Supporting information for

Effect of Water on the Thermal Transition Observed

in Poly(allylamine hydrochloride)-Poly(acrylic acid)

 Complexes

 Complexes}

Yanpu Zhang, ${ }^{\dagger}$ Fei Li, ${ }^{\dagger}$ Luis D. Valenzuela, ${ }^{\dagger}$ Maria Sammalkorpi, ${ }^{\S}$ Jodie L. Lutkenhaus ${ }^{*} \dagger \neq$
${ }^{\dagger}$ Artie McFerrin Department of Chemical Engineering and ${ }^{\dagger}$ Department of Materials Science and Engineering, Texas A\&M University, College Station, Texas 77843, United States
${ }^{2}$ Department of Chemistry, Aalto University, P.O. Box 16100, 00076 Aalto, Finland jodie.lutkenhaus@tamu.edu
Figure S1. Digital images of PAH-PAA complexes ..S2

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra for homopolymer PAA, PAA and PAH-PAA complexes ${ }^{\cdots}$ S3
Figure S3. MDSC heating scans of dried and $15.3 \mathrm{wt} \%$ hydrated (PAH-PAA) $)_{3.5} \quad \cdots \cdots \cdots \cdot \mathrm{~S} 4$
Figure S4. MDSC thermograms of hydrated homopolymer PAH, PAA and water $\cdot \cdots \cdots \cdots \cdots \cdot$....... 5
Table S1. Relaxation energy of PAH-PAA complexes ... S6
Figure S5. $T_{t r}$ with number of water molecules per PAA, PAH, extrinsic PAA and neutral PAA
\qquad

Figure S6. PAH-PAA complex $T_{t r}$ as a function of PAA composition and PAA ionization \cdots S8

Figure S1. Digital images of PAH-PAA complexes from pH 1 to pH 11.

Proton nuclear magnetic resonance spectroscopy

Figure S2 shows the ${ }^{1} \mathrm{H}$ NMR spectra of (a) pure PAA, (b) pure PAH, (c) - (f) PAH-PAA complexes prepared from $\mathrm{pH} 3.5,5.5,7$, and 9 , respectively. The standard internal reference DSS chemical shift was assigned $0 \mathrm{ppm} .{ }^{1}$ The spectra of pure PAA (Figure S2a) shows four distinct resonances centered at $\delta=2.48,2.00,1.83,1.69 \mathrm{ppm}$. The resonance at 2.48 ppm is assigned to α hydrogen and the three resonances between 1.6 to 2.0 ppm are assigned to β hydrogen, which is assigned to the methylene resonances of triad distribution of the $r r, m r$, and $m m$ sequences. ${ }^{2}$ The spectral pattern here is consistent with previous reports with peaks shifting downfield due to lower pD value. ${ }^{3}$ For pure PAH (Figure S2b), the spectra shows three distinct resonances centered at $\delta=3.14,2.13,1.60 \mathrm{ppm}$, which are assigned to $\mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{d}}$ and H_{e} marked in Figure S2. ${ }^{4}$

The PAH-PAA complex NMR spectra, as shown in Figure S2 (c)-(f), show both PAH and PAA characterized chemical shifts peaks. Two notable peaks represent the H_{c} and H_{a} marked in Figure S2. The composition of the complex can be calculated using equation $S(1)$

$$
\begin{equation*}
\text { PAA } \operatorname{mol} \%=\frac{\text { PAA }}{(\mathrm{PAH}+\mathrm{PAA})}=\frac{\mathrm{A}\left(\mathrm{H}_{\mathrm{a}}\right)}{\left(\frac{1}{2} \mathrm{~A}\left(\mathrm{H}_{\mathrm{c}}\right)+\mathrm{A}\left(\mathrm{H}_{\mathrm{a}}\right)\right)} \tag{1}
\end{equation*}
$$

Based on the spectra and equation $\mathrm{S}(1)$, the calculated PAA mol \% were $62 \%, 56 \%, 53 \%$ and 50% for solutions of $\mathrm{pH} 3.5,5.5,7$ and 9 , respectively.

Figure S2. ${ }^{1}$ H-NMR spectra for homopolymer PAA, PAH and PAH-PAA complexes prepared from $\mathrm{pH} 3.5,5.5,7$ and 9 solutions.

Figure S3. (a) Modulated DSC heating scans of (a) dried and (b) 15.3% hydrated (PAH-PAA) $)_{3.5}$. The $2^{\text {nd }}$ heating scans are shown. The $T_{t r}$ and ΔH (enthalpic relaxation change, shaded area in (b)) are labeled.

Figure S4. MDSC thermograms of 15.3% hydrated homopolymer PAH, PAA and water. The $2^{\text {nd }}$ heating scans are shown.

Table S1. Enthalpy change associated with $T_{t r}$ of PAH-PAA complexes prepared from different pH solutions.

sample	wt\% water	$\Delta H(\mathrm{~J} / \mathrm{g})$
	15.3%	3.81
pH 3.5	17.4%	3.36
	20%	2.98
	21.9%	1.37
	24.2%	0.52
	15.3%	3.58
	17.4%	3.44
pH 5.5	20%	3.14
	21.9%	2.48
	24.2%	1.98
	15.3%	
	17.4%	3.33
pH 7	20%	3.64
	21.9%	3.08
	24.2%	2.73
		2.46
	15.3%	3.56
	17.4%	3.58
	20%	3.08
	21.9%	2.77
	24.2%	2.00

Figures S5. $T_{t r}$ with number of water molecules per (a) extrinsic PAA, (b) neutral PAA, (c)
PAA, (d) PAH repeat unit.

Figure S6. (PAH-PAA) $3_{3.5}$ complex $T_{t r}$ as a function of (a) PAA composition and (b) PAA ionization.

Reference

1. Chollakup, R.; Beck, J. B.; Dirnberger, K.; Tirrell, M.; Eisenbach, C. D. Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride.
Macromolecules 2013, 46, (6), 2376-2390.
2. Chang, C.; Muccio, D. D.; St. Pierre, T. Determination of the tacticity and analysis of the pH titration of poly(acrylic acid) by proton and carbon-13 NMR. Macromolecules 1985, 18, (11), 2154-2157.
3. Garces, F. O.; Sivadasan, K.; Somasundaran, P.; Turro, N. J. Interpolymer complexation of poly(acrylic acid) and polyacrylamide: structural and dynamic studies by solution- and solidstate NMR. Macromolecules 1994, 27, (1), 272-278.
4. Wang, Z.; Möhwald, H.; Gao, C. Nanotubes Protruding from Poly(allylamine hydrochloride)-Graft-Pyrene Microcapsules. ACS Nano 2011, 5, (5), 3930-3936.
