Rhodium catalyzed asymmetric hydrogenation of α , β -unsaturated carbonyl compounds via a thiourea hydrogen bonding

Supporting Information

Jialin Wen^{\dagger}, Jun Jiang[‡], and Xumu Zhang^{* \dagger}

† Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey, 08854, United States

‡ College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China

Content

1. General Information.	3
2. Substrate synthesis.	3
3. General procedure for asymmetric hydrogenat ion	6
4. Isotope labeling experiment result	6
5. Control experiments and evaluation of each unit of ZhaoPhos.	7
6. Result of nonlinear effect study.	7
7. Characterization data for chiral carbonyl compounds.	8
8. NMR spectrum.	20

1. General Information.

All the reactions dealing with air- or moisture- sensitive compounds were carried out in a dry reaction vessel under nitrogen protection or in the nitrogen-filled glove box. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers without further purification. THF was dried with sodium chips and indicated by benzophenone. Other anhydrous solvents were purchased from Sigma-Aldrich and transferred by syringe. Purification of products was carried out by chromatography using silica gel from ACROS (0.06-0.20 mm). Thin layer chromatography was carried out using silica gel plates from Merk (GF254). [Rh(COD)Cl]₂ and other metal precursors were purchased from Heraeus.

¹H NMR, ¹³C NMR spectra were recorded on a Bruker Avance (400 MHz) spectrometer or on a Varian VNMRS 500 MHz spectrometer with CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts are reported in parts per million e (ppm, δ scale) downfield from TMS at 0.00 ppm and referenced to the CDCl₃ at 7.26 ppm for ¹H NMR or 77.0 ppm for ¹³C NMR. Data is reported as: multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant in hertz (Hz) and signal area integration in natural numbers. ¹³C NMR analyses were ran with decoupling. Enantiomeric excess values were determined with Agilent 1100 Series HPLC instrument. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Jasco P–2000 polarimeter at 589 nm.

2. Substrate synthesis.

2.1 Typical procedure for the synthesis of α , β -unsaturated esters^[1].

To a suspension of sodium hydride (60% dispersion in mineral oil, 10 mmol) in dry THF (20 mL) trimethyl phosphonoacetate (10 mmol) was added dropwise at 0 °C under argon atmosphere. After 30 min, the appropriate ketones (8 mmol) was added dropwise at the same temperature. The reaction mixture was then allowed to warm to room temperature and stirred under reflux for 24 h. After the mixture cooling in an ice bath, saturated aqueous ammonium chloride solution (20 mL) was then added dropwise. The aqueous phase was extracted with diethyl ether (2 x 50mL) and the combined organic phase was washed with brine (50mL), dried over sodium sulfate, and concentrated *in vacuo*. Flash chromatography (hexanes/ethyl acetate, 95:5) yielded ester as a clear oil with 60-80% yields.

2.2 Typical procedure for the synthesis of α,β-unsaturated amides.

A schlenk tube was charged with α,β -unsaturated ester (5.0 mmol), anhydrous calcium chloride (2 eq.). The tube was protected under nitrogen and ammonia in methanol solution (7N, 10 eq.) was added. The tube was sealed and heated at 100 °C. After stirring for 24h, the mixture was cooled to room temperature. Solvent was evaporated *in vacuo*. The residue was dissolved in 30ml water and extracted with dichloromethane (50ml×2). The combined organic layer was dried over sodium sulfate and concentrated. After purification by flash chromatography, α,β -unsaturated amide was obtain.

(*E*)-3-phenylbut-2-enamide **1a**

White soild; 0.53 g, 66 % yield; m.p. = 116-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.37-7.35 (m, 3H), 6.08 (d, *J* = 1.1 Hz, 1H), 5.81 (br, 1H), 5.62 (br, 1H), 2.56 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.92, 152.52, 142.52, 128.70, 128.50, 126.20, 118.74, 17.74; *m/z* (ESI–MS) 163.21 [M + H]⁺.

(E)-3-(o-tolyl)but-2-enamide 1b

White soild; 0.37 g, 42 % yield; m.p. = 92-94 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.12 (m, 3H), 7.07-7.06 (m, 1H), 5.70 (d, *J* = 1.3 Hz, 1H), 5.63 (br, 1H), 5.46 (br, 1H), 2.44 (d, *J* = 1.3 Hz, 3H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.47, 155.46, 144.08, 133.95, 130.38, 127.57, 127.14, 125.74, 120.50, 20.38, 19.65; *m/z* (ESI–MS) 176.72 [M + H]⁺.

(*E*)-3-(m-tolyl)but-2-enamide **1c**

White solid; 0.55 g, 63 % yield; m.p. = 79-83 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 6.97 (m, 4H), 6.06 (s, 1H), 5.85 (br, 1H), 5.62 (br, 1H), 2.54 (s, 3H), 2.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.03, 152.64, 142.57, 138.09, 129.43, 128.38, 126.92, 123.33, 118.59, 21.45, 17.76; *m*/*z* (ESI–MS) 176.73 [M + H]⁺.

(E)-3-(p-tolyl)but-2-enamide 1d

White solid; 0.61 g, 70 % yield; m.p. = 123-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 7.9 Hz, 2H), 6.06 (d, J = 1.2 Hz, 1H), 5.61 (br, 2H), 2.55 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.87, 152.51, 139.56, 138.80, 129.19, 126.10, 117.81, 21.16, ²² DM + 1M[±]

17.63; (ESI–MS) 176.83 [M + H]⁺.

(*E*)-3-(4-methoxyphenyl)but-2-enamide **1e**

White soild; 0.61 g, 64 % yield; m.p. = 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.41 (t, *J* = 5.7 Hz, 2H), 6.89 (d, *J* = 8.6 Hz, 2H), 6.04 (d, *J* = 1.0 Hz, 1H), 5.48 (br, 2H), 3.83 (s, 3H), 2.55 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.86, 160.20, 152.05, 134.68, 127.48, 116.89, 113.85, 55.34, 17.50; *m/z* (ESI–MS) 192.71 [M + H]⁺.

(*E*)-3-(4-fluorophenyl)but-2-enamide **1f**

White soild; 0.64 g, 51 % yield; m.p. = 145-155 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, J = 7.8, 5.6 Hz, 2H), 7.05 (t, J = 8.4 Hz, 2H), 6.03 (s, 1H), 5.56 (br, 2H), 2.54 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.53, 164.28, 161.81, 151.41, 138.53, 127.95 (d, J = 8.2 Hz), 118.58, 115.41 (d, J = 21.5 Hz), 17.78; m/z (ESI–MS) 180.45 [M + H]⁺.

(*E*)-3-(4-chlorophenyl)but-2-enamide **1g**

White soild; 0.60 g, 61 % yield; m.p. = 146-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.29 (m, 4H), 6.05 (d, J = 1.2 Hz, 1H), 5.52 (br, 2H), 2.53 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.31, 151.23, 140.88, 134.69, 128.68, 127.50, 118.95, 17.64; m/z (ESI–MS) 196.55, 198.30 [M + H]⁺.

(E)-3-(4-bromophenyl)but-2-enamide 1h

White soild; 0.78 g, 65 % yield; m.p. = 151-159 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.44 (m, 2H), 7.38 – 7.27 (m, 2H), 6.06 (d, *J* = 1.2 Hz, 1H), 5.61 (br, 2H), 2.53 (d, *J* = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.44, 151.25, 141.34, 131.65, 127.81, 122.88, 119.03, 17.59; *m*/*z* (ESI–MS) 240.92, 242.81 [M + H]⁺.

(E)-3-phenylhept-2-enamide 1i

White soild; 0.34 g, 33 % yield; m.p. = 56-58 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.16 (m, 5H), 5.87 (s, 1H), 5.44 (br, 1H), 4.92 (br, 1H), 2.41 (t, *J* = 6.6 Hz, 2H), 1.34 (m, 4H), 0.87 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.64, 153.45, 139.45, 128.85, 128.28, 127.37, 121.62, 40.02, 29.37, 22.16, 13.79; *m/z* (ESI–MS) 205.41 [M + H]⁺.

(E)-3-(thiophen-2-yl)but-2-enamide 1j

White soild; 0.39 g, 47 % yield; m.p. = 125-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 4.0 Hz, 2H), 7.04 (dd, *J* = 5.0, 3.8 Hz, 1H), 6.20 (d, *J* = 1.2 Hz, 1H), 5.43 (br, 2H), 2.61 (d, *J* = 1.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.25, 145.79, 145.34, 127.90, 126.36, 126.28, 115.67, 17.08; *m*/*z* (ESI–MS) 168.78 [M + H]⁺.

(E)-3-(naphthalen-2-yl)but-2-enamide $1\mathbf{k}$

White soild; 0.58 g, 55 % yield; m.p. = 147-156 °C; ¹H NMR (400 NH_2

MHz, CDCl₃) δ 7.91 (d, J = 1.4 Hz, 1H), 7.89 – 7.81 (m, 3H), 7.57 (dd, J = 8.6, 1.9 Hz, 1H), 7.55 – 7.46 (m, 2H), 6.22 (d, J = 1.3 Hz, 1H), 5.56 (br, 2H), 2.68 (d, J = 1.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 168.69, 152.40, 139.67, 133.37, 133.20, 128.41, 128.15, 127.60, 126.57, 126.51, 125.68, 123.96, 118.99, 17.75; m/z (ESI–MS) 213.26 [M + H]⁺.

3. General procedure for asymmetric hydrogenation.

In the nitrogen-filled glovebox, solution of $[Rh(COD)Cl]_2$ (4.9 mg, 0.01 mmol) and ligand (2.1 eq.) in 5.0 ml anhydrous solvent was stirred at room temperature for 30 min. A specified volume of the resulting solution (0.5 ml, 1% Rh catalyst) was transferred by syringe to a Score-Break ampule charged with substrate solution (0.2 mmol in 0.5 ml). The ampule was placed into an autoclave, which was then charged with 50 atm H₂. The autoclave was stirred at desired temperature for the indicated period of time. After release of hydrogen gas, the resulting mixture was concentrated under vacuum. The residue passed through a silica plug to remove metal complex and then was concentrated under reduced pressure. The crude product was analysed by ¹H NMR to determine the conversion. The enantiomeric excess was determined by GC or HPLC analysis. Absolute configuration was assigned according to literatures^[2].

4. Isotope labeling experiment result.

5. Control experiments and evaluation of each unit of ZhaoPhos.

We synthesized a series of analogues of **ZhaoPhos** and conducted control experiments to evaluate the collaboration manner of each unit of **ZhaoPhos**. Urea bisphosphine ligand **L3** only gives both lower conversion and ee. Compared to H (**L6**), more electron-withdrawing trifluoromethyl group at 3- and 5- position on the phenyl ring increases the enantioselectivity, which is probably due to the stronger acidity of N-H proton on the thiourea. Furthermore, monophosphine ligand **L5** and the mixture of ferrocene-thiourea compound **L6** with triphenylphosphine can hardly catalyzed the hydrogenation reaction. On the other hand, the mixture of thiourea molecule and bisphosphine-Ugi's amine **L7** failed to show catalytic activity. These results (**ZhaoPhos** vs **L5 or L6** with PPh₃ and **L7**/thiourea) demonstrate the importance of a covalent incorporation of bisphosphine moiety and thiourea. The idea of secondary offers an alternative strategy for asymmetric hydrogenation.

6. Result of nonlinear effect study.

Table S2. Nonlinear effects for Rh/ZhaoPhos catalyzed asymmetric hydrogenation of 1a.

Entry	ee of ZhaoPhos	conversion	ee
1	0		8%
2	10%		16%
3	20%		26%
4	40%	> 05 %	41%
5	60%	> 93 %	60%
6	80%		78%
7	90%		84%
8	100%		95%

7. Characterization data for chiral carbonyl compounds.

(*R*)-3-phenylbutanamide **2a**

White solid; m.p. = 69-71 °C; 31.6 mg, yield: 97%, 95% ee; $[\alpha]_D^{22}$ = -29.0 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 220 nm; t_R = 11.0 min (minor), 13.3 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.29 (m, 2H), 7.26 – 7.18 (m, 3H), 5.67 (br, 1H),

5.39 (br, 1H), 3.27 (dd, J = 14.4, 7.2 Hz, 1H), 2.47 (m, 2H), 1.32 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.31, 145.77, 128.65, 126.76, 126.51, 44.80, 36.78, 21.77; *m*/*z* (ESI–MS) 164.0 [M + H]+.

Peak # 	RetTime Typ [min]	e Width [min]	Area mAU *s	Height [mAU]	Area %
1 2	11.047 MM 13.265 MM	0.2554	1021.0651 3.95868e4	2 66.63529 1394.06787	2.5145 97.4855
Total	s:		4.06078e4	1460.70316	

(*R*)-3-(o-tolyl)butanamide **2b**

)
	`NH₂

White solid; m.p. = 104-105 °C; 7.1 mg, yield: 20%, 92% ee; $[\alpha]_D^{22}$ = -29.5 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 10.8 min (minor), 11.8 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.10 (m, 4H), 5.58 (br, 1H), 5.31 (br, 1H), 3.55 (d,

J = 7.4 Hz, 1H), 2.52 (m, 1H), 2.48 – 2.30 (m, 4H), 1.28 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.29, 143.97, 135.54, 130.63, 126.36, 126.17, 124.95, 43.98, 31.72, 21.37, 19.51; m/z (ESI–MS) 179.27 [M + H]⁺.

Signal 1: VWD1 A, Wavelength=208 nm

Peak #	RetTime [min]	Туре	Width [min]	Ar mAU	*s	Heiq (mAU	ght]	Area %
1	10.847	MM	0.2567	723.	68524	46.9	98661	4.1734
2	11.866	vv	0.3183	1.661	68e4	745.3	33368	95.8266
Total	s:			1.734	05e4	792.3	32029	

(*R*)-3-(m-tolyl)butanamide **2c**

White solid; m.p. = 61-64 °C; 33.8 mg, yield: 95%, 96% ee; $[\alpha]_D^{22}$ = -30.0 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 10.4 min (minor), 12.1 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.19 (m, 1H), 7.03 (m, 3H), 5.64

(br, 1H), 5.34 (br, 1H), 3.23 (d, J = 7.2 Hz, 1H), 2.45 (m, 2H), 2.33 (s, 3H), 1.31 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.23, 145.74, 138.23, 128.55, 127.61, 127.28, 123.68, 44.82, 36.75, 21.86, 21.48; m/z (ESI–MS) 179.27 [M + H]⁺.

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *:	Hei s [mAU	.ght]	Area %
1 2	10.432 12.069	MM MM	0.2711 0.5128	1219.29 5.63819	370 74. e4 1832.	94867 54810	2.1168 97.8832
Total	ls :			5.76012	e4 1907.	49677	

(R)-3-(p-tolyl)butanamide 2d

White solid; m.p. = 113-114 °C; 34.5 mg, yield: 97%, 96% ee; $[\alpha]_D^{22}$ = -30.7 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 97:3; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 18.5 min (minor), 24.6 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.07 (m, 4H), 5.54 (br, 1H),

5.30 (br, 1H), 3.23 (dd, J = 14.3, 7.2 Hz, 1H), 2.57 – 2.37 (m, 2H), 2.32 (d, J = 6.8 Hz, 3H), 1.31 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.21, 142.72, 136.03, 129.33, 126.62, 44.91, 36.41, 21.92, 20.99; m/z (ESI–MS) 179.37 [M + H]⁺.

(*R*)-3-(4-methoxyphenyl)butanamide 2e

White solid; m.p. = 106-108 °C; 37.8 mg, yield: 96%, 96% ee; $[\alpha]_D^{22}$ = -26.1 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 18.3 min (minor), 23.9 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.04 (m, 2H), 6.96 – 6.76 (m, 2H), 5.57 (br, 1H), 5.31 (br, 1H), 3.78 (s, 3H), 3.23 (dd, *J* =

14.3, 7.2 Hz, 1H), 2.44 (m, 2H), 1.30 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.24, 158.15, 137.81, 127.68, 114.01, 55.25, 45.09, 36.02, 21.99; m/z (ESI–MS) 194.77 [M + H]⁺.

Peak #	RetTime [min]	Туре	Width [min]	Aı mAU	rea *s	Heiq [mAU	ght]	Area %
1	18.283	MM	0.4871	281.	18048	9.6	51995	1.9140
2	23.895	MM	0.8411	1.440)95e4	285.5	51715	98.0860
Total	ls :			1.469	07e4	295.3	13710	

(R)-3-(4-fluorophenyl)butanamide 2f

White solid; m.p. = 73-75 °C; 32.9 mg, yield: 91%, 94% ee; $[\alpha]_D^{22}$ = -30.5 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 13.2 min (minor), 15.0 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.24 – 7.11 (m, 2H), 7.07 – 6.87 (m, 2H), 5.79 (br, 1H), 5.42 (br, 1H), 3.28 (dd, *J* = 14.3, 7.2 Hz, 1H),

2.63 – 2.29 (m, 2H), 1.30 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.01, 161.45 (d, J = 244.2 Hz), 141.43 (d, J = 3.2 Hz), 128.17 (d, J = 7.8 Hz), 115.34 (d, J = 21.1 Hz), 44.89, 36.02, 21.85; m/z (ESI–MS) 182.62 [M + H]⁺.

Peak RetTime Type Width Height Area Area [min] [min] mAU *s [mAU 8 -------1-1 13.207 MM 0.4721 933.37561 32.95427 2.8757 15.016 MM 0.5176 3.15244e4 1015.01727 97.1243 3.24578e4 1047.97154 Totals :

(R)-3-(4-chlorophenyl)butanamide 2g

White solid; m.p. = 96-97 °C; 37.8 mg, yield: 95%, 95% ee; $[\alpha]_D^{22}$ = -31.6 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 12.3 min (minor), 14.3 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.07 (m, 4H), 5.38 (d, *J* = 74.5 Hz, 2H), 3.29 (dd, *J* = 14.3, 7.1 Hz, 1H), 2.43 (m, 2H), 1.31 (d,

J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.56, 144.23, 132.13, 128.72, 128.17, 44.65, 36.14, 21.66; m/z (ESI–MS) 199.45, 201.76 [M + H]⁺.

Peak	RetTime	Туре	Width	Ar	ea	Hei	ght	Area
#	[min]		[min]	mAU	*s	(mAU]	%
1	12.248	MM	0.2833	611.	44568	35.	96681	1.4555
2	14.323	MM		4.139	85e4	1326.	08508	98.5445
Total	ls :			4.201	00e4	1362.	05190	

White solid; m.p. = 93-94 °C; 29.6 mg, yield: 61%, 90% ee; $[\alpha]_D^{22}$ = -28.0 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 12.8 min (minor), 15.1 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (m, 2H), 7.11 (m, 2H), 5.49 (br, 2H), 3.26 (dd, *J* = 14.1, 7.0 Hz, 1H), 2.50 – 2.36 (m, 2H), 1.30

(d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.68, 144.78, 131.67, 128.58, 120.15, 44.56, 36.19, 21.61; m/z (ESI–MS) 243.08, 244.56 [M + H]⁺.

(S)-3-phenylheptanamide 2i

3.24435e4

986.69962

Totals :

White solid; m.p. = 65-68 °C; 12.6 mg, yield: 31%, 89% ee; $[\alpha]_D^{22} = 12.1$ (c = 0.1, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 8.8 min (major), 10.9 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 2H), 7.25 – 7.13 (m, 3H), 5.33 (br,

J = 95.1 Hz, 2H), 3.06 (m, 1H), 2.48 (m, 2H), 1.76 – 1.55 (m, 2H), 1.34 – 1.03 (m, 4H), 0.82 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.19, 144.30, 128.58, 127.45, 126.50, 43.83, 42.64, 35.97, 29.54, 22.57, 13.90; m/z (ESI–MS) 205.19 [M + H]⁺.

Peak	RetTime	Туре	Width	A	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU	1	8
1	8.797	MM	0.3178	1.46	729e4	769.	49799	94.5205
2	10.854	MM	0.2111	850	.60370	67.	15005	5.4795
Total	s:			1.55	235e4	836.	64803	

(R)-3-(thiophen-2-yl)butanamide 2j

White solid; m.p. = 79-82 °C; 31.9 mg yield: 94%, 94% ee; $[\alpha]_D^{22} = -27.1$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 12.1 min (minor), 13.7 min (major); ¹H NMR

(400 MHz, CDCl₃) δ 7.14 (m, 1H), 7.00 – 6.80 (m, 2H), 5.47 (br, 2H), 3.62 (dd, *J* = 14.0, 7.0 Hz, 1H), 2.65 – 2.54 (m, 1H), 2.46 (m, 1H), 1.41 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.50 (s), 149.81 (s), 126.72 (s), 123.19, 123.04, 45.67, 32.32, 22.68; *m/z* (ESI–MS) 170.81 [M + H]⁺.

Totals: 1.52030e4 553.93401

(*R*)-3-(naphthalen-2-yl)butanamide **2k**

0.3104 447.85587

0.4641 1.47551e4

24.04399

529.89001

2.9458

97.0542

12.128 MM

13.728 MM

2

White solid; m.p. = 104-105 °C; 41.5 mg, yield: 98%, 93% ee; $[\alpha]_D^{22}$ = -24.1 (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 97:3; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 26.9 min (minor), 42.9 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.74 (m, 3H), 7.66

(s, 1H), 7.54 – 7.34 (m, 3H), 5.48 (br, 2H), 3.44 (dd, J = 14.2, 7.1 Hz, 1H), 2.54 (m, 2H), 1.40 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.20, 143.15, 133.57, 132.34, 128.33, 127.65, 127.60, 126.09, 125.50, 125.35, 125.06, 44.78, 36.90, 21.76; m/z (ESI–MS) 213.29 [M + H]⁺.

Signal 1: VWD1 A, Wavelength=208 nm

Peak #	RetTime [min]	Туре	Width [min]	A mAU	rea *s	Hei [mAU	ght 1	Area %
1	26.899	MM	0.6631	1515	.20068	38.	08642	3.4768
2	42.943	MM	1.6392	4.20	646e4	427.	68735	96.5232
Total	s :			4.35	798e4	465.	77377	

(R)-methyl 3-phenylbutanoate 4a

Colorless liquid; 34.5 mg, yield: 97%, 96% ee; $[\alpha]_D^{22} = -27.3$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 208 nm; t_R = 14.0 min (major), 17.3 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 3.62 (s, 3H), 3.28

(dd, J = 14.9, 7.1 Hz, 1H), 2.59 (qd, J = 15.2, 7.6 Hz, 2H), 1.30 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.85, 145.72, 128.52, 126.72, 126.42, 51.50, 42.75, 36.44, 21.78. (*R*)-methyl 3-(m-tolyl)butanoate **4b**

Colorless liquid; 34.9 mg, yeld: 91%, 97% ee; $[\alpha]_D^{22} = -16.1$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 208 nm; t_R = 9.6 min (major), 11.4 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.18 (m, 1H), 7.02 (m, 3H), 3.63 (s, 3H), 3.24 (dd, *J*

= 15.1, 7.0 Hz, 1H), 2.57 (m, 2H), 2.33 (s, 3H), 1.28 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.94, 145.72, 138.05, 128.42, 127.55, 127.18, 123.68, 51.51, 42.75, 36.36, 21.79, 21.49.

Peak #	RetTime [min]	Туре	Width [min]	Ar mAU	ea *s	Hei [mAU	ght] 	Area ۶
1	9.572	MM	0.3292	4.955	95e4	2508.	79517	98.6147
2	11.396	MM	0.2350	696.	17810	49.	37650	1.3853
Total	s:			5.025	56e4	2558.	17166	

Peak RetTime Type	Width Area	Height	Area
# [min]	[min] mAU *s	[mAU]	%
1 14.020 MM	0.4127 3.48295e4	1406.67395	98.1474
2 17.380 MM	0.3325 657.42725	32.95865	1.8526
Totals :	3.54869e4	1439.63260	

(*R*)-methyl 3-(p-tolyl)butanoate 4c

Colorless liquid; 37.2 mg, yield: 97%, 95% ee; $[\alpha]_D^{22} = -16.8$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 208 nm; t_R = 14.5 min (major), 16.4 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 4H), 3.62 (s, 3H), 3.25 (m, 1H), 2.57 (m, 2H),

2.31 (s, 3H), 1.28 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.94, 142.72, 135.90, 129.20, 126.58, 51.50, 42.84, 36.03, 21.88, 21.01.

Signal 1: VWD1 A, Wavelength=208 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *	s	Hei [mAU	ght]	Area ۴
1	14.527	MM	0.5704	5.00369	e4	1462.	16687	97.4542
2	16.438	MM	0.4320	1307.13	208	50.	42678	2.5458
Total	ls :			5.13440)e4	1512.	59365	

(*R*)-methyl 3-(4-methoxyphenyl)butanoate 4d

Colorless liquid; 40.7 mg yield: 98%, 95% ee; $[\alpha]_D^{22} = -12.4$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 208 nm; t_R = 23.7 min (major), 31.4 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.08 (m, 2H), 6.91 – 6.79 (m, 2H), 3.78 (s, 3H), 3.62 (s, 3H), 3.23 (m, 1H), 2.55 (m, 2H),

1.27 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.93, 158.08, 137.81, 127.63, 113.86, 77.36, 77.04, 76.72, 55.24, 51.49, 43.01, 35.66, 21.96.

Signal 1: VWD1 A, Wavelength=208 nm

Peak RetT # [mi	ime Type n]	Width [min]	Are mAU	a *s	Heig [mAU	jht]	Area %
1 23. 2 31.	726 MM 416 MM	0.7174	2.3980	0e4 4534	557.0 12.5	07166 52320	97.6609 2.3391
Totals :			2.4554	4e4	569.5	59486	

(*R*)-methyl 3-(4-fluorophenyl)butanoate **4e**

Colorless liquid; 37.2 mg, yield: 95%, 97% ee; $[\alpha]_D^{22} = -10.9$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 99:1; flow rate = 0.6 mL/min; UV detection at 208 nm; t_R = 19.2 min (major), 20.7 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 2H), 7.03 – 6.93 (m, 2H), 3.62 (d, *J* = 6.9 Hz, 3H), 3.27 (dd, *J* = 14.5, 7.2 Hz, 1H), 2.66 – 2.48 (m, 2H), 1.28 (d, *J* =

7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.65, 161.45 (d, J = 244.1 Hz), 141.32, 128.12 (d, J = 7.8 Hz), 115.25 (d, J = 21.1 Hz), 51.53, 42.85, 35.78, 21.96.

Peak	RetTime	Type	Width	Are	a	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	19.189	MM	0.5451	5.6774	0e4	1736.	04346	98.5870
2	20.729	MM	0.3745	813.7	3761	36.	21154	1.4130
Total	s :			5.7587	8e4	1772.3	25499	

(*R*)-methyl 3-(4-chlorophenyl)butanoate 4f

Colorless liquid; 41.1 mg, yield: 97%, 97% ee; $[\alpha]_D^{22} = -12.7$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 99:1; flow rate = 0.6 mL/min; UV detection at 208 nm; t_R = 19.1 min (major), 20.4 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.25 – 7.19 (m, 2H), 3.62 (s, 3H), 3.28 (dd, *J* = 15.0, 7.0 Hz, 1H), 2.59 (m, 2H), 1.30

(d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.86, 145.71, 128.52, 126.72, 126.43, 51.51, 42.75, 36.44, 21.78.

Signal 1: VWD1 A, Wavelength=208 nm

Peak	RetTime	Type	Width	Ar	ea	Hei	ght	Area
#	[min]		[min]	mAU	*s	(mAU]	%
1	19.094	MM	0.4844	4.307	21e4	1482.	00610	98.6131
2	20.442	MM	0.3806		75427	26.	52571	1.3869
Total	s:			4.367	78e4	1508.	53181	

White solid; 26.2 mg, yield: 51%, 94% ee; $[\alpha]_D^{22} = -16.5$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 99:1; flow rate = 0.6 mL/min; UV detection at 208 nm; t_R = 19.5 min (major), 21.3 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.21 (m, 2H), 3.62 (s, 3H), 3.28 (dd, *J* = 14.6, 7.2 Hz, 1H), 2.59 (m, 2H), 1.30 (d,

J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.93, 145.72, 128.54, 126.75, 126.44, 51.62, 42.79, 36.46, 21.82.

(*R*)-methyl 3-(4-(trifluoromethyl)phenyl)butanoate **4h**

Colorless liquid; 47.7 mg, yield: 97%, 96% ee; $[\alpha]_D^{22} = -12.2$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 99:1; flow rate = 0.6 mL/min; UV detection at 208 nm; t_R = 11.5 min (major), 12.7 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (m, 2H), 7.34 (m, 2H), 3.62 (s, 3H), 3.35 (dd, J = 14.4, 7.2 Hz, 1H), 2.69 – 2.53 (m, 2H), 1.31

(d, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.37, 149.71, 128.77 (dd, *J* = 65.3, 33.1 Hz), 127.14, 125.49 (q, *J* = 3.7 Hz), 51.61, 42.27, 36.29, 21.71.

Peak RetTime Type # [min]	Width [min]	Area mAU *s	Height [mAU]	Area %
1 11.519 MM	0.4144	6.76110e4	2719.33838	98.1080
2 12.701 MM	0.2798	1303.90015	77.66666	1.8920
Totals :		6.89149e4	2797.00504	

(R)-methyl 3-(thiophen-2-yl)butanoate 4i

	0
	<u> </u>
$\langle \sim \rangle$	
Ls	

Colorless liquid; 35.0 mg, yield: 95%, 96% ee; $[\alpha]_D^{22} = -7.2$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 99:1; flow rate = 0.6 mL/min; UV detection at 208 nm; $t_{R} = 22.6 \text{ min (major)}$, 26.8 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.13 (m, 1H), 7.00 – 6.70 (m, 2H), 3.78 – 3.52 (m, 4H), 2.63 (m, 2H), 1.38

(d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.37, 149.64, 126.61, 122.99, 122.88, 51.63, 43.67, 31.96, 22.63.

98.1596

1.8404

4.00129

7584.97975 223.05674

0.5665 7445.38916 219.05545

0.5814 139.59059

22.643 MM

26.836 MM

1

Totals :

Colorless liquid; 29.3 mg, yield: 72%, 96% ee; $[\alpha]_D^{22} = 2.1$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 208 nm; $t_{R} = 7.9 \text{ min (major)}, 11.5 \text{ min (minor)}; {}^{1}\text{H NMR (400 MHz, CDCl_3)}$ δ 7.20 – 7.01 (m, 4H), 3.71 (s, 3H), 3.35 (m, 1H), 2.84 – 2.66 (m, 3H), 2.60 –

2.49 (m, 1H), 1.95 – 1.64 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 173.29, 139.24, 137.15, 129.31, 128.27, 126.05, 125.84, 51.61, 41.83, 34.55, 29.53, 28.12, 19.48.

Signal 1: VWD1 A, Wavelength=208 nm

Peak RetTime Ty	ype Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	%
1 7.902 MP	4 0.2148	2.99045e4	2319.95996	98.4228
2 11.493 MP	4 0.2709	479.19977	29.47843	1.5772
Totals :		3.03837e4	2349.43839	

(*R*)-methyl 3-(naphthalen-2-yl)butanoate 4k

				0	
			ſ		<u>`</u> 0́
	\searrow		\square		
\triangleleft	\nearrow	//	I		

White solid; 44.2 mg, yield: 97%, 96% ee; $[\alpha]_D^{22} = -19.1$ (c = 0.2, \sim CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 99:1; flow rate = 1 mL/min; UV detection at 208 nm; t_R = 42.7 min (major), 51.2 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.75 (m, 3H), 7.65 (s,

1H), 7.52 – 7.33 (m, 3H), 3.61 (s, 3H), 3.45 (dd, J = 14.7, 7.2 Hz, 1H), 2.68 (m, 2H), 1.38 (d, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.83, 143.17, 133.59, 132.35, 128.19, 127.68, 127.61, 126.00, 125.48, 125.42, 124.94, 51.55, 42.68, 36.57, 21.82.

Signal 1: VWD1 A, Wavelength=208 nm

Peak	RetTime	Туре	Width	Ar	ea	Heiq	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	%
1	42.671	MM	1.9949	8.140	61e4	680.1	13202	97.9568
2	51.165	MM	1.5042	1697.	95483	18.8	31376	2.0432
Total	ls :			8.310	41e4	698.9	94578	

(R)-ethyl 3-phenylbutanoate 41

Colorless liquid; 31.1 mg, yield: 81%, 95% ee; $[\alpha]_D^{22} = -9.0$ (c = 0.2, CHCl₃); The enantiomeric excess was determined by HPLC on Chiralpak OJ-H column, hexane: isopropanol = 98:2; flow rate = 1.0 mL/min; UV detection at 208 nm; t_R = 11.0 min (major), 12.4 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.12 (m, 5H), 4.07 (q, *J* = 7.1 Hz, 2H), 3.36 –

3.17 (m, 1H), 2.57 (m, 2H), 1.30 (d, *J* = 7.0 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.41, 145.76, 128.48, 126.78, 126.39, 60.27, 43.01, 36.53, 21.82, 14.18.

Signal	1:	VWD1	A,	Wavelength=208	nm

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	mAU *s	[mAU]	8
-				
1 11.027 MM	0.3023	2.38106e4	1312.65613	98.0647
2 12.372 MM	0.2540	469.90295	30.83426	1.9353
Totals :		2.42805e4	1343.49039	

8. NMR spectrum.

Reference:

- [1] R. Wu, M. G. Beauchamps, J. M. Laquidara, J. R. Sowa, *Angewandte Chemie International Edition* **2012**, *51*, 2106-2110.
- (a) W. Tang, W. Wang, X. Zhang, Angewandte Chemie International Edition 2003, 42, 943-946; (b) S. Oi, A. Taira, Y. Honma, Y. Inoue, Organic Letters 2003, 5, 97-99.