Chiral Phosphoric Acid Catalyzed Asymmetric Oxidative Dearomatization of Naphthols with Quinones

Gongming Zhu,^{†,‡} Guangjun Bao,[‡]Yiping Li,[‡] Junxian Yang,[‡] Wangsheng Sun,^{*,‡} Jing Li,^{†,‡} Liang Hong^{*,†}and Rui Wang^{*,†,‡}

†School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China

‡Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, 730000, China

E-mail: sunws@lzu.edu.cn; hongliang@sysu.edu.cn; wangrui@lzu.edu.cn

Table of Contents

1. General information	S2
2. Optimization of the reaction	S 3
3. General procedure for preparation of racemic	S4
4.General experimental procedure for dearomatization of 2-naphthols with quinone	S4
5. Further Transformations of the Products	S5
6. Characterization of 4 and 5	S6-17
7. Determination of the absolute configuration 4	S18-19
8. HPLC analytic conditions of 4 and 5	S20-23
9. Copies of HPLC spectra for 4 and 5	S24-43
10. Copies of NMR spectra for 4 and 5	S44-85

1. General information

Unless stated otherwise, all reactions were carried out in flame dried glassware. All solvents were purified and dried according to standard methods prior to use. 2-naphthols ¹ and Cat. 3² were prepared according to literature, quinones were purchased from commercial suppliers. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). IR spectra were recorded on a FT-IR spectrometer and only major peaks were reported in cm⁻¹. Optical rotations were reported as follows: [α]_D ^{rt} (c: g/100 mL, in solvent). High resolution mass spectra (HRMS) were obtained by the ESI ionization sources. The ee value determination was carried out using chiral HPLC with Daicel Chiracel column on Waters with a 996 UV-detector.

 ^{[1] (}a) A. Rudolph, P. H. Bos, A. Meetsma, A. J. Minnaard, B. L. Feringa, Angew. Chem. Int. Ed. 2011, 50, 5834 – 5838. (b) T. Oguma, T. Katsuki, J. Am. Chem. Soc., 2012, 134, 20017–20020. (c) J. Zheng, S.-B. Wang, C. Zheng, S.-L. You, J. Am. Chem. Soc., 2015, 137, 4880–4883.

 ^{[2] (}a) S. Müller, M. J. Webber, B. List, J. Am. Chem. Soc., 2011, 133, 18534–18537. (b) I. Čorić, S. Müller, B. List, J. Am. Chem. Soc., 2010, 132, 17370–17373. (c) I. T. Crouch, R. K. Neff, D. E. Frantz, J. Am. Chem. Soc., 2013, 135, 4970–4973. (d) F. R-Michailidis, L. Guenee, A, Alexakis, Angew. Chem. Int. Ed. 2013, 52, 9266-9270. (e) M. Yamanaka, J. Itoh, K. Fuchibe, T. Akiyama, J. Am. Chem. Soc. 2007, 129, 6756-6764.

2. Optimization of the reaction condition

			+	Me OH Me	cat 3 . (10 mo solvent, rt		Me Me
		1a		2a		4	∽ Me la
entry	cat.	solvent	2a:1a		time (h)	conv. (%)	ee (%)
1	3a	toluene	1:3	air	48	45	69
2	3b	toluene	1:3	air	48	>95	42
3	3c	toluene	1:3	air	48	>95	35
4	3d	toluene	1:3	air	48	>95 (77)	75
5	3e	toluene	1:3	air	48	>95	23
6	3f	toluene	1:3	air	48	30	24
7	3g	toluene	1:3	air	48	89	91
8	3g	DCM	1:3	air	36	>95(78)	98
9	3g	DCE	1:3	air	36	>95	97
10	3g	xylene	1:3	air	48	>95	89
11	3g	mesitylene	1:3	air	48	>95	86
12	3g	PhF	1:3	air	48	>95	93
13	3g	THF	1:3	air	48	<5	
14	3g	Et ₂ O	1:3	air	48	<5	
15	3g	DCM	1:4	air	36	>95(76)	97
16	3g	DCM	1:6	air	36	>95(68)	97
17	3g	DCM	1:2	air	36	76 (53)	98
18	3g	DCM	1:1	air	36	45 (28)	98
19	3g	DCM	1:3	A _r	36	>95(77)	98
20	3g	DCM	1:3	O_2	36	>95(75)	98
21	3g	DCM	1:3	DDQ	48	>95	Complex mixtures
22	3g	DCM	1:3	PhI(OAc) ₂	48	<5	-
23	3g	DCM	1:3	IBX	48	<5	-
24	3g	DCM	1:3	Dess-Martin	48	<5	-
25	3g	DCM	1:3	^t BuOOH	48	<5	-

Isolated yield was given in the parentheses.

3. General procedure for preparation of racemic samples

In an ordinary vial, quinone **1a** (0.30 mmol) was added to a stirred mixture of dibenzyl phosphate (10 mol%), $Sc(OTf)_3$ (10 mol%) and substituted 2-naphthol **2** (0.10 mmol) in CH_2Cl_2 (1.0 mL) at room temperature. The mixture was stirred at this temperature for the requisite amount of time as monitored by TLC. The solvent was removed under vacuum and residue was chromatographed on silica gel and fractions were collected and concentrated in vacuo to provide the pure desired products.

4. General experimental procedure for dearomatization of 2-naphthols with quinone

In an ordinary vial, quinone **1a** (0.60 mmol) was added to a stirred mixture of 2-naphthols **2** (0.20 mmol) and catalyst **3g** (0.02 mmol) in CH_2Cl_2 (2.0 mL) at room temperature. The mixture was stirred at this temperature for the requisite amount of time as monitored by TLC. The solvent was removed under vacuum and residue was chromatographed on silica gel (petroleum ether/AcOEt 20:1 - 6:1) and fractions were collected and concentrated in vacuo to provide the pure desired products **4**.

5. Further Transformations of the Products

In an ordinary vial, NaBH₄ (0.90 mmol, 4.5eq) was added to a stirred mixture of (R)-2-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione **4a** (0.20 mmol) in THF (0.5 mL) at 0°C, followed by the dropwise addition of 0.5 mL of MeOH. The mixture was stirred at this temperature for 20 min. The solvent was removed under vacuum and the residue was added TFA (trifluoroacetic acid, 0.2 mL) at 0°C. The mixture was stirred at this temperature for 10 min. The solvent was removed under vacuum and residue was chromatographed on silica gel (petroleum ether/AcOEt 15:1) and fractions were collected and concentrated in vacuo to provide the pure desired products.

6. Characterization of 4 and 5

(**R**)-2-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4a Using 10 mol % cat. 3g at rt with 36 h, 43.9 mg (78 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 10:1) as a yellow solid; ¹H **NMR** (300 MHz, CDCl₃) δ 7.41 (s, 1H), 7.38 – 7.32 (m, 1H), 7.31 – 7.18 (m, 2H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.96 – 6.87 (m, 1H), 6.77 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.61 (d, *J* = 10.1 Hz, 1H), 2.06 (d, *J* = 0.9 Hz, 3H), 1.50 (s, 3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 200.7, 187.5, 185.7, 151.8, 143.6, 141.3, 136.7, 136.1, 133.8, 131.4, 129.3, 129.1, 129.0, 127.3, 125.2, 53.1, 26.5, 16.0; **IR**: 3314, 2924, 1663, 1555, 1373, 1286, 1097, 1034, 995, 919, 738 cm⁻¹; $[\alpha]_D^{rt}$ = -40 °(c = 1.00, CHCl₃); HRMS (ESI): C₁₈H₁₄O₃+H, Calc: 279.1016, Found: 279.1017; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 1/1, flow rate = 1.0 ml/min, retention time: t_{major} =7.3, t_{minor} = 6.2, 98% ee.

(**R**)-2-(3-ethyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4b Using 10 mol % cat. 3g at rt with 10 h, 46 mg (79 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H **NMR** (300 MHz, CDCl₃) δ 7.43 – 7.30 (m, 2H), 7.30 – 7.16 (m, 2H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.98 – 6.84 (m, 1H), 6.76 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.61 (d, *J* = 10.1 Hz, 1H), 2.47 (q, *J* = 7.5 Hz, 2H), 1.49 (s, 3H), 1.18 (t, *J* = 7.4 Hz, 3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 200.2, 187.5, 185.6, 151.9, 143.4, 139.5, 136.9, 136.7, 136.1, 133.8, 129.5, 129.1, 129.0, 127.3, 125.1, 53.2, 26.4, 22.3, 12.4; **IR**: 3312, 2927, 1657, 1457, 1385, 1337, 1286, 1096, 992, 917, 760 cm⁻¹; **[\alpha]** $_{D}$ ^{rt} = -42 %c =

1.00, CHCl₃); $C_{19}H_{16}O_3+H$, Calc: 293.1172, Found: 293.1172; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 8/2, flow rate = 1.0 ml/min, retention time: $t_{major} = 11.0$, $t_{minor} = 8.2$, 98% ee.

(R)-2-(1-methyl-2-oxo-3-propyl-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4c

Using 10 mol % cat. 3g at rt with 22 h, 43 mg (71 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.42 - 7.32 (m, 2H), 7.30 - 7.16 (m, 2H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.97 - 6.85 (m, 1H), 6.77 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.61 (d, *J* = 10.1 Hz, 1H), 2.58 - 2.27 (m, 2H), 1.69 - 1.52 (m, 2H), 1.49 (s, 3H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 187.5, 185.6, 151.9, 143.5, 140.6, 136.7, 136.1, 135.4, 133.8, 129.5, 129.0, 129.0, 127.3, 125.1, 53.3, 31.4, 26.4, 21.6, 13.8; IR: 3313, 2926, 1659, 1456, 1382, 1286, 1096, 997, 919, 758 cm⁻¹; [*a*]_D^{rt} = -39 °(c = 1.00, CHCl₃); C₂₀H₁₉O₃+H, Calc: 307.1329, Found: 307.1331; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} =9.4, t_{minor} = 7.4, 98% ee.

(**R**)-2-(3-butyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4d Using 10 mol % cat. 3g at rt with 48 h, 44 mg (69 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.41 - 7.30 (m, 2H), 7.30 - 7.15 (m, 2H), 7.03 (d, *J* = 2.4 Hz, 1H),

6.96 – 6.85 (m, 1H), 6.76 (dd, J = 10.1, 2.4 Hz, 1H), 6.61 (d, J = 10.1 Hz, 1H), 2.58 – 2.32 (m, 2H), 1.62 – 1.46 (m, 5H), 1.45 – 1.37 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 187.5, 185.6, 151.9, 143.5, 140.4, 136.7, 136.0, 135.7, 133.8, 129.4, 129.1, 129.0, 127.3, 125.1, 53.3, 30.5, 29.0, 26.4, 22.4, 13.9; **IR**: 3312, 2928, 1659, 1456, 1382, 1285, 1202, 1097, 995, 919, 759 cm⁻¹; $[\alpha]_D^{rt} = +35$ (c = 1.00, CHCl₃); C₂₁H₂₀O₃+H, Calc: 321.1485, Found: 321.1486; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 6/4, flow rate = 1.0 ml/min, retention time: t_{major} =6.3, t_{minor} = 5.2, 96% ee.

(R)-2-(3-isopentyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4e

Using 10 mol % cat. 3g at rt with 37 h, 45 mg (68 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.45 - 7.31 (m, 2H), 7.31 - 7.14 (m, 2H), 7.03 (d, *J* = 2.4 Hz, 1H), 6.97 - 6.85 (m, 1H), 6.76 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.61 (d, *J* = 10.1 Hz, 1H), 2.64 - 2.25 (m, 2H), 1.76 - 1.54 (m, 1H), 1.54 - 1.34 (m, 5H), 0.95 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 187.5, 185.6, 151.9, 143.5, 140.3, 136.7, 136.1, 136.0, 133.8, 129.4, 129.1, 129.0, 127.3, 125.1, 53.3, 37.4, 27.9, 27.3, 26.4, 22.5, 22.5; IR: 3314, 2925, 1659, 1457, 1383, 1285, 1097, 997, 918, 758 cm⁻¹; $[\alpha]_D^{\text{rt}} = -35$ (c = 1.00, CHCl₃); C₂₂H₂₂O₃+H, Calc: 335.1642, Found: 335.1644; HPLC: DAICEL CHIRALCEL IC, Hexane/iPrOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} =7.8, t_{minor} = 6.0, 96% ee.

(R)-2-(1-methyl-2-oxo-3-phenethyl-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dion e, 4f

Using 10 mol % cat. 3g at rt with 21 h, 52 mg (70 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.35 - 7.09 (m, 9H), 7.03 (d, J = 2.4 Hz, 1H), 6.96 - 6.85 (m, 1H), 6.76 (dd, J = 10.0, 2.4 Hz, 1H), 6.62 (d, J = 10.1 Hz, 1H), 2.96 - 2.80 (m, 2H), 2.80 - 2.65 (m, 2H), 1.46 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.2, 187.4, 185.6, 151.8, 143.6, 141.4, 141.3, 136.7, 136.1, 134.3, 133.8, 129.5, 129.2, 128.8, 128.6, 128.3, 127.3, 125.9, 125.1, 53.3, 34.6, 31.6, 26.4; **IR**: 3312, 2925, 1661, 1454, 1383, 1286, 1202, 1096, 995, 919, 757 cm⁻¹; $[\alpha]_D^{rt} = -39$ °c = 1.00, CHCl₃); C₂₅H₂₀O₃+H, Calc: 369.1485, Found: 369.1491; HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} =18.3, t_{minor} = 8.7, 99% ee.

(**R**)-2-(3-allyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4g Using 10 mol % cat. 3g at rt with 24 h, 38 mg (63 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H **NMR** (300 MHz, CDCl₃) δ 7.45 – 7.33 (m, 2H), 7.33 – 7.18 (m, 2H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.96 – 6.86 (m, 1H), 6.77 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.62 (d, *J* = 10.1 Hz, 1H), 6.04 – 5.86 (m, 1H), 5.54 – 4.68 (m, 2H), 3.55 – 2.77 (m, 2H), 1.50 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 199.8, 187.5, 185.6, 151.8, 143.6, 141.2, 136.7, 136.1, 134.9, 133.8, 133.5, 129.7, 129.3, 128.9, 127.4, 125.2, 117.2, 53.3, 33.2, 26.5; **IR**: 3383, 2924, 1744, 1657, 1460, 1380, 1264, 1097, 918, 742 cm⁻¹; [**a**]_D^{**r**t} = -39 °(c = 1.00, CHCl₃); HRMS (ESI): C₂₀H₁₆O₃+H, Calc: 305.1172, Found: 305.1169; HPLC: DAICEL CHIRALCEL IC, Hexane/iPrOH = 9/1, flow rate = 1.0 ml/min, retention time: t_{major} =16.5, t_{minor} = 14.7, 93% ee.

(R)-2-(1-methyl-3-(3-methylbut-2-en-1-yl)-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-d iene-1,4-dione, 4h

Using 10 mol % cat. 3g at rt with 37 h, 41 mg (61 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 30:1 - 20:1) as a yellow solid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.43 – 7.34 (m, 1H), 7.31 (s, 1H), 7.29 – 7.16 (m, 2H), 7.03 (d, J = 2.4 Hz, 1H), 6.98 – 6.87 (m, 1H), 6.77 (dd, J = 10.1, 2.4 Hz, 1H), 6.61 (d, J = 10.1 Hz, 1H), 5.36 – 5.21 (m, 1H), 3.47 – 2.77 (m, 2H), 1.80 (s, 3H), 1.70 (s, 3H), 1.50 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 187.5, 185.6, 151.9, 143.5, 140.3, 136.7, 136.1, 134.6, 134.5, 133.8, 129.6, 129.1, 129.1, 127.3, 125.1, 120.1, 53.4, 27.5, 26.4, 25.8, 17.8; **IR**: 3405, 2924, 1657, 1448, 1382, 1286, 1097, 998, 919, 759 cm⁻¹; $[\alpha]_D^{\text{rt}} = +25$ °(c = 1.00, CHCl₃); C₂₂H₂₀O₃+H, Calc: 333.1485, Found: 333.1484; HPLC: DAICEL CHIRALCEL AD, Hexane/EtOH = 7/3, flow rate = 1.0 ml/min, retention time: t_{major} = 8.3, t_{minor} = 6.8, 96% ee.

®-2-(3-benzyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4i Using 10 mol % cat. 3g at rt with 24 h, 51 mg (72 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 10:1) as a yellow solid; ¹H **NMR** (300 MHz, CDCl₃) δ 7.37 – 7.15 (m, 9H), 7.02 (d, *J* = 2.4 Hz, 1H), 6.97 – 6.88 (m, 1H), 6.75 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.61 (d, *J* = 10.1 Hz, 1H), 3.77 (dd, *J* = 37.9, 15.8 Hz, 2H), 1.46 (s, 3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 199.9, 187.4, 185.6, 151.7, 143.6, 141.7, 138.9, 136.7, 136.1, 134.8, 133.8, 129.8, 129.3, 129.1, 128.8, 128.5, 127.3, 126.3, 125.1, 53.4, 35.2, 26.3; **IR**: 3314, 2926, 1663, 1454, 1382, 1286, 1096, 998, 919, 739 cm⁻¹; **[a]**^{rt} = -10 °(c = 1.00, CHCl₃); HRMS (ESI): $C_{24}H_{18}O_3+H$, Calc: 355.1329, Found: 355.1331; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 1/1, flow rate = 1.0 ml/min, retention time: $t_{major} = 6.4$, $t_{minor} = 8.5$, 95% ee.

(R)-2-(1-methyl-2-oxo-3-phenyl-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4j

Using 10 mol % cat. 3g at rt with 48 h, 15 mg (22 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (s, 1H), 7.55 (dd, *J* = 8.0, 1.5 Hz, 2H), 7.52 – 7.45 (m, 1H), 7.45 – 7.34 (m, 3H), 7.34 – 7.28 (m, 2H), 7.07 (d, *J* = 2.4 Hz, 1H), 6.99 – 6.91 (m, 1H), 6.79 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.64 (d, *J* = 10.1 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 199.0, 187.5, 185.7, 151.9, 143.9, 142.3, 136.7, 136.2, 135.4, 134.3, 133.8, 130.5, 129.9, 129.0, 128.8, 128.2, 128.2, 127.6, 125.3, 54.1, 26.5; **IR**: 3398, 2924, 1658, 1456, 1375, 1285, 1096, 1028, 919, 740 cm⁻¹; [α]_D^{rt} = -24 (c = 1.00, CHCl₃); C₂₃H₁₆O₃+H, Calc: 341.1172, Found: 341.1174; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 9/1, flow rate = 1.0 ml/min, retention time: t_{major} = 20.3, t_{minor} = 18.1, 91% ee.

(R)-2-(1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4k

Using 10 mol % cat. 3g at rt with 60 h, 15 mg (28 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 9.9 Hz, 1H), 7.51 – 7.40 (m, , 1H), 7.35 – 7.28 (m, 2H),

7.05 (d, J = 2.4 Hz, 1H), 6.99 – 6.90 (m, 1H), 6.78 (dd, J = 10.1, 2.4 Hz, 1H), 6.63 (d, J = 10.1 Hz, 1H), 6.29 (d, J = 9.9 Hz, 1H), 1.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.5, 187.4., 185.6, 151.5, 145.0, 144.2, 136.7, 136.2, 134.0, 130.3, 130.3, 128.4, 127.5, 125.5, 124.0, 53.4, 26.4. **IR**: 3313, 2926, 1656, 1598, 1452, 1398, 1338, 1287, 1097, 919, 830, 761, 607 cm⁻¹; $[\alpha]_D^{rt} = -2$ °(c = 1.00, CHCl₃); HRMS (ESI): C₁₇H₁₂O₃+H, Calc: 265.0859, Found: 265.0857; HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} =14.9, t_{minor} = 13.3, 58% ee.

(**R**)-2-(1-ethyl-3-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4m Using 10 mol % cat. 3g at rt with 24 h, 41 mg (71 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H **NMR** (300 MHz, CDCl₃) δ 7.38 (s, 1H), 7.36 – 7.31 (m, 1H), 7.30 – 7.17 (m, 2H), 7.04 (d, *J* = 2.4 Hz, 1H), 7.01 – 6.83 (m, 1H), 6.73 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.57 (d, *J* = 10.1 Hz, 1H), 2.27 – 2.08 (m, 1H), 2.04 (d, *J* = 1.1 Hz, 3H), 2.00 – 1.83 (m, 1H), 0.59 (t, *J* = 7.4 Hz, 3H). ¹³C **NMR** (75 MHz, CDCl₃) δ 200.9, 187.6, 185.7, 152.6, 141.8, 141.5, 136.7, 135.8, 133.7, 133.4, 131.1, 128.8, 128.8, 127.3, 125.6, 56.1, 34.7, 15.6, 7.3; **IR**: 3319, 2925, 1663, 1460, 1378, 1265, 1094, 909, 740 cm⁻¹; [**a**]_D^{rt} = -73 °(c = 1.00, CHCl₃); HRMS (ESI): C₁₉H₁₆O₃+H, Calc: 293.1172, Found: 293.1171; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 9/1, flow rate = 1.0 ml/min, retention time: t_{major} =20.2, t_{minor} = 17.2, 98% ee.

(R) - 2 - (3 - methyl - 2 - oxo - 1 - propyl - 1, 2 - dihydron aphthalen - 1 - yl) cyclohexa - 2, 5 - diene - 1, 4 - dione, and a - 1, 4 - dione, and a

4n

Using 10 mol % cat. 3g at rt with 10 h, 41 mg (67 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H **NMR** (300 MHz, CDCl₃) δ 7.37 (s, 1H), 7.35 – 7.28 (m, 1H), 7.28 – 7.18 (m, 2H), 7.05 (d, *J* = 2.4 Hz, 1H), 6.97 – 6.88 (m, 1H), 6.73 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.57 (d, *J* = 10.1 Hz, 1H), 2.15 – 1.95 (m, 4H), 1.80 (td, *J* = 12.0, 3.2 Hz, 1H), 1.19 – 0.98 (m, 1H), 0.91 – 0.79 (m, 1H), 0.75 (t, *J* = 6.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.9, 187.7, 185.7, 152.6, 142.2, 141.4, 136.7, 135.8, 133.6, 133.4, 130.9, 128.9, 128.8, 127.3, 125.6, 55.9, 43.9, 15.9, 15.7, 14.3; **IR**: 3312, 2925, 1657, 1458, 1378, 1281, 1090, 902, 761 cm⁻¹; $[\alpha]_D^{\text{rt}} = -56$ °c = 1.00, CHCl₃); C₂₀H₁₈O₃+H, Calc: 307.1329, Found: 307.1328; HPLC: DAICEL CHIRALCEL IC, Hexane/EtOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} =8.9, t_{minor} = 7.0, 99% ee.

(**R**)-2-(1-allyl-3-methyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 40 Using 10 mol % cat. 3g at rt with 24 h, 38 mg (63 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.38 – 7.29 (m, 2H), 7.28 – 7.20 (m, 2H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.97 (dd, *J* = 6.1, 2.7 Hz, 1H), 6.75 (dd, *J* = 10.1, 2.4 Hz, 1H), 6.59 (d, *J* = 10.1 Hz, 1H), 5.38 – 5.18 (m, 1H), 4.94 – 4.75 (m, 2H), 2.71 (ddd, *J* = 18.9, 12.4, 7.3 Hz, 2H), 2.00 (d, *J* = 1.3 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 200.2, 187.5, 185.6, 151.9, 141.5, 141.4, 136.7, 135.9, 133.6, 130.7, 130.0, 128.9, 128.9, 127.5, 125.7, 119.3, 56.0, 45.5, 15.6; **IR**: 3317, 2924, 1660, 1460, 1379, 1265, 1092, 1017, 913, 741 cm⁻¹; $[\alpha]_D^{\text{rt}} = -75$ (c = 1.00, CHCl₃); HRMS (ESI): C₂₀H₁₆O₃+H, Calc: 305.1172, Found: 305.1172; HPLC: DAICEL CHIRALCEL IC, Hexane/iPrOH = 9/1, flow rate = 1.0 ml/min, retention time: t_{major} =16.8, t_{minor} = 14.2, 95% ee.

(R)-2-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)-5-methylcyclohexa-2,5-diene-1,4-dio ne, 4p.

Using 10 mol % cat. 3g at rt with 48 h, 20 mg (35 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹**H NMR** (300 MHz, CDCl₃) δ 7.38 (s, 1H), 7.36 – 7.30 (m, 1H), 7.29 – 7.15 (m, 2H), 7.01 (s, 1H), 6.95 – 6.88 (m, 1H), 6.44 (d, *J* = 1.6 Hz, 1H), 2.05 (t, *J* = 1.6 Hz, 6H), 1.48 (s, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 200.7, 188.0, 185.9, 151.9, 145.6, 143.8, 141.2, 133.8, 133.5, 131.5, 129.3, 129.1, 129.0, 127.3, 125.3, 52.9, 26.6, 16.0, 15.4. **IR**: 3280, 2924, 1743, 1656, 1440, 1376, 1342, 1249, 1203, 1102, 1033, 918, 760, 737 cm⁻¹; $[\alpha]_D^{\text{rt}} = -4 \,^{\circ}\text{c} = 1.00$, CHCl₃); HRMS (ESI): C₁₉H₁₆O₃+H, Calc: 293.1172, Found: 293.1184; HPLC: DAICEL CHIRALCEL IC, Hexane/iPrOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} =11.3, t_{minor} = 8.7, 82% ee.

(R)-2-bromo-6-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dion e, 4q

Using 10 mol % cat. 3g at rt with 36 h, 15 mg (21 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 15:1 - 10:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 7.36 (dd, *J* = 7.3, 1.7 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.21 (s, 1H), 7.12 (s, 1H), 6.93 – 6.85 (m, 1H), 2.05 (d, *J* = 1.3 Hz, 3H), 1.50 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.4, 183.1, 179.5, 152.4, 143.3, 141.5, 138.1, 137.3, 133.2, 131.4, 129.4, 129.1, 129.0, 127.5, 125.2, 53.2, 26.6, 15.9. **IR**: 3313, 2925, 1656, 1745, 1665, 1655, 1594, 1459, 1377,

1197, 1035, 1001, 912, 759, 737 cm⁻¹; $[\alpha]_D^{rt} = -15$ (c = 1.00, CHCl₃); HRMS (ESI): C₁₈H₁₃BrO₃+Na, Calc: 378.9940, Found: 378.9951; HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} =12.5, t_{minor} = 10.5, 74% ee.

(S)-2-bromo-6-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dion e, 4q'.

Using 10 mol % cat. 3g at rt with 22 h, 39 mg (55 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 7.35 (dd, *J* = 7.2, 1.7 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.21 (s, 1H), 7.12 (s, 1H), 6.94 – 6.82 (m, 1H), 2.05 (d, *J* = 1.2 Hz, 3H), 1.50 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.4, 183.1, 179.5, 152.4, 143.3, 141.5, 138.1, 137.3, 133.2, 131.4, 129.4, 129.1, 129.0, 127.5, 125.2, 53.2, 26.6, 15.9. **IR**: 3301, 2925, 1743, 1666, 1595, 1458, 1375, 1259, 1197, 1001, 912, 738 cm⁻¹; $[\alpha]_D^{rt} = 24$ °c = 1.00, CHCl₃); HRMS (ESI): C₁₈H₁₃ClO₃+Na, Calc: 378.9940, Found: 378.9956; HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{maior} =11.0, t_{minor} =13.0, 45% ee.

(R)-2-chloro-6-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dion e, 4r

Using 10 mol % cat. 3g at rt with 40 h, 32 mg (51 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H

NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 7.39 – 7.32 (m, 1H), 7.31 – 7.18 (m, 2H), 7.17 (s, 1H), 6.96 – 6.86 (m, 1H), 6.84 (s, 1H), 2.05 (d, J = 1.1 Hz, 3H), 1.51 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.4, 183.5, 179.6, 152.5, 143.9, 143.3, 141.5, 133.8, 133.5, 131.4, 129.5, 129.2, 129.0, 127.5, 125.2, 53.2, 26.6, 16.0. **IR**: 3394, 2924, 1656, 1593, 1457, 1379, 1261, 1027, 808, 607 cm⁻¹; $[\alpha]_{D}^{rt} = -33$ (c = 1.00, CHCl₃); HRMS (ESI): C₁₈H₁₃ClO₃+H, Calc: 313.0626, Found: 313.0624; HPLC: DAICEL CHIRALCEL IC, Hexane/iPrOH = 9/1, flow rate = 1.0 ml/min, retention time: $t_{major} = 12.5, t_{minor} = 13.4, 89\%$ ee.

2-chloro-6-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dione, 4r'

Using 10 mol % cat. 3g at rt with 22 h, 40 mg (64 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 10:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 7.39 – 7.32 (m, 1H), 7.31 – 7.18 (m, 2H), 7.17 (s, 1H), 6.96 – 6.86 (m, 1H), 6.84 (s, 1H), 2.05 (d, *J* = 1.1 Hz, 3H), 1.51 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.4, 183.5, 179.6, 152.5, 143.9, 143.3, 141.5, 133.8, 133.5, 131.4, 129.5, 129.2, 129.0, 127.5, 125.2, 53.2, 26.6, 16.0. **IR**: 3394, 2924, 1656, 1593, 1457, 1379, 1261, 1027, 808, 607 cm⁻¹; HRMS (ESI): C₁₈H₁₃ClO₃+H, Calc: 313.0626, Found: 313.0624.

(S)-2-chloro-5-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl)cyclohexa-2,5-diene-1,4-dion

e, 4s.

Using 10 mol % cat. 3g at rt with 30 h, 26 mg (41 % yield) of the pure product was obtained by silica gel column chromatography (petroleum/ethyl acetate = 20:1 - 15:1) as a yellow solid; ¹H NMR (300 MHz, CDCl₃) δ 7.41 (s, 1H), 7.36 (dd, J = 7.3, 1.6 Hz, 1H), 7.31 – 7.18 (m, 2H), 7.05 (d, J = 2.4 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.94 – 6.86 (m, 1H), 2.06 (d, J = 1.2 Hz, 3H), 1.51 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.3, 184.9, 178.3, 151.8, 144.2, 143.1, 141.6, 134.2, 133.4, 131.5, 129.5, 129.2, 129.1, 127.6, 125.1, 53.6, 26.9, 15.9. IR: 3304, 3054, 2926, 1662, 1594, 1458, 1422, 1265, 1014, 896, 739 cm⁻¹; $[\alpha]_D^{\text{rt}} = 7^\circ$ (c = 1.00, CHCl₃); HRMS (ESI): C₁₈H₁₃ClO₃+H, Calc: 313.0626, Found: 313.0640; HPLC: DAICEL CHIRALCEL IA, Hexane/iPrOH = 8/2, flow rate = 1.0 ml/min, retention time: t_{major} = 7.6, t_{minor} = 9.3, 18% ee.

(6aR,11bR)-6,11b-dimethyl-6a,11b-dihydronaphtho[2,1-b]benzofuran-10-ol, 5

The solvent was removed under vacuum and residue was chromatographed on silica gel (petroleum ether/AcOEt 15:1) to provide the pure desired products 40 mg (75 % yield) as a white solid; ¹H NMR (300 MHz, CDCl₃) δ 7.49 – 7.38 (m, 1H), 7.23 – 7.08 (m, 2H), 7.04 (dd, J = 7.2, 1.6 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H), 6.66 (d, J = 8.4 Hz, 1H), 6.56 (dd, J = 8.5, 2.6 Hz, 1H), 6.42 (s, 1H), 4.82 (s, 1H), 4.58 (s, 1H), 2.09 (d, J = 0.8 Hz, 3H), 1.58 (s, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 152.3, 149.8, 137.2, 136.3, 131.0, 130.7, 127.6, 127.1, 126.9, 126.1, 114.3, 111.6, 109.7, 90.8, 47.5, 27.9, 21.1; IR: 3395, 2923, 1656, 1602, 1489, 1376, 1268, 1192, 1068, 947, 812, 753 cm⁻¹; $[\alpha]_D^{\text{rt}} = 117$ °(c = 1.00, CHCl₃); HRMS (ESI): C₁₈H₁₆O₂+H, Calc: 265.1223, Found: 265.1225; HPLC: DAICEL CHIRALCEL IA, Hexane/EtOH = 95/5, flow rate = 1.0 ml/min, retention time: t_{major} =9.7, t_{minor} =13.7, 98% ee.

7. Determination of the absolute configuration 4.

X-ray Structure of 4a:

Bond precision:		C-C = 0.0069 A		V	Wavelength=1.54184			
Cell:	a=7.6607(7)		b=9.2315(7)	c=11.1270(8)			
	alpha=72.01	9(7)	beta=79.887(7)	gamma=74	.428(7)			
Temperature	Temperature: 294 K							
		Calculat	ed		Reported			
Volume		717.29(1	1)		717.29(11)			
Space group		P 1			P 1			
Hall group		P 1			P 1			

Moiety formula	C18 H14 O3		C18 H14 O3
Sum formula	C18 H14 O3		C18 H14 O3
Mr	278.29		278.29
Dx,g cm-3	1.288		1.289
Z	2		2
Mu (mm-1)	0.708		0.708
F000	292.0		292.0
F000'	292.91		
h,k,lmax	9,11,13		9,11,13
Nref	5446[2723]		4653
Tmin,Tmax	0.887,0.906		0.869,1.000
Tmin'	0.887		
Correction method= # Re	eported T Limits	: Tmin=0.869 Tmax=1.00	0 AbsCorr =
MULTI-SCAN			
Data completeness= 1.71/	0.85	Theta(max)= 69.915	
R(reflections)= 0.0429(3320)		wR2(reflections)= 0.1	185(4653)
S = 1.056	Npar= 383		

8. HPLC Analytic Conditions of 4 and 5:

entry	product	Chiralcel column	Mobile phase	flow rate ml/min	Retention Time (min)	ee (%)
1	o o t t t o t t o t o t o t o t o t o t	IC	H/E = 1/1	1.0	$t_{major} = 7.3, t_{minor} = 6.2$	98
2	4b	IC	H/E = 8/2	1.0	t _{major} = 11.0, t _{minor} = 8.2	98
3		IC	H/E = 8/2	1.0	$t_{major} = 9.4, t_{minor} = 7.4$	98
4	e e e e e e e e e e e e e e e e e e e	IC	H/E = 6/4	1.0	$t_{major} = 6.3, t_{minor} = 5.2$	96
5		IC	H/E = 8/2	1.0	$t_{major} = 7.8, t_{minor} = 6.0$	96

All products are separated by using DAICEL CHIRALCEL column.

6	O O O O Ph 4f	ΙΑ	H/E = 8/2	1.0	t _{major} = 18.3, t _{minor} = 8.7	99
7	e e e e e e e e e e e e e e e e e e e	IC	H/E = 9/1	1.0	t _{major} = 16.5, t _{minor} = 14.7	93
8	o o t o t o t o t o t o t o t o t o t o	AD	H/E = 7/3	1.0	$t_{major} = 8.3, t_{minor} = 6.8$	96
9	O O O O Ph 4i	IC	H/E = 1/1	1.0	$t_{major} = 8.5, t_{minor} = 6.4$	95
10	O O Ph 4j	IC	H/E = 9/1	1.0	t _{major} = 20.4, t _{minor} = 18.1	91
11	o Me 4k	ΙΑ	H/I=8/2	1.0	t _{major} = 14.9, t _{minor} = 13.3	58

12		IC	H/I = 9/1	1.0	t _{major} = 20.2, t _{minor} = 17.2	98
13		IC	H/I = 8/2	1.0	$t_{major} = 8.9, t_{minor} = 7.0$	99
14		IC	H/E = 9/1	1.0	t _{major} = 16.8, t _{minor} = 14.2	95
15	O O Me Me Me Me	IC	H/E=8/2	1.0	t _{major} = 11.3, t _{minor} = 8.7	82
16	Br O Me Me 4q	IA	H/E=8/2	1.0	t _{major} = 12.5, t _{minor} = 10.5	74
17	Br O O Me O Me 4q'	IA	H/E=8/2	1.0	t _{major} =11.0, t _{minor} = 13.0	45

18	Cl O Me Ar	IC	H/E = 9/1	1.0	t _{major} = 12.5, t _{minor} = 13.4	89
19	CI O Me Me As	ΙΑ	H/E=8/2	1.0	$t_{major} = 7.6, t_{minor} = 9.3$	18
20	HO Internet of the second seco	ΙΑ	H/I = 95/5	1.0	t _{major} = 13.7, t _{minor} = 9.7	98

9. Copies of HPLC spectra for 4 and 5.

$(R) \hbox{-} 2-(1, 3-dimethyl \hbox{-} 2-oxo \hbox{-} 1, 2-dihydron aphthalen \hbox{-} 1-yl) cyclohexa \hbox{-} 2, 5-diene \hbox{-} 1, 4-dione$

Chiralpak IC column, hexane/EtOH (1:1), flow rate 1.0 mL/min

4b (Table 2)

	Retention time	Area	% Area	Height	Integral type
1	8.165	139575	0.84	9976	bb
2	10.967	16557871	99.16	673993	bb

$(R) \hbox{-} 2-(1-methyl-2-oxo-3-propyl-1, 2-dihydronaphthalen-1-yl) cyclohexa-2, 5-diene-1, 4-dione-1, 4-dione-$

	Retention time	Area	% Area	Height	Integral type
1	7.411	4458380	50.14	281075	bb
2	9.443	4433817	49.86	225089	bb

	Retention time	Area	% Area	Height	Integral type
1	7.365	212672	0.88	16211	bb
2	9.365	24087752	99.12	1216435	bb

	Retention time	Area	% Area	Height	Integral type
1	5.206	364486	1.83	47728	bb
2	6.312	19567242	98.17	1625305	bb

$(R) \hbox{-} 2-(3-is open tyl-1-methyl-2-oxo-1,2-dihydron aphthalen-1-yl) cyclohexa-2,5-diene-1,4-dione tyle approximate the second statement of the sec$

Chiralpak IC column, hexane/EtOH (8:2), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	5.961	475802	1.89	32527	bb
2	7.821	24686269	98.11	1261249	bb

4f (Table 2)

Chiralpak IA column, hexane/EtOH (8:2), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	8.618	1024247	50.73	55193	vb
2	18.354	994605	49.27	20725	bb

	Retention time	Area	% Area	Height	Integral type
1	8.684	219647	0.44	14178	bb
2	18.300	49967050	99.56	930727	bb

							Δ	$\Delta \Delta$	Δ	
0.00	2.00	4.00	6.00	8.00	10.00	12.00	14.00	16.00	18.00	20.00
					min					

	Retention time	Area	% Area	Height	Integral type
1	14.722	1084102	3.67	45952	bb
2	16.500	28469181	96.33	1018032	bb

(R) - 2 - (1 - methyl - 3 - (3 - methylbut - 2 - en - 1 - yl) - 2 - oxo - 1, 2 - dihydronaphthalen - 1 - yl) cyclohexa - 2, 5 - diene - 1, 4 - dione - 1,

4h (Table 2)

Chiralpak AD column hexane/EtOH (7:3), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	6.842	12854338	98.08	696610	bv
2	8.343	251814	1.92	12468	bb

$(R) \hbox{-} 2-(3-benzyl-1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl) cyclohexa-2,5-diene-1,4-dione$

4i (Table 2)

Chiralpak IC column, hexane/EtOH (1:1), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	6.477	1101256	50.82	88996	vb
2	9.131	1065755	49.18	56405	bb

	Retention time	Area	% Area	Height	Integral type
1	6.441	25072607	97.30	1874404	vb
2	8.512	695034	2.70	40307	bb

$(R) \hbox{-} 2-(1-methyl-2-oxo-3-phenyl-1, 2-dihydron aphthalen-1-yl) cyclohexa-2, 5-diene-1, 4-dione$

Chiralpak IC column, hexane/EtOH (9:1), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	18.100	4665316	50.74	140942	bv
2	20.264	4528427	49.26	118177	vb

	Retention time	Area	% Area	Height	Integral type
1	18.132	18511410	95.35	554939	bb
2	20.355	902732	4.65	26745	bb

$(R) \hbox{-} 2-(1-methyl-2-oxo-1,2-dihydronaphthalen-1-yl) cyclohexa-2,5-diene-1,4-dione$

Chiralpak IA column, hexane/iPrOH (8:2), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	12.727	2415085	50.26	77207	bv
2	14.346	2390033	49.74	65006	vb

	Retention time	Area	% Area	Height	Integral type
1	13.305	445649	20.94	14156	bv
2	14.932	1682452	79.06	44441	vb

Chiralpak IC column, hexane/EtOH (9:1), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	17.093	1258384	49.89	42592	bb
2	20.209	1263874	50.11	35417	bb

	Retention time	Area	% Area	Height	Integral type
1	17.151	221407	0.98	7715	bb
2	20.151	22316737	99.02	627929	bb

$(R) \hbox{-} 2-(3-methyl-2-oxo-1-propyl-1,2-dihydronaphthalen-1-yl) cyclohexa-2,5-diene-1,4-dione$

Chiralpak IC column, hexane/EtOH (8:2), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type
1	6.960	7280866	50.18	437792	bb
2	8.854	7228408	49.82	344624	bb

	Retention time	Area	% Area	Height	Integral type
1	6.960	45632	0.54	4782	bb
2	8.853	8471271	99.46	419168	bb

Chiralpak IC column, hexane/EtOH (9:1), flow rate 1.0 mL/min

	Retention time	Alta	70 Alea	Height	integral type
1	14.166	1098694	2.40	52052	bb
2	16.755	44730385	97.60	1568599	bb

$(R) \hbox{-} 2-(1, 3-dimethyl-2-oxo-1, 2-dihydronaphthalen-1-yl) \hbox{-} 5-methyl cyclohexa-2, 5-diene-1, 4-dione$

4p (Scheme 3)

Chiralpak IC column, hexane/EtOH (8:2), flow rate 1.0 mL/min

	Retention time	Retention time Area % Area		Height	Integral type	
1	8.745	663970	8.82	42031	bb	
2	11.315	6864662	91.18	324603	bb	

 $(R) \hbox{-} 2-bromo-6-(1, 3-dimethyl-2-oxo-1, 2-dihydronaphthalen-1-yl) cyclohexa-2, 5-diene-1, 4-dione and 1-yl) cyclohexa-2, 5-diene-1, 5-diene-$

4q (Scheme 3)

	Retention time	Retention time Area % Area		Height	Integral type	
1	10.547	1670398	1670398 13.11 75528		bb	
2	12.531	11068416	86.89	363065	bb	

	Retention time Area		% Area	Height	Integral type	
1	11.000 11921945		72.26	508799	bb	
2	12.971 4576798		27.74	151276	bb	

4r (Scheme 3)

Chiralpak IC column, hexane/EtOH (9:1), flow rate 1.0 mL/min

	Retention time	Area	% Area	Height	Integral type	
1	12.230 4018701		49.83	187742	bv	
2	13.049 4046684		50.17	174244	vb	

	Retention time Area		% Area	Height	Integral type
1	12.490	30983103	94.39	1430641	bv
2	13.410	1842602	5.61	80003	vb

 $(S) \hbox{-} 2-chloro \hbox{-} 5-(1,3-dimethyl-2-oxo-1,2-dihydronaphthalen-1-yl) cyclohexa-2,5-diene-1,4-dione and a statistical sta$

4S (Scheme 3)

Chiralpak IA column, hexane/EtOH (8:2), flow rate 1.0 mL/min

(6aR, 11bR) - 6, 11b - dimethyl - 6a, 11b - dihydronaphtho [2, 1-b] benzofuran - 10 - ol

Chiralpak IA column, hexane/EtOH (95:5), flow rate 1.0 mL/min

	Retention time	Retention time Area % Area		Height	Integral type	
1	1 9.605 4755993 50.0		50.06	228538	bb	
2	13.617	4745510	49.94	150987	bb	

	Retention time	Retention time Area % Area		Height	Integral type	
1	9.673	6525752	99.00	301449	bb	
2	13.749	65833	1.00	2018	bb	

2.061

4b

200.29	151.89 143.48 143.48 136.69 135.69 1229.055 125.12 125.12	77.42	53.27	
		чба фосция на продокти и продокти		

-1.621

-1.534

4m

4n

	200.93	187.68 185.73		142.21 141.44 135.81 133.60 133.60 133.42 133.89 128.86 128.86 127.32 125.55	77.42		43.87	15.89 15.71 14.32
				$\begin{array}{c} \\ \circ \\ \leftarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ 4n \end{array}$				
******			······				5449 ⁷ 4474/////////////////////////////////	
210	200 1	190 180 170 160	15	0 140 130 120 110 100 90 S69	80 70 6	0 50	40 30 2	20 10 ppm

--0.000

1

2.053

S80

--0.000

