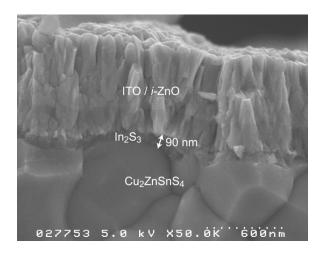
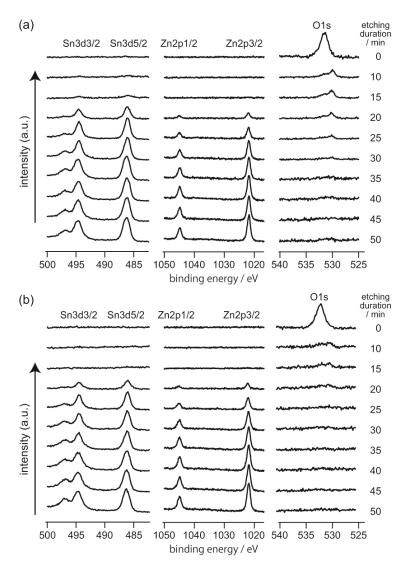
Supporting Information

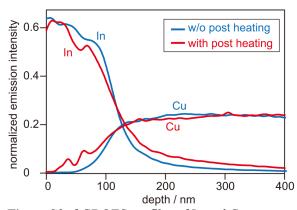
Effect of indium doping on surface optoelectrical properties of Cu_2ZnSnS_4 photoabsorber and interfacial/photovoltaic performance of cadmium free In_2S_3/Cu_2ZnSnS_4 heterojunction thin film solar cell

Feng Jiang ^a, Chigusa Ozaki ^a, Gunawan ^a, Takashi Harada ^a, Zeguo Tang ^b, Takashi Minemoto ^b, Yoshitaro Nose ^c, and Shigeru Ikeda ^a*




Figure S1 A cross-sectional SEM image of the 90-nm-thick-In₂S₃-deposited CZTS solar cell.

^a Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan


^{*}Corresponding author e-mail: sikeda@chem.es.osaka-u.ac.jp

^b Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Japan

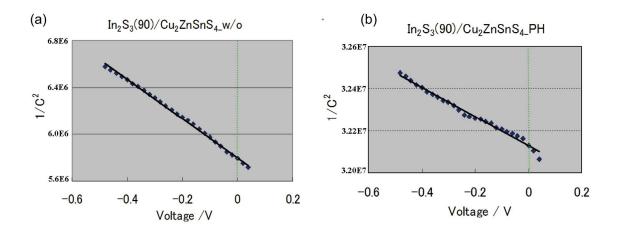

^c Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Figure S2 Sn3d, Zn2p and O1s XP spectra of (a) $In_2S_3(90)/Cu_2ZnSnS_4_w/o$ and (b) $In_2S_3(90)/Cu_2ZnSnS_4_PH$ films after Ar^+ etching with various durations.

Figure S3 rf-GDOES profiles of In and Cu components in $In_2S_3(90)/Cu_2ZnSnS_4$ _w/o and $In_2S_3(90)/Cu_2ZnSnS_4$ _PH films.

 $\label{eq:Figure S4} \textbf{Figure S4} \ \text{Capacitance-voltage (C-V) plots of solar cells based on (a) $In_2S_3(90)/Cu_2ZnSnS_4_w/o$ and (b) $In_2S_3(90)/Cu_2ZnSnS_4_PH$ films.}$