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Supplementary Materials Text 

Previously published evasion rates range from 0.01-10
4
 mmol m

-2
 d

-1
.Total evasion rates (mass transfer of 

dissolved CH4 plus ebullition-driven bubble transfer) measured by floating gas-flux collection chambers on eight 

Amazonian Rivers ranged from 0.01-40.0 mmol m
-2

 d
-1

, with diffusive-flux calculations of evasion of dissolved 

methane ranging from 0.01-19 mmol m
-2

 d
-1

 [Sawakuchi et al., 2014]. Diffusive-flux calculations of evasion based 

on seasonal dissolved- CH4 measurements on three rivers of the Ivory Coast ranged from 0.05 to 0.49 mmol m
-2

 d
-1

 

[Kone et al., 2010]. Calculated diffusive-flux evasion from the Kuparuk River in arctic Alaska was 0.36 mmol m
-2

 d
-

1
 [Kling et al., 1992]. Evasion rates of 0.03 to 0.82 mmol m

-2 
d

-1 
were measured in streams in eastern Tennessee 

using conservative solute and volatile gas tracers [Jones and Mulholland, 1998]. Total evasion rates measured with 

floating chambers at three tropical rivers downstream of reservoirs in French Guiana and Brazil ranged from about 

10-100 mmol m
-2

 d
-1

 [Guerin et al., 2006]. Evasion rates estimated with eddy models and direct measurements of 

CH4 loss for several Pacific Northwest rivers ranged from 0 to 20 mmol m
-2

 d
-1

 [Lilley et al., 1996]. An average 

evasion rate estimated for the Ogeechee River (Georgia) using statistical models was 6 mmol m
-2

 d
-1

 [Pulliam and 

Meyer, 1992]. A study of a 1
st
 order peatland stream in Scotland determined that CH4 evasion rates were 

inconsequential compared with other carbon sinks (<0.2% of CO2 evasion) [Hope et al., 2001]. Total evasion 

measured with floating chamber seasonally at four sites along the Sitka Stream in the Czech Republic ranged from 

0.09 to 2.3 mmol m
-2 

d
-1 

[Rulik et al., 2013].  

Previously published methane oxidation (MOX) rates range from 1 to 47,000 nmol L
-1

 d
-1

. MOX rates for 

the Hudson River using sequential CH4 decrease measurements ranged from 1-167 nmol L
-1

 d
-1

 [de Angelis and 

Scranton, 1993]. Along the Sinnamary River of French Guiana, MOX rates were 8-473 µmol L
-1

 d
-1 

[Guerin and 

Abril, 2007]. MOX rates calculated from 
14

CH4 at Randers Fjord in Denmark were 15 nmol L
-1

 d
-1

 [Abril and 

Iverson, 2002].  CH4 flux measurements, along with CH4 concentration and isotopic ration ( δ
13

CH4) dissolved in  

water and bubbles in the sediment, of tropical large rivers in the Amazon Basin showed that MOX accounted for 57-

82% of CH4 loss (conversely indicating 18-43% loss as evasion) [Sawakuchi et al., 2015]. 

Complete stream methane budgets have only been calculated for a few rivers. For the Sinnamary River 

(French Guiana) CH4 evasion accounted for about 50 % of total CH4 loss, MOX accounted for 40% of CH4 loss, 

with the remaining loss (10%) as downstream advection [Guerin and Abril, 2007]. A mass-balance analysis based 

on benthic and floating chamber measurements along a 45-m long (4.4 m wide) experimental section of Sitka 
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Stream (Czech Republic) indicated a benthic production rate accounted for 45% of total stream CH4, with surface-

water inflow and in-stream CH4 production rate accounting for the remaining 55% of stream CH4; evasion 

accounted for 40% of the loss of this stream CH4, with the remainder being transported downstream (no in-stream 

net MOX was observed)
 
[Rulik et al., 2013]. MOX in the Columbia River (Oregon and Washington) accounted for 

25% of CH4 loss, but was insignificant in the more turbulent Wenatchee River [Lilley et al., 1996]. 
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Supplementary Materials Figure A. Observed and simulated stream water krypton (Kr) concentrations in ccSTP g
-

1 
(cubic centimeters of gas at standard temperature and pressure   per gram of stream water) using a gas transfer 

velocity of 1.12 ± 0.2 m d
-1

. Atmospheric Kr was defined in the model as 8.7 x 10
-8

 ccSTP g
-1

, which is 

negligible compared to stream injection concentrations and did not have a material impact on atmospheric gas 

transfer. 
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Supplementary Materials Table 1. Model parameter values and uncertainty for simulation of CH4 loss from 

West Bear Creek 

Model parameter Symbol Value Units 

Coefficient of 

Variation 

(Uncertainty) 
a
Stream discharge at 200 m Q 480 ± 20 L s

-1
 4% 

b
Combined tributary and groundwater 

inflow qtrib + ql 67 ± 10 L/s 15% 
c
Net injected stream CH4 concentration 

(injected – naturally occurring) at 0 m Cs 3120 ± 125 nmol L
-1

 4% 

d
Stream width w 6.7 ± 0.76 m 11% 

e
Stream depth b 0.37 ± 0.05 m 28% 

f
KCH4 atmospheric gas transfer rate KCH4 1.17 ± 0.17 m d

-1
 15% 

aBased on a flowmeter measurement at 0 m and Br- dilution at 200 m; bCombined total gain from 0 to 
1800 m (28 L s-1 of tributary inflow plus 39 L s-1 of groundwater inflow; RSD determined from 

LINEST Excel function goodness of fit to linear trend; cEstimated based on measurements at 200 m;  

dValue and uncertainty based on mean and standard deviation of width at 8 locations; eValue and 
uncertainty based on mean and standard deviation of depth at 8 locations; fDetermined by calibrating 

to injected krypton; Uncertainty based on Monte Carlo simulations (n=1000) 

 
 

 

 


