Supporting information for

Effect of Water on the Thermal Transition Observed in Poly(allylamine hydrochloride)-Poly(acrylic acid) Complexes

Yanpu Zhang,[†] Fei Li,[†] Luis D. Valenzuela,[†] Maria Sammalkorpi,[§] Jodie L. Lutkenhaus^{*†‡} [†] Artie McFerrin Department of Chemical Engineering and [‡] Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States ² Department of Chemistry, Aalto University, P.O. Box 16100, 00076 Aalto, Finland

jodie.lutkenhaus@tamu.edu

Figure S1. Digital images of PAH-PAA complexes ······S2
Proton nuclear magnetic resonance S2
Figure S2. ¹ H-NMR spectra for homopolymer PAA, PAA and PAH-PAA complexes ····S3
Figure S3. MDSC heating scans of dried and 15.3 wt% hydrated (PAH-PAA) _{3.5} S4
Figure S4. MDSC thermograms of hydrated homopolymer PAH, PAA and water •••••••S5
Table S1. Relaxation energy of PAH–PAA complexes S6
Figure S5. T_{tr} with number of water molecules per PAA, PAH, extrinsic PAA and neutral PAA repeat unit $S7$
Figure S6. PAH-PAA complex T_{i} as a function of PAA composition and PAA ionization \cdots S8

Figure S1. Digital images of PAH-PAA complexes from pH 1 to pH 11.

Proton nuclear magnetic resonance spectroscopy

Figure S2 shows the ¹H NMR spectra of (a) pure PAA, (b) pure PAH, (c) - (f) PAH-PAA complexes prepared from pH 3.5, 5.5, 7, and 9, respectively. The standard internal reference DSS chemical shift was assigned 0 ppm.¹ The spectra of pure PAA (Figure S2a) shows four distinct resonances centered at $\delta = 2.48$, 2.00, 1.83, 1.69 ppm. The resonance at 2.48 ppm is assigned to α hydrogen and the three resonances between 1.6 to 2.0 ppm are assigned to β hydrogen, which is assigned to the methylene resonances of triad distribution of the *rr*, *mr*, and *mm* sequences.² The spectral pattern here is consistent with previous reports with peaks shifting downfield due to lower pD value.³ For pure PAH (Figure S2b), the spectra shows three distinct resonances centered at $\delta = 3.14$, 2.13, 1.60 ppm, which are assigned to H_e, H_d and H_e marked in Figure S2.⁴

The PAH-PAA complex NMR spectra, as shown in Figure S2 (c)-(f), show both PAH and PAA characterized chemical shifts peaks. Two notable peaks represent the H_c and H_a marked in Figure S2. The composition of the complex can be calculated using equation S(1)

PAA mol% =
$$\frac{PAA}{(PAH+PAA)} = \frac{A(H_a)}{(\frac{1}{2}A(H_c)+A(H_a))}$$
 S(1)

Based on the spectra and equation S(1), the calculated PAA mol% were 62%, 56%, 53% and 50% for solutions of pH 3.5, 5.5,7 and 9, respectively.

Figure S2. ¹H-NMR spectra for homopolymer PAA, PAH and PAH-PAA complexes prepared

from pH 3.5, 5.5, 7 and 9 solutions.

Figure S3. (a) Modulated DSC heating scans of (a) dried and (b) 15.3% hydrated (PAH-PAA)_{3.5}. The 2nd heating scans are shown. The T_{tr} and ΔH (enthalpic relaxation change, shaded area in (b))

are labeled.

Figure S4. MDSC thermograms of 15.3% hydrated homopolymer PAH, PAA and water. The 2nd

heating scans are shown.

		∠ <i>∆H</i> (J/g)
sample	wt% water	
	15.207	2.91
pH 3.5	13.5%	3.81
	17.4%	3.36
	20%	2.98
	21.9%	1.37
	24.2%	0.52
рН 5.5	15.3%	3.58
	17.4%	3.44
	20%	3.14
	21.9%	2.48
	24.2%	1.98
	15.3%	3.33
рН 7	17.4%	3.64
	20%	3.08
	21.9%	2.73
	24.2%	2.46
рН 9	15.3%	3.56
	17.4%	3.58
	20%	3.08
	21.9%	2.77
	24.2%	2.00

Table S1. Enthalpy change associated with T_{tr} of PAH-PAA complexes prepared from different pH solutions.

Figures S5. T_{tr} with number of water molecules per (a) extrinsic PAA, (b) neutral PAA, (c)

PAA, (d) PAH repeat unit.

Figure S6. (PAH-PAA)_{3.5} complex T_{tr} as a function of (a) PAA composition and (b) PAA ionization.

Reference

1. Chollakup, R.; Beck, J. B.; Dirnberger, K.; Tirrell, M.; Eisenbach, C. D. Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride. *Macromolecules* **2013**, 46, (6), 2376-2390.

2. Chang, C.; Muccio, D. D.; St. Pierre, T. Determination of the tacticity and analysis of the pH titration of poly(acrylic acid) by proton and carbon-13 NMR. *Macromolecules* **1985**, 18, (11), 2154-2157.

3. Garces, F. O.; Sivadasan, K.; Somasundaran, P.; Turro, N. J. Interpolymer complexation of poly(acrylic acid) and polyacrylamide: structural and dynamic studies by solution- and solid-state NMR. *Macromolecules* **1994**, 27, (1), 272-278.

4. Wang, Z.; Möhwald, H.; Gao, C. Nanotubes Protruding from Poly(allylamine hydrochloride)-Graft-Pyrene Microcapsules. *ACS Nano* **2011**, *5*, (5), 3930-3936.