) =

{
T−4τ
T , 0 ≤ τ ≤ T

2
4τ−3T
T , T

2 ≤ τ ≤ T
, (S4)

shown in Fig.1. The Fourier transform of CE(τ) is

CE(ω) =

∞∑
odd γ=−∞

4

π2γ2
δ(ω − ωγ), (S5)

where

ωγ =
2πγ

T
. (S6)
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FIG. 1: The function η0(t) plotted over one time period of
oscillation is a square wave (top figure). The function ητ (t) is
obtained by shifting this square wave leftward by an amount
τ (middle figure). The autocorrelation function C(τ) is the
product of these square wave pulses, integrated over one pe-
riod, yielding a triangular wave (bottom figure).

The correspondence principle suggests that the func-
tions Cα(ω) and CE(ω) ought to be equal, in the semi-
classical limit, when Eα = E. To compare these func-
tions, we first note that for one dimensional systems, the
classical action J(E) =

∮
E
p · dq satisfies

dJ

dE
= T. (S7)

For neighboring energy levels |α〉 and |α+ 1〉, the energy
spacing is

dE = Eα+1 − Eα = ~ωα,α+1, (S8)

and the action spacing is given by the Bohr-Sommerfeld
quantization condition:

dJ = 2π~. (S9)
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From Eqs.(S7) - (S9) we obtain ωα,α+1 = 2π/T , which
generalizes to

ωαβ =
2π(β − α)

T
, (S10)

provided α and β are not too far apart.
Comparing Eqs.(S6) and (S10) we confirm that the

delta-functions in Eqs.(S2) and (S5) appear at the same
frequencies, and by equating the coefficients of these
delta-functions we obtain

|η̃αβ | =
{ 2
|α−β|π α− β = odd

0 α− β = even
. (S11)

To ensure that the operator η̂ is Hermitian (as it rep-
resents a physical observable), we impose the condition
η̃αβ = η̃∗βα, which then implies

η̃αβ =

{
± 2i

(α−β)π α− β = odd

0 α− β = even
(S12)

Finally to determine the sign in Eq.(S12), the ground
state eigenfunction of Ĥ ′(t) was boosted by a momen-
tum p = πk/L, where k ∈ Z, which results in the wave

packet ψ(q) =
√

2
L sin(πqL ) exp( iπkqL ). By demanding

that 〈ψ|η̂|ψ〉 → 1 for k � 1 and 〈ψ|η̂|ψ〉 → −1 for
k � −1, a series of straightforward calculations yields

η̃αβ =

{ 2i
(β−α)π α− β = odd

0 α− β = even
(S13)
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