Supporting Information

Aldgamycins J–O, 16-Membered Macrolides with a Branched Octose Unit from *Streptomycetes* sp. and Their Antibacterial Activities

Chuan-Xi Wang,^{†,⊥} Rong Ding,^{†,⊥} Shu-Tai Jiang,[†] Jin-Shan Tang,[†] Dan Hu,[†] Guo-Dong Chen,[†] Feng Lin,[§] Kui Hong, ^{*,‡} Xin-Sheng Yao,^{*,†} Hao Gao^{*,†}

[†]Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China

[‡]Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, People's Republic of China

[§]Fujian key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, People's Republic of China

*To whom correspondence should be addressed. Telephone/Fax: +86-20-85228369. E-mail: (H.G.) <u>tghao@jnu.edu.cn</u>; (X.Y.) <u>tyaoxs@jnu.edu.cn</u>; (K.H.) <u>kuihong31@whu.edu.cn</u>.

List of Supporting Information

1. NMR assignments of 1–6	3
Table S1. NMR (400 MHz, CDCl ₃) assignments for 1	3
Table S2. NMR (400 MHz, CDCl ₃) assignments for 2	4
Table S3. NMR (400 MHz, CDCl ₃) assignments for 3	5
Table S4. NMR (400 MHz, CDCl ₃) assignments for 4	6
Table S5. NMR (400 MHz, CDCl ₃) assignments for 5	7
Table S6. NMR (400 MHz, CDCl ₃) assignments for 6	8
2. Acid hydrolysis of aldgamycin J (1)	9
3. The 1D and 2D NMR spectra of 1–8	
The 1D and 2D NMR spectra of aldgamycin J (1)	10
The 1D and 2D NMR spectra of aldgamycin K (2)	13
The 1D and 2D NMR spectra of aldgamycin L (3)	17
The 1D and 2D NMR spectra of aldgamycin M (4)	20
The 1D and 2D NMR spectra of aldgamycin N (5)	23
The 1D and 2D NMR spectra of aldgamycin O (6)	
The 1D and 2D NMR spectra of swalpamycin B (7)	
The 1D and 2D NMP spectra of chalcomycin (8)	20

1. NMR assignments of 1–6

			,;;;;;	8		
Position	$\delta_{ m C}$, mult.	$\delta_{ m H} \left(J ext{ in Hz} ight)^{*}$	¹ H, ¹ H-COSY	HMBC	ROESY	
	aglycone					
1	165.5, C	-				
2	121.2, CH	5.86 d (15.5)	3	1, 4	4	
3	151.3, CH	6.74 dd (15.5, 10.6)	2, 4	1	5, 6, 17	
4	41.8, CH	2.71	3, 5, 17	5	2, 6, 7a, 7b	
5	86.7, CH	3.32 br. d (9.7)	4, 6	4, 7, 18, 1'	3, 6, 17, 18, 1'	
6	34.2, CH	1.35	5, 7, 18	7, 8	3, 4, 5, 7a, 10a	
7	37.0, CH ₂	1.89, Ha	6	8, 9	4, 6, 10a, 19	
		1.86, Hb	6	8, 9	4, 18, 19	
8	79.6, C	-				
9	212.5, C	-				
10	32.6, CH ₂	2.70, Ha	10b, 11a, 11b	11	6, 7a	
		2.16, Hb	10a, 11a, 11b			
11	27.2, CH ₂	2.00, Ha	10a, 10b, 11b, 12	10, 13		
	, 2	1.55, Hb	10a, 10b, 11a, 12	12	13	
12	59.3, CH	2.73	11a, 11b, 13	11	14, 15	
13	58.0, CH	2.82 dd (8.9, 2.0)	12, 14	14	11b, 20a, 15	
14	48.6, CH	1.37	13, 15, 20a, 20b	13, 15, 16	12	
15	69.9. CH	5.32 dg. (10.2, 6.3)	14, 16	1	12, 13, 20b	
16	18.6. CH ₂	1.35 d (6.3)	15	14, 15	20a	
17	20.7. CH ₃	1.20 d (6.6)	4	3, 4, 5	3, 5, 1'	
18	18.7. CH ₃	0.99 d (6.8)	6	5, 6, 7	5. 7b	
19	28.2. CH ₂	1.38 s	-	7, 8, 9	7a, 7b	
20	67.2. CH ₂	4.15 dd (10.1, 3.5), Ha	14, 20b	15	13. 16. 1"	
	···-, ·· <u>/</u>	3.63 dd (10.1, 3.5). Hb	14, 20a	13.15	15	
		β-D-decarb	oxvlated aldgarose	10, 10	10	
1'	101.3. CH	4.63 d (7.6)	2'	5	5, 17, 5'	
2'	72.6 CH	3.62 m^{c}	- 1'	1'	4'h 8'	
2 3'	73.9 C	-	1	1	10,0	
4'	39.5. CH ₂	1.50 br.d (13.7). Ha	4'b. 5'	2'. 3'. 7'	7'	
•	<i>b</i> ,	1 35 Hb	4'a 5'	3' 5' 6' 7'	2'	
5'	66 8 CH	3.93	6' 4'a 4'b	5,5,6,7	1'	
5 6'	20.8 CH ₂	1.16d (6.3)	5'	4'. 5'	1	
7'	73.9 CH	3 66 a (6 6)	8'	3'	4'a	
, 8'	18.2 CH	1 29 d (6 6)	7'	3' 7'	- u 2'	
0	10.2, 0113	1.29 d (0.0) <i>B</i> -D	-mycinose	5,7	2	
1"	100.9 CH	4 57 d (7 7)	2"	20	20a 5" 7"	
2"	81.9 CH	3.08 dd (7.7, 2.8)	1" 3"	1" 7"	20d, 5', 7 4'' 7''	
2''	79.6 CH	3.00 dd (7.7, 2.0)	1', 5' 2'' 4''	1" 4" 5" 8"		
3 4''	72.7 CH	3.770 (2.0)	2, 1 3", 5"	т, т, Ј, О	2" 6"	
 5''	70.8 CH	3 54	3', 5 4'' 6''	3"	2,0	
5 6''	17.8 CH	1 26 d (6 2)		4" 5 "	1 4''	
7''	596 CH	3 56 °	5		1" 2"	
, 8''	61 7 CH	3.62 %		2 3''	1,2	

Table S1. NMR (400 MHz, CDCl₃) assignments for 1.

Table S2. NMR (400 MHz, CDCl₃) assignments for 2.

Position	$\delta_{\rm C}$, mult.	$\delta_{ m H} \left(J ext{ in Hz} ight)^{*}$	¹ H, ¹ H-COSY	HMBC	ROESY	
	aglycone					
1	165.6, C	-				
2	121.2, CH	5.86 d (15.5)	3	1, 4	4	
3	151.1, CH	6.75 dd (15.5, 10.5)	2,4	1	5, 6, 17	
4	41.3, CH	2.74	3, 5, 17		2, 6, 7a	
5	85.5, CH	3.42 br d (10.0)	4, 6	7, 17, 18, 1'	3, 6, 7b, 8, 17, 18, 1'	
6	34.8, CH	1.41	5, 7a, 7b, 18	18	3, 4, 5, 7a, 8, 10b	
7	32.5, CH ₂	1.71 ddd (13.8, 9.7, 3.2), Ha	6, 7b, 8		4, 6, 10a, 19	
		1.38, Hb	6, 7a, 8		5, 18	
8	45.5, CH	2.52	7a, 7b, 19		5, 6, 18, 19	
9	213.3, C	-				
10	33.4, CH ₂	2.54, Ha	10b, 11a, 11b		7a, 12	
		2.06, Hb	10a, 11a, 11b		6	
11	26.8, CH ₂	2.02, Ha	10a, 10b, 11b, 12			
		1.43, Hb	10a, 10b, 11a, 12		13	
12	59.5, CH	2.83 dd (8.2, 2.5)	11a, 11b, 13	11	10a, 14	
13	58.0, CH	2.73 dd (8.2, 2.2)	12, 14	14	15, 20a, 11b	
14	48.5, CH	1.36	13, 15, 20a, 20b	15, 16	12	
15	69.8, CH	5.32 dq. (9.6, 6.3)	14, 16	,	13, 20b	
16	18.5, CH ₃	1.35 d (6.3)	15	14, 15	20a, 20b	
17	18.2, CH ₃	1.21 d (6.6)	4	3, 4, 5	3, 5, 1'	
18	17.0, CH ₃	0.98 d (6.4)	6	5, 6, 7	5, 7b, 8	
19	17.8, CH ₃	1.11 d (6.9)	8	7, 8, 9	7a, 8	
20	67.3, CH ₂	4.12 dd (10.2, 3.6), Ha	14, 20b	15	13, 16, 1"	
	. 2	3.62, Hb	14, 20a	13	15, 16	
		β -D-decarbox	ylated aldgarose			
1'	101.7, CH	4.66 d (7.7)	2'	5	5, 17, 5'	
2'	72.7, CH	3.61	1'	1'	4'b, 8'	
3'	73.9, C	-			,	
4'	39.4, CH ₂	1.51, Ha	4'b, 5'	2', 3', 7'	7'	
		1.38, Hb	4'a, 5'		2'	
5'	67.0, CH	3.96	6', 4'a, 4'b		1'	
6'	20.8, CH ₃	1.18 d (6.1)	5'	4', 5'		
7'	73.9, CH	3.66 q (6.6)	8'	,	4'a	
8'	18.3, CH ₃	1.29 d (6.6)	7'	3', 7'	2'	
	β-D-mycinose					
1"	100.8, CH	4.56 d (7.7)	2"	20	20a, 5", 7"	
2"	81.9, CH	3.08 dd (7.7, 3.0)	1", 3"	1'', 7''	7'',	
3"	79.6, CH	3.76 t (3.0)	2", 4"	1", 4", 5", 8"		
4''	72.7, CH	3.19 dd (9.1, 3.0)	3", 5"		6''	
5"	70.8, CH	3.52	4", 6"	3''	1"	
6''	17.8, CH ₃	1.25 d (6.2)	5"	4", 5"	4''	
7''	59.6, CH ₃	3.55 s		2"	1", 2"	
8''	61.6, CH ₃	3.61 s		3''		

Table S3. NMR (400 MHz, CDCl₃) assignments for **3**.

Position	$\delta_{ m C}$, mult.	$\delta_{ m H} \left(J ext{ in Hz} ight)^{*}$	¹ H, ¹ H-COSY	HMBC	ROESY
aglycone					
1	165.6, C	-			
2	121.7, CH	5.80 d (15.5)	3	1, 4	4, 17
3	150.3, CH	6.71 dd (15.5, 9.9)	2, 4	1	5, 6 17
4	40.7, CH	2.72	3, 5, 17	2, 3, 5	2, 6, 7a
5	86.2, CH	3.39 br. d (9.6)	4, 6	4, 7, 17, 18, 1'	3, 6, 8, 17, 18, 1'
6	34.7, CH	1.54	5, 7a, 7b, 18		3, 4, 5, 8
7	33.0, CH ₂	1.68 ddd (13.6, 9.4, 3.5), Ha	6, 8, 7b	6, 18	4, 10a, 19
		1.33, Hb	6, 7a		18
8	44.8, CH	2.54	7a, 19	9	5, 6, 18, 19
9	213.6, C	-			
10	38.9, CH ₂	2.51, Ha	10b, 11a, 11b	9, 11	7a, 12, 13
		2.21, Hb	10a, 11a, 11b	9, 11	
11	26.1, CH ₂	2.19, Ha	10a, 10b, 12		13
		2.16, Hb	10a, 10b, 12	9, 10, 12	13
12	132.7, CH	5.52 ddd (15.3, 9.4, 3.5)	11a, 11b, 13	11	10a, 14
13	128.6, CH	5.30 dd (15.3, 9.2)	12, 14	11, 12, 15	10a, 11a, 11b, 14, 15, 20b
14	50.2, CH	2.36	13, 15, 20a, 20b	15	12, 13, 16
15	69.9, CH	5.07 dq. (9.0, 6.0)	14, 16	1, 13	13, 20a, 20b
16	18.2, CH ₃	1.29 d (6.0)	15	14, 15	14, 20a, 20b
17	18.8, CH ₃	1.19 d (6.6)	4	3, 4, 5	2, 3, 5, 1'
18	17.1, CH ₃	0.98 d (6.7)	6	5, 6, 7	5, 7b, 8
19	18.6, CH ₃	1.10 d (6.9)	8	7, 8, 9	7a, 8
20	70.0, CH ₂	3.93 dd (9.6, 5.0), Ha	14, 20b	15	15, 16, 1"
	·	3.45 dd (9.6, 5.0), Hb	14, 20a	13, 14, 15	13, 15, 16
		β -D-deca	rboxylated aldgarose		
1'	101.7, CH	4.66 d (7.6)	2'	5	5, 17, 5'
2'	72.6, CH	3.63	1'	1'	4'b, 8'
3'	73.9, C	-			
4'	39.4, CH ₂	1.53 br. d (13.6), Ha	4'b, 5'	2', 3', 7'	7'
	·	1.40, Hb	4'a, 5'		2'
5'	67.0, CH	3.97	6', 4'a, 4'b		1'
6'	20.8, CH ₃	1.18 d (6.1)	5'	4', 5'	
7'	73.7, CH	3.66 q (6.1)	8'	3'	4'a
8'	18.2, CH ₃	1.28 d (6.1)	7'	3', 7'	2'
	, ,	ß	P-D-mycinose		
1''	101.0, CH	4.56 d (7.7)	2"	20	20a, 5", 7"
2''	81.9, CH	3.04 dd (7.7, 2.8)	1", 3"	1", 7"	4", 7"
3"	79.9, CH	3.74 t (2.8)	2", 4"	1", 2", 4", 5", 8"	-
4''	72.7, CH	3.19 dd (9.4, 2.8)	3", 5"		2", 6"
5"	70.7, CH	3.51	4", 6"	3"	1"
6''	17.8, CH ₃	1.25 d (6.2)	5"	4", 5"	4''
7''	59.8, CH ₃	3.53 s		2"	1", 2"
8''	61.7, CH ₃	3.61 s		3"	

Table S4. NMR (400 MHz, CDCl₃) assignments for 4.

Position	$\delta_{ m C}$, mult.	$\delta_{\rm H} \left(J \text{ in Hz} \right)^*$	¹ H, ¹ H-COSY	HMBC	ROESY	
aglycone						
1	1 165.4, C -					
2	121.9, CH	5.80 d (15.5)	3	1, 4	4, 17	
3	149.7, CH	6.69 dd (15.5, 9.6)	2, 4	1	5, 17	
4	40.6, CH	2.72	3, 5, 17	2, 3, 5, 17	2, 7a	
5	86.3, CH	3.41 br. d (10.1)	4, 6	4, 7, 17, 18, 1'	3, 17, 18, 1'	
6	34.5, CH	1.52	5, 7a, 7b, 18			
7	32.9, CH ₂	1.68 ddd (14.1, 10.0, 4.2), Ha	6, 8, 7b	6, 18	4	
		1.29, Hb	6, 7a			
8	44.7, CH	2.53	7a, 19	9	18	
9	213.4, C	-				
10	39.0, CH ₂	2.53, На	10b, 11a, 11b	9, 11	11b, 12	
		2.20, Hb	10a, 11a, 11b	9, 11		
11	26.1, CH ₂	2.19, На	10a, 10b, 12	9, 12, 13		
		2.15, Hb	10a, 10b, 12	9, 10, 12, 13	10a, 12, 13	
12	132.6, CH	5.51 ddd (14.9, 9.4, 4.6)	11a, 11b, 13	10, 11, 14	10a, 11b, 14	
13	128.7, CH	5.30 dd (14.9, 9.1)	12, 14	11, 12, 14, 15	11b, 20b	
14	50.2, CH	2.35	13, 15, 20a, 20b	12, 13, 15	12, 16	
15	69.9, CH	5.07 dq. (9.1, 6.1)	14, 16	1, 13, 14	20a, 20b	
16	18.8, CH ₃	1.30 d (6.1)	15	14, 15	14	
17	18.8, CH ₃	1.17 d (6.7)	4	3, 4, 5	1', 2, 3, 5	
18	17.1, CH ₃	0.97 d (6.7)	6	5, 6, 7	5, 8	
19	18.5, CH ₃	1.10 d (7.0)	8	7, 8, 9		
20	69.9, CH ₂	3.93 dd (9.8, 4.7), Ha	14, 20b	13, 14, 15, 1'	15, 1"	
		3.45 dd (9.8, 4.7), Hb	14, 20a	13, 14, 15, 1'	13, 15	
		β -D-alo	lgarose			
1'	101.2, CH	4.65 d (7.6)	2'	5, 5'	5, 5', 17	
2'	71.7, CH	3.48	1'	1'	4'b, 8'	
3'	84.6, C	-				
4'	41.2, CH ₂	1.85 br. d (13.7), Ha	4'b, 5'	2', 3', 7'	7'	
		1.55, Hb	4'a, 5'	5', 6'	2', 7'	
5'	67.1, CH	3.90	6', 4'a, 4'b	1'	1'	
6'	20.5, CH ₃	1.23 d (6.4)	5'	4', 5'		
7'	81.3, CH	4.38 q (6.4)	8'	2', 3', 4'	4'a, 4'b	
8'	13.6, CH ₃	1.58 d (6.4)	7'	3', 7'	2'	
9'	153.8, C	-				
β -D-mycinose						
1"	101.0, CH	4.55 d (7.9)	2''	20, 3"	20a, 5", 7"	
2"	81.9, CH	3.04 dd (7.9, 2.6)	1", 3"	1", 7"	4'', 7''	
3"	79.9, CH	3.74 t (2.6)	2", 4"	1", 2", 4", 5", 8"		
4''	72.7, CH	3.19 dd (9.0, 2.6)	3", 5"		2'', 6''	
5"	70.6, CH	3.51	4", 6"	3"	1''	
6''	17.8, CH ₃	1.25 d (6.1)	5"	4", 5"	4''	
7''	59.8, CH ₃	3.53 s		2"	1", 2"	
8''	61.7, CH ₃	3.61 s		3"		

Table S5. NMR (400 MHz, CDCl₃) assignments for **5**.

		()	37 0	
Position	$\delta_{ m C}$, mult.	$\delta_{ m H} \left(J ext{ in Hz} ight)^{*}$	¹ H, ¹ H-COSY	HMBC
		aglycone		
1	165.5, C	-		
2	121.5, CH	5.80 d (15.5)	3	4
3	150.7, CH	6.72 dd (15.5, 9.9)	2, 4	1
4	40.8, CH	2.61	3, 5, 17	
5	86.9, CH	3.38 br. d (9.0)	4, 6	18, 1'
6	34.1, CH	1.35	5, 7, 18	7, 8
7	38.0, CH ₂	1.78	6	
8	79.1, C	-		
9	212.7, C	-		
10	36.5, CH ₂	2.69, Ha	10b, 11a, 11b	
		2.22, Hb	10a, 11a, 11b	
11	26.0, CH ₂	2.27, Ha	10a, 10b, 11b, 12	
		2.19, Hb	10a, 10b, 11a	
12	132.0, CH	5.41 ddd (15.2, 9.3, 3.0)	11a, 13, 14	
13	129.3, CH	5.36 dd (15.2, 9.3)	12, 14	11
14	51.0, CH	2.32	12, 13, 15, 20a, 20b	
15	69.8, CH	5.10 dq. (9.0, 6.5)	14, 16	
16	18.8, CH ₃	1.29 d (6.5)	15	14, 15
17	20.6, CH ₃	1.18 d (6.4)	4	3, 4, 5
18	18.7, CH ₃	1.02 d (6.7)	6	5, 6
19	28.3, CH ₃	1.33 s		7, 8, 9
20	69.9, CH ₂	3.94 dd (9.4, 5.0), Ha	14, 20b	
		3.46 dd (9.4, 5.0), Hb	14, 20a	14
		β -D-decarboxylated aldge	garose	
1'	101.4, CH	4.64 d (7.6)	2'	5
2'	72.7, CH	3.62	1'	1'
3'	73.9, C	-		
4'	39.5, CH ₂	1.50 br. d (13.0), Ha	4'b, 5'	2', 3', 7'
		1.36, Hb	4'a, 5'	5'
5'	66.9, CH	3.95	6', 4'a, 4'b	
6'	20.6, CH ₃	1.18 d (6.4)	5'	4', 5'
7'	73.8, CH	3.65	8'	
8'	18.2, CH ₃	1.26 d (6.2)	7'	3', 7'
		β -D-mycinose		
1"	101.0, CH	4.56 d (7.9)	2''	20
2"	82.0, CH	3.04 dd (7.9, 2.9)	1", 3"	1", 7"
3"	79.9, CH	3.75 t (2.9)	2", 4"	1", 4", 5",
4''	72.6, CH	3.18 dd (9.2, 2.9)	3", 5"	5''
5"	70.7, CH	3.50	4", 6"	3"
6''	17.8, CH ₃	1.25 d (6.2)	5''	4", 5"
7''	59.8, CH ₃	3.53 s		2''
8''	61.7, CH ₃	3.62 s		3"

Table S6. NMR (400 MHz, CDCl₃) assignments for **6**.

Position	$\delta_{\rm C}$, mult.	$\delta_{ m H} \left(J ext{ in Hz} ight)^{*}$	¹ H, ¹ H-COSY	HMBC	
	aglycone				
1	165.6, C	-			
2	121.5, CH	5.74 d (15.9)	3	1, 4	
3	151.6, CH	6.62 dd (15.9, 10.0)	2, 4	1	
4	40.9, CH	2.61	3, 5, 17		
5	87.5, CH	3.24 br. d (9.0)	4, 6	18, 1'	
6	33.9, CH	1.34	5, 7, 18	7, 8	
7	37.6, CH ₂	1.87, Ha	6	8, 9	
		1.79, Hb		6, 18	
8	78.2, C	-			
9	201.8, C	-			
10	122.0, CH	6.19 d (15.0)	11	9, 12	
11	144.1, CH	7.31 dd (15.0, 10.3)	10, 12	12, 13	
12	133.0, CH	6.16 dd (14.0, 10.3)	11, 13	10, 11, 14	
13	143.3, CH	6.15 dd (14.0, 9.0)	12, 14	11, 12, 14	
14	51.3, CH	2.48	13, 15, 20a, 20b		
15	69.2, CH	5.06 dq. (10.1, 6.4)	14, 16	1	
16	18.6, CH ₃	1.37 d (6.4)	15	14, 15	
17	20.7, CH ₃	1.15 d (6.9)	4	3, 4, 5	
18	19.3, CH ₃	1.00 d (6.9)	6	5, 6, 7	
19	28.0, CH ₃	1.39 s		7, 8, 9	
20	68.4, CH ₂	4.04 dd (9.5, 3.6), Ha	14, 20b	13, 15	
		3.57 dd (9.5, 3.6), Hb	14, 20a	13, 14, 15	
		β -D-decarboxylated ald	garose		
1'	101.1, CH	4.58 d (7.8)	2'	5	
2'	72.7, CH	3.61	1'	1'	
3'	73.9, C	-			
4'	39.6, CH ₂	1.50 dd (13.5, 2.1), Ha	4'b, 5'	2', 3', 7'	
		1.34, Hb	4'a, 5'	5'	
5'	66.8, CH	3.93	6', 4'a, 4'b		
6'	20.7, CH ₃	1.17 d (6.2)	5'	4', 5'	
7'	73.9, CH	3.64	8'	3'	
8'	18.2, CH ₃	1.28 d (6.5)	7'	3', 7'	
		β -D-mycinose			
1''	101.1, CH	4.56 d (7.8)	2"	20	
2''	82.0, CH	3.04 dd (7.8, 2.8)	1", 3"	1", 7"	
3''	79.9, CH	3.76 t (2.8)	2", 4"	1", 4", 5", 8"	
4''	72.6, CH	3.18 dd (9.2, 2.8)	3", 5"		
5''	70.7, CH	3.51	4'', 6''	1''	
6''	17.8, CH ₃	1.27 d (6.6)	5"	4", 5"	
7''	59.8, CH ₃	3.52 s		2''	
8''	61.7, CH ₃	3.62 s		3''	

2. Acid hydrolysis of aldgamycin J (1)

A solution of **1** (7 mg) in CH₃OH (1 ml) was added to 0.5 M H₂SO₄ (2 ml), and the solution was kept at 80 °C for 2 hours (Figure S1). Then the solution was neutralized with Ba(OH)₂ saturated with H₂O and the precipitate was filtered off. The filtrate was partitioned with EtOAc (3 × 3 ml). The aqueous layer was concentrated and then dissolved in H₂O. The solution was analyzed using HPLC (Shimadzu Co. Ltd., Kyoto, Japan; Phenomenex 5 μ -NH₂, 4.6 × 250 mm, CH₃CN:H₂O = 85:15, 1 ml/min) with a ELSD detector (Grace Co. Ltd., Columbia, USA; tube temp: 80 °C, Gas: 1.2 ml/min) (Figure S2). Then the solution was prepared using HPLC (Shimadzu Co. Ltd., Kyoto, Japan; Phenomenex 5 μ -NH₂, 4.6 × 250 mm, CH₃CN:H₂O = 85:15, 1 ml/min) with a ELSD detector (Grace Co. Ltd., Columbia, USA; tube temp: 80 °C, Gas: 1.2 ml/min) (Figure S2). Then the solution was prepared using HPLC (Shimadzu Co. Ltd., Kyoto, Japan; Phenomenex 5 μ -NH₂, 4.6 × 250 mm, CH₃CN:H₂O = 85:15, 1 ml/min) with RI detector (Shimadzu Co. Ltd., Kyoto, Japan; Phenomenex 5 μ -NH₂, 4.6 × 250 mm, CH₃CN:H₂O = 85:15, 1 ml/min) with RI detector (Shimadzu Co. Ltd., Kyoto, Japan; Phenomenex 5 μ -NH₂, 4.6 × 250 mm, CH₃CN:H₂O = 85:15, 1 ml/min) with RI detector (Shimadzu Co. Ltd., Kyoto, Japan) to yield **1a** and **1b**. Compounds **1a** and **1b** were identified as decarboxylated aldgarose and mycinose respectively on the basis of HR-MS and ¹H NMR data. The optical rotations of **1a** and **1b** were [α]₀³⁰ -20.3 (*c* 0.3, H₂O) and [α]₀³⁰ -26.0 (*c* 0.2, H₂O), respectively.

Figure S1. The process of acid hydrolysis of aldgamycin J (1)

Figure S2. The aqueous layer of acid hydrolysis product of 1 was analyzed by HPLC with ELSD detector

3. The 1D and 2D NMR spectra of 1-8

The 1D and 2D NMR spectra of aldgamycin J (1)

Figure S4. ¹³C NMR (100 MHz, CDCl₃) spectrum for aldgamycin J (1)

Figure S6. HSQC (CDCl₃) spectrum for aldgamycin J (1)

Figure S7. ¹H-¹H COSY (CDCl₃) spectrum for aldgamycin J (1)

Figure S8. HMBC (CDCl₃) spectrum for aldgamycin J (1)

Figure S9. ROESY (CDCl₃) spectrum for aldgamycin J (1)

The 1D and 2D NMR spectra of aldgamycin K (2)

Figure S10. ¹H NMR (400 MHz, CDCl₃) spectrum for aldgamycin K (2)

Figure S11. ¹³C NMR (100 MHz, CDCl₃) spectrum for aldgamycin K (2)

Figure S12. DEPT135 (100 MHz, CDCl₃) spectrum for aldgamycin K (2)

Figure S13. HSQC (CDCl₃) spectrum for aldgamycin K (2)

Figure S14. ¹H-¹H COSY (CDCl₃) spectrum for aldgamycin K (2)

Figure S15. HMBC (CDCl₃) spectrum for aldgamycin K (2)

Figure S16. ROESY (CDCl₃) spectrum for aldgamycin K (2)

The 1D and 2D NMR spectra of aldgamycin L (3)

Figure S18. ¹³C NMR (100 MHz, CDCl₃) spectrum for aldgamycin L (3)

Figure S20. HSQC (CDCl₃) spectrum for aldgamycin L (3)

Figure S21. ¹H-¹H COSY (CDCl₃) spectrum for aldgamycin L (3)

Figure S22. HMBC (CDCl₃) spectrum for aldgamycin L (3)

Figure S23. ROESY (CDCl₃) spectrum for aldgamycin L (3)

The 1D and 2D NMR spectra of aldgamycin M (4)

Figure S24. ¹H NMR (400 MHz, CDCl₃) spectrum for aldgamycin M (4)

Figure S25. ¹³C NMR (100 MHz, CDCl₃) spectrum for aldgamycin M (4)

Figure S26. HSQC (CDCl₃) spectrum for aldgamycin M (4)

Figure S27. ¹H-¹H COSY (CDCl₃) spectrum for aldgamycin M (4)

Figure S28. HMBC (CDCl₃) spectrum for aldgamycin M (4)

Figure S29. ROESY (CDCl₃) spectrum for aldgamycin M (4)

The 1D and 2D NMR spectra of aldgamycin N (5)

Figure S30. ¹H NMR (400 MHz, CDCl₃) spectrum for aldgamycin N (5)

Figure S31. ¹³C NMR (100 MHz, CDCl₃) spectrum for aldgamycin N (5)

Figure S32. DEPT135 (100 MHz, CDCl₃) spectrum for aldgamycin N (5)

Figure S33. HSQC (CDCl₃) spectrum for aldgamycin N (5)

Figure S34. ¹H-¹H COSY (CDCl₃) spectrum for aldgamycin N (5)

Figure S35. HMBC (CDCl₃) spectrum for aldgamycin N (5)

Figure S36. ¹H NMR (400 MHz, CDCl₃) spectrum for aldgamycin O (6)

Figure S37. ¹³C NMR (100 MHz, CDCl₃) spectrum for aldgamycin O (6)

Figure S38. DEPT135 (100 MHz, CDCl₃) spectrum for aldgamycin O (6)

Figure S39. HSQC (CDCl₃) spectrum for aldgamycin O (6)

Figure S40. ¹H-¹H COSY (CDCl₃) spectrum for aldgamycin O (6)

Figure S41. HMBC (CDCl₃) spectrum for aldgamycin O (6)

The 1D and 2D NMR spectra of swalpamycin B (7)

Figure S42. ¹H NMR (400 MHz, CDCl₃) spectrum for swalpamycin B (7)

Figure S43. ¹³C NMR (100 MHz, CDCl₃) spectrum for swalpamycin B (7)

Figure S44. DEPT135 (100 MHz, CDCl₃) spectrum for swalpamycin B (7)

Figure S45. HSQC (CDCl₃) spectrum for swalpamycin B (7)

Figure S46. ¹H-¹H COSY (CDCl₃) spectrum for swalpamycin B (7)

Figure S47. HMBC (CDCl₃) spectrum for swalpamycin B (7)

The 1D and 2D NMR spectra of chalcomycin (8)

Figure S48. ¹H NMR (400 MHz, CDCl₃) spectrum for chalcomycin (8)

Figure S49. ¹³C NMR (100 MHz, CDCl₃) spectrum for chalcomycin (8)

Figure S50. DEPT135 (100 MHz, CDCl₃) spectrum for chalcomycin (8)

Figure S51. HSQC (CDCl₃) spectrum for chalcomycin (8)

Figure S52. ¹H-¹H COSY (CDCl₃) spectrum for chalcomycin (8)

Figure S53. HMBC (CDCl₃) spectrum for chalcomycin (8)