Supporting Information

Utilization of organosolv waste waters as liquid phase for hydrothermal carbonization of chaff

Barbara Weiner^{a*}, Harald Wedwitschka^b, Juergen Poerschmann^a, Frank-Dieter Kopinke^a

AUTHOR ADDRESS

^aHelmholtz-Center for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, D-04318 Leipzig, Germany

^bDBFZ-Deutsches Biomasseforschungszentrum, Department of Biochemical Conversion, Torgauer Straße 116, D-04347 Leipzig, Germany

Corresponding Author

*Email: barbara.weiner@ufz.de. Phone: +49 3412351573.

Pages S1-S2

The higher heating values (HHV) of solid materials were calculated according to Channiwala *et al.* via the following formula,

$$HHV [MJ kg^{-1}] = 0.3491 * C + 1.178 * H - 0.1034 * O - 0.0151 * N - 0.0211 * ash$$

where inorganic constituents (ash residue) are considered in the balance via burning to 900°C. C, H, N are the weight percentages of these elements in the solid materials obtained by elemental analysis and O by calculations of the difference to 100%.

HHV improvements were calculated via:

HHV improvement [%] =
$$\frac{HHV_{hydrochar} - HHV_{feedstock}}{HHV_{feedstock}} * 100\%$$

The energy densification via:

Energy densification [%] =
$$\frac{HHV_{\text{hydrochar}}}{HHV_{\text{feedstock}}} * 100\%$$

The mass yield on a dry solid mass basis via:

Mass yield [%] =
$$\frac{mass_{recovered solids}}{mass_{solid feedstock}} * 100\%$$

The energy yield on a dry solid mass basis via:

$$Energy\ yield\ [\%] = \frac{mass_{\rm recovered\ solids}}{mass_{\rm solid\ feed\ stock}}*HHV\ improvement$$

References

Channiwala, S. A.; Parikh, P. P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. *Fuel* **2002**, *84*, 1051-1063.