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1. Chemicals 

Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, AJAX Chemicals, >98%), cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O, 

Sigma-Aldrich, ≥98%), Nickel(II) nitrate hexahydrate (Ni(NO3)2·6H2O, Sigma-Aldrich, ≥98.5%), potassium 

hydroxide (KOH, Sigma-Aldrich, 90%), chloroplatinic acid hexahydrate (H2PtCl6·6H2O, Sigma-Aldrich, ≥37.5% Pt 

basis), platinum on carbon (Pt/C, Sigma-Aldrich, 10wt.% Pt basis) hexadecyltrimethylammonium bromide (CTAB, 

Sigma-Aldrich, ≥99%), 2-methylimidazole (Sigma-Aldrich, 99%), tannic acid (TA, Sigma-Aldrich, ACS reagent), 

resorcinol (Sigma-Aldrich, 97%), formaldehyde (HCHO, BDH Chemicals, 37% in H2O, contains 10-15% methanol as 

stabilizer), Methanol (MeOH, Merck, >99.9%), hexane (Merck, ≥98%), 2-propanol (HiPerSolv, 99.8%), mesitylene 

(Merck, >98%), 1-chloro-2-nitrobenzene (Sigma-Aldrich, ≥99%), 2-chloroaniline (Merck, ≥98%), aniline (BDH 

Chemicals, >99%), nitrobenzene (BDH Chemicals, ≥99%), 4-nitrophenol (Sigma-Aldrich, ≥99%), 4-aminophenol 

(Sigma-Aldrich, ≥99%), 4-nitroacetophenone (Sigma-Aldrich, 98%), 4-aminoacetophenone (Sigma-Aldrich, 99%), 

4-nitroanisole (Sigma-Aldrich, 97%), 4-anisidine (Sigma-Aldrich, ≥99%), 4-nitrotoluene (Sigma-Aldrich, 99%) and 

4-toluidine (Riedel-de Haen, 99%) were obtained from commercial sources and used without further purification. 

 

2. Instrumentation 

Powder X-ray diffraction (PXRD) was performed on a Rigaku X-ray diffractometer with Cu Kα source. 

Thermogravimetric analyses (TGA) were performed on a TA Instruments Q50 instrument. Measurements were 

made under an Ar flow with a heating rate of 3 °C/min. BET surface areas were determined from N2 

adsorption/desorption isotherms at 77 K using automatic volumetric adsorption equipment (Quantachrome, 

Autosorb iQ2) after pretreatment under vacuum at 100 °C for 5 h. Scanning Electron Microscope (SEM) images and 

energy dispersive spectra (EDS) were recorded on a FEI Quanta 200 Environmental Scanning Electron Microscope 

with an EDS module. Transmission Electron Microscope (TEM) images were recorded on FEI Tecnai G2 Biotwin 

Transmission Electron Microscope with operating voltage at 100 kV. Scanning Transmission Electron Microscopy 

(STEM) and High Resolution Transmission Electron Microscope (HRTEM) analysis were carried out with JEOL 

JEM-2010 Transmission Electron Microscope with operating voltage at 200 kV. Atomic Absorption Spectroscopy 

(AA) was conducted on a GBC Xplora AAS spectrometer system. Raman spectra were measured from powder 

samples with a Cobalt Samba single-mode 532 nm diode laser on quartz substrates. X-Ray Photoelectron 

Spectroscopy (XPS) analyses were performed using Kratos Axis DLD equipment. Fourier transform infrared spectra 

(FTIR) were recorded on a ThermoElectron Nicolet high-resolution FT-MIR/FT-FarIR. The hydrogenation 

products were analysed by high performance liquid chromatography (HPLC, Thermo scientific ultimate 3000) and 
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NMR (Bruker Avance spectrometers, 500 MHz). Elemental analyses were performed by the Campbell 

Microanalytical Laboratory at the University of Otago, New Zealand. 

 

3. Synthetic procedures 

Synthesis of polyhedral ZIF-8 nanocrystals 

ZIF-8 polyhedra were prepared using a reported procedure with a slight modification.1 In a typical synthesis, 4 g of 

2-methylimidazole was dissolved in 60 mL of methanol (MeOH) to form a clear solution. 1.68 g of Zn(NO3)2·6H2O 

in 20 mL MeOH was added into above solution followed by vigorous stirring for 1 h. The mixture was then 

incubated at room temperature without stirring. After 24 h, the product was isolated as a white powder by 

centrifugation and washed several times with deionized water and MeOH, and finally dried overnight under 

vacuum (yield = 1.06 g). 

 

Synthesis of polyhedral bimetallic ZIF-8CoZn (5% Co) nanocrystals 

ZIF-8 CoZn (5% Co) polyhedra were prepared using a reported procedure with a slight modification.2 In a typical 

synthesis, 4 g of 2-methylimidazole was dissolved in 60 mL of MeOH to form a clear solution. 1.6 g of 

Zn(NO3)2·6H2O and 0.08 g of Co(NO3)2·6H2O in 20 mL MeOH was added into above solution with vigorous 

stirring for 1 h. The mixture was then incubated at room temperature without stirring. After 24 h, the product was 

isolated as a light purple powder by centrifugation and washed several times with deionized water and MeOH, and 

finally dried overnight under vacuum (yield = 1.02 g). 

 

Synthesis of polyhedral ZIF-67 nanocrystals 

ZIF-67 polyhedra were prepared using a reported procedure with a slight modification.3 In a typical synthesis, 0.87 

g of Co(NO3)2·6H2O and 1 g of 2-methylimidazole were dissolved separately in 30 mL of methanol solution. After 

mixing the above two solutions at room temperature for 24 h, the resulting purple powder was collected by 

centrifugation, washed with methanol several times and finally dried under vacuum (yield = 0.62 g). 

 

Synthesis of 2.8 nm PVP-stabilized Pt nanoparticles 

2.8 nm PVP-stabilized Pt nanoparticles (PtNPs) were synthesized using a reported procedure with a slight 

modification.4 A mixture of PVP (533 mg, Mw = 40,000), MeOH (180 mL), and aqueous solution of H2PtCl6 (6.0 

mM, 20 mL) were placed in a flask (500 mL) and refluxed for 3 hours under air. Finally, methanol was removed 

under reduced pressure. The resulting aqueous dispersion of Pt nanoparticles was stored for further use. 



S4 
 

Synthesis of the ZIF/Pt composites 

0.2 g of ZIF-8 polyhedra were dispersed in 80 mL of MeOH by sonication for 30 min and stirred at room 

temperature for 1 h. Subsequently, a 1.2 mL aliquot of the above solution of PtNPs was added with vigorous stirring 

for 4 h. The mixture was then incubated at room temperature without stirring. After 24 h, the product was isolated 

as a light grey powder by centrifugation and washed several times with deionized water and MeOH, and finally 

dried overnight under vacuum. ZIF-8CoZn/Pt and ZIF-67/Pt composites were synthesized using a similar synthetic 

route, only changing the polyhedra ZIF-8 to ZIF-8CoZn or ZIF-67 polyhedra. 

 

Synthesis of K-TA 

In a typical synthesis, a freshly prepared tannic acid (24 mM, 10 mL) solution was adjusted to pH=8 by aqueous 

KOH solution (6 M). After stirring for 5 min, the product was collected by centrifugation, washed several times 

with de-ionized water and MeOH, and dried overnight under vacuum.  

 

Synthesis of hollow RF  

ZIF-8@RF was (10 mg) dispersed in DI water (10 mL) then 0.05 mL HCl (5%) was dropped in. After several minutes, 

the product was obtained. 

 

Synthesis of 4-nitrobenzyl alcohol and 1-(4-nitrophenyl)ethanol 

4-Nitrobenzyl alcohol was synthesized using a reported procedure5 with a slight modification. 

4-Nitrobenzaldehyde (5.00 g) was diluted in absolute ethanol (30 mL), then a suspension of NaBH4 (1 g) in 10 mL 

of absolute ethanol was added. The reaction mixture was allowed to stir for 1 h at 0 °C. Then the reaction mixture 

was quenched with aq. NaOH (2M) and stirred until the solution was homogeneous. Water was added and the 

ethanol was removed under reduced pressure. The aqueous mixture was extracted with CH2Cl2 (3x) and the 

combined organic extracts were washed with NaHCO3 (saturated solution), then water. The solution was dried 

over anhydrous Na2SO4, filtered and concentrated in vacuum (yield= 4.9 g). 1H NMR: (500 MHz, DMSO): δ 8.20 (d, 

J = 8.8 Hz, 2H), 7.59 (d, J = 8.9 Hz, 2H), 5.52 (s, 1H), 4.64 (d, J = 3.8 Hz, 2H) ppm. 

1-(4-Nitrophenyl)ethanol was synthesized using a similar synthetic route, only changing the 4-nitrobenzaldehyde 

to 4-nitroacetophenone. 1H NMR: (500 MHz, CDCl3): δ 8.20 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 5.02 (q, J = 

6.5 Hz, 1H), 2.02 (s, 1H), 1.52 (d, J = 6.5 Hz, 3H) ppm. 
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Synthesis of 4-aminobenzyl alcohol and 1-(4-aminophenyl)ethanol 

In a typical synthesis, 2 g of 4-nitrobenzyl alcohol and 0.2 g of Pt/C (10% Pt) were dissolved in 20 mL of MeOH in a 

glass reactor, then the glass reactor was evacuated and charged with 50 psi H2, then stirred at room temperature 

for 24 h. The product was filtered and concentrated in vacuo (yield= 1.5 g). 1H NMR: (500 MHz, DMSO): δ 6.95 (d, J 

= 8.3 Hz, 2H), 6.50 (d, J = 8.3 Hz, 2H), 4.91 (s, 2H), 4.76 (t, J = 5.4 Hz, 1H), 4.28 (d, J = 4.8 Hz, 2H) ppm. 

1-(4-aminophenyl)ethanol was synthesized using a similar synthetic route, only changing the 4-nitrobenzyl alcohol 

to 1-(4-nitrophenyl)ethanol. 1H NMR: (500 MHz, DMSO): δ 6.97 (d, J = 8.3 Hz, 2H), 6.49 (d, J = 8.3 Hz, 2H), 4.86 (s, 

2H), 4.76 (d, J = 4.1 Hz, 1H), 4.57–4.49 (m, 1H), 1.25 (d, J = 6.4 Hz, 3H) ppm. 

 

Atomic Absorption Spectroscopy (AA) measurements 

The weight percentage (wt%) of Pt, Co and Ni in the NHPC-supported nanoparticle composites was determined by 

atomic absorption spectroscopy (AA). To prepare samples, 80 mg of M@NHPC was dissolved in aqua regia (10 mL) 

at 80 °C for 24 h in a high pressure reaction vessel. After cooling, the solution was filtered through a 0.2 m syringe 

filter to remove carbon particulates then diluted by 2 M HNO3 (10 mL) for measurements.  

 

 

 

Table S1. Summary of the surface areas and pore volume (0.95 bar) calculated using the BET and Horvath–

Kawazoe equation methods from N2 adsorption isotherms at 77 K for the ZIF-8-based composite materials. 

Sample BET surface area  

(m2 g-1) 

Pore Volume 

(cm3 g-1) 

ZIF-8 1710 0.70 

ZIF-8@K-TA 1060 0.56 

ZIF-8@Co-TA 850 0.46 

ZIF-8@Ni-TA 880 0.51 

ZIF-8/Pt@K-TA 610 0.35 

ZIF-8/Pt@Co-TA 490 0.28 

ZIF-8/Pt@Ni-TA 430 0.24 

ZIF-8@RF 1240 0.65 

ZIF-8/Pt@RF 650 0.57 
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4. Materials characterization 

4.1 Photographs 

 

 

Figure S1. Photographs of (a) ZIF-8; (b) ZIF-8@K-TA; (c) ZIF-8@Co-TA; (d) ZIF-8@Ni-TA; (e) ZIF-8/Pt; (f) 

ZIF-8/Pt@K-TA; (g) ZIF-8/Pt@Co-TA; (h) ZIF-8/Pt@Ni-TA. 

 

 

Figure S2. Photographs of (a) ZIF-8@RF; (b) ZIF-8/Pt@RF; (c) ZIF-8/Pt@CoRF_a. 
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4.2 Powder X-ray Diffraction (PXRD) 
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Figure S3. PXRD patterns of as synthesized materials. 
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Figure S4. PXRD patterns of as synthesized materials. 
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Figure S5. PXRD patterns of as synthesized materials. The simulated pattern refers to that calculated from the 

SCXRD structure of ZIF-8. 
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Figure S6. PXRD patterns of as synthesized materials. 
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Figure S7. PXRD patterns of ZIF-8@K-TA calcined at different temperatures. 
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Figure S8. PXRD patterns of as synthesized materials. 
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Figure S9. PXRD patterns of as synthesized materials. 
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Figure S10. PXRD patterns of as synthesized potassium-tannic acid (K-TA) and potassium-tannic acid derived 

carbon. 
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Figure S11. PXRD patterns of as synthesized materials. 
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4.3 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) 

 

Figure S12. SEM image (a) and TEM images (b, c) of polyhedral ZIF-8 nanocrystals. 

 

 

Figure S13. SEM, TEM images and EDS spectra of polyhedral ZIF-8/Pt (a, b, c, g) and ZIF-8/Pt@K-TA nanocrystals 

(d, e, f, h). 
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Figure S14. SEM images and EDS spectra of ZIF-8@K-TA (a, b), ZIF-8@Co-TA (c, d) and ZIF-8/Pt@Co-TA (e, f). 
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Figure S15. SEM images and EDS spectra of ZIF-8@K-TA calcined at 500 °C (a, b); 600 °C (c, d); 700 °C (e, f); 

800 °C (g, h) and 900 °C (i, j). Traces of zinc are apparent in j since the sample was not held for three hours at 

900 °C as per our standard synthesis method. 
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Figure S16. SEM, TEM images and EDS spectra of ZIF-8@Ni-TA (a, b, c, g) and ZIF-8/Pt@Ni-TA (d, e, f, h). 
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Figure S17. SEM images and EDS spectra of NHPC_1 (a, b), Pt@NHPC_1 (c, d) and PtCo@NHPC_1 (e, f).  
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Figure S18. SEM, TEM images and EDS spectra of Co@NHPC_1 (a, b, c, g) and Ni@NHPC_1 (d, e, f, h). 

 

Figure S19. SEM, TEM images and EDS spectra of PtNi@NHPC_1. 
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Figure S20. SEM images and EDS spectra of potassium-tannic acid (a, b) and potassium-tannic acid derived 

carbon (c, d). 

 

 

Figure S21. SEM image (a) and TEM images (b, c) of polyhedral ZIF-8CoZn nanocrystals. 
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Figure S22. SEM, TEM images and EDS spectra of polyhedral ZIF-8CoZn/Pt (a, b, c, g) and ZIF-8CoZn/Pt@K-TA 

nanocrystals (d, e, f, h). 

 

 

 

Figure S23. SEM image (a) and TEM images (b, c) of polyhedral ZIF-67 nanocrystals. 
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Figure S24. SEM, TEM images and EDS spectra of ZIF-67/Pt (a, b, c, g) and ZIF-67/Pt@K-TA nanocrystals (d, e, f, 

h). 

 

 



S21 
 

 

Figure S25. SEM, TEM images and EDS spectra of PtCo/Co@NHPC_1 (a, b, c, g) and PtCo/Co@NHPC_2 (d, e, f, h). 

 

 

 

 

 

 

 

 

 

 



S22 
 

 

Figure S26. SEM, TEM images and EDS spectra of ZIF-8@RF (a, b, c, g) and ZIF-8/Pt@RF (d, e, f, h). 

 

 

Figure S27. TEM images of hollow RF capsules produced by etching the ZIF-8 core of ZIF-8@RF. 
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Figure S28. SEM images and EDS spectra of ZIF-8/Pt@CoRF_a (a, b), ZIF-8/Pt@CoRF_b (c, d) and 

ZIF-8/Pt@CoRF_c (e, f). 
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Figure S29. SEM images and EDS spectra of NHPC_2 (a, b), PtCo@NHPC_2 (c, d) and PtCo@NHPC_3 (e, f). 
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Figure S30. SEM, TEM images and EDS spectra of Pt@NHPC_2 (a, b, c, g) and PtCo/Co@NHPC_3 (d, e, f, h). 
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Figure S31. SEM, TEM images and EDS spectra of NC (a, b, c, g) and Co/NC (d, e, f, h). 
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Figure S32. Histograms of nanoparticle and average particle sizes for materials. 

 

4.4 Thermal gravimetric analysis (TGA) 
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Figure S33. Thermogravimetric analysis of ZIF-8 and ZIF-8@K-TA. 
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4.5 Nitrogen sorption measurements, pore size analysis and surface area calculations: 
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Figure S34. N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K. 
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Figure S35. N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K. 
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Figure S36. N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K. 
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Figure S37. N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K. 
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Figure S38. N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K. 
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Figure S39. N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K. 
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Figure S40. Pore size distribution plots calculated using a DFT method from N2 isotherms measured at 77 K. 
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Figure S41. Top left: N2 adsorption isotherm for PtCo@NHPC_1 at 77 K. Top right: Consistency plot for the N2 

isotherm in PtCo@NHPC_1. Bottom left: Plot P/P0/[v(1-P/P0)] against P/P0 for the N2 isotherm of PtCo@NHPC_1. 

Bottom right: BET equation plot for PtCo@NHPC_1. 
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Figure S42. N2 adsorption isotherm for PtCo@NHPC_1 at 77 K (black). Fitting comparison by QSDFT model (red). 
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4.6 Raman spectra 
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Figure S43. Raman spectra of materials. 

 

4.7 X-ray photoemission spectroscopy (XPS) 
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Figure S44. XPS spectra of NHPC_1. 
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Figure S45. XPS spectra of NHPC_2. 
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Figure S46. XPS spectra of PtCo@NHPC_1. 
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Figure S47. XPS spectra of PtCo@NHPC_2. 
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Figure S48. XPS spectra of PtCo@NHPC_3. 

 

4.8 Fourier Transform Infrared Spectrophotometry (FT-IR) 
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Figure S49. FTIR spectra of materials. 

 

4.9 Hydrogenation of nitroarenes 

In a typical experiment, 0.5 mmol of nitroarenes, 5 mL of methanol and 20 mg of catalyst were added into an 

autoclave reactor (50 mL), which was sealed and purged with H2 several times. The vessel was the heated at 50 °C 
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with 6.8 bar H2 under stirring (400 RPM). Mesitylene was used as internal standard. HPLC analysis used an 

Econosil silica 10u column.  

4.9.1 Hydrogenation of 4-nitrophenol  

Column temperature was set at 298 K and flowrate at 0.5 mLmin-1. UV/vis: =251 nm. Gradient used: 0 min., 100% 

hexane; 0-20 min mark transition and hold from 20-23 min with 50% hexane, 50% 2-proponal; 23-26 min mark 

transition with 100% hexane; hold from 26-29 min with 100% hexane. The retention time of mesitylene, 

nitrobenzene, phenol, nitrophenol, aniline and aminophenol are 7.0, 8.9, 14.1, 15.9, 16.6, and 24.6 min, respectively.  

 

Figure S50. HPLC chromatograms of the product generated by hydrogenation of 4-nitrophenol by PtCo@NHPC_1 

(a); mixture of mesitylene, nitrobenzene, phenol, nitrophenol, aniline and aminophenol (b). 

 

4.9.2 The hydrogenation of 1-chloro-2-nitrobenzene  

Column temperature was set at 298 K and flowrate at 0.75 mLmin-1. UV/vis: =266 nm. Gradient used: 0 min., 100% 

hexane; 0-15 min mark transition and hold from 15-18 min with 70% hexane, 30% 2-proponal; 18-21 min mark 

transition with 100% hexane; hold from 21-24 min with 100% hexane. The retention time of mesitylene, 

nitrobenzene, 1-chloro-2-nitrobenzene, 2-chloroaniline and aniline are 4.7, 6.3, 6.9, 7.7 and 12.5 min, respectively. 
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Figure S51. HPLC chromatograms of the product generated by hydrogenation of 1-chloro-2-nitrobenzene by 

PtCo@NHPC_1 (a); mixture of mesitylene, nitrobenzene, 1-chloro-2-nitrobenzene, 2-chloroaniline and aniline (b). 

 

4.9.3 Hydrogenation of 4-nitroacetophenone  

Column temperature was set at 298 K and flowrate at 0.5 mLmin-1. UV/vis: =266 nm. Gradient used: 0 min., 100% 

hexane; 0-20 min mark transition and hold from 20-23 min with 50% hexane, 50% 2-proponal; 23-26 min mark 

transition with 100% hexane; hold from 26-29 min with 100% hexane. The retention time of mesitylene, 

4-nitroacetophenone, 1-(4-nitrophenyl)ethanol, 4-aminoacetophenone and 1-(4-aminophenyl)ethanol are 7.2, 15.3, 

17.3, 22.2 and 23.7 min, respectively. 

 
Figure S52. HPLC chromatograms of the product generated by hydrogenation of 4-nitroacetophenone by 

PtCo@NHPC_1 (a); mixture of mesitylene, 4-nitroacetophenone, 1-(4-nitrophenyl)ethanol, 4-aminoacetophenone 

and 1-(4-aminophenyl)ethanol (b). 

4.9.4 Hydrogenation of 4-nitroanisole  

Column temperature was set at 298K and flowrate at 0.5 mLmin-1. UV/vis: =266 nm. Gradient used: 0 min., 100% 

hexane; 0-20 min mark transition and hold from 20-23 min with 50% hexane, 50% 2-proponal; 23-26 min mark 

transition with 100% hexane; hold from 26-29 min with 100% hexane. The retention time of mesitylene, 

nitrobenzene, nitroanisole, 4-nitrophenol, aniline, anisidine and 4-aminophenol are 7.1, 9.2, 11.4, 15.9, 16.4, 21.2 and 

24.9 min, respectively. 
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Figure S53. HPLC chromatograms of the product generated by hydrogenation of 4-nitroanisole by PtCo@NHPC_1: 

(a) after hydrogen by PtCo@NHPC_1; mixture of mesitylene, nitrobenzene, nitroanisole, 4-nitrophenol, aniline, 

anisidine and 4-aminophenol (b). 

 

4.9.5 Hydrogenation of 4-nitrobenzyl alcohol  

Column temperature was set at 298K and flowrate at 0.5 mLmin-1. UV/vis: =266 nm. Gradient used: 0 min., 100% 

hexane; 0-20 min mark transition and hold from 20-23 min with 50% hexane, 50% 2-proponal; 23-26 min mark 

transition with 100% hexane; hold from 26-29 min with 100% hexane. The retention time of mesitylene, 

4-nitrotoluene, 4-toluidin, 4-nitrobenzyl alcohol and 4-aminobenzyl alcohol are 7.1, 8.4, 16.3, 18.5 and 24.7 min, 

respectively. 

 

Figure S54. H HPLC chromatograms of the product generated by hydrogenation of 4-nitrobenzyl alcohol by 

PtCo@NHPC_1 (a); mixture of mesitylene, 4-nitrotoluene, 4-toluidine, 4-nitrobenzyl alcohol and 4-aminobenzyl 

alcohol (b). 
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Figure S55. Recyclability test of the PtCo@NHPC catalysts. 

 

 

Figure S56. TEM images of PtCo@NHPC_1 (a), PtCo@NHPC_2 (b) and PtCo@NHPC_3 (c) after 5 times 

hydrogenation of 4-nitrophenol. The scale bar represent 50 nm. 
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Figure S57. PXRD patterns of materials. 

 

 

4.9.6 Turnover frequency (TOF) calculations 

Turnover frequencies (TOF) were measured by using 2 mg of catalyst without otherwise altering the catalysis 

reaction conditions described above. This slowed the progress of the reaction to so that only ~25% of the 

nitroarenes was consumed over 40 mins. In a typical experiment, 0.5 mmol of 4-nitrophenol, 5 mL of methanol 

and 2 mg of catalyst were added into a autoclave reactor (50 mL), which was sealed and purged with H2 several 

times then heated for 40 min at 50 °C under 6.8 bar H2 with stirring at 400 RPM. Mesitylene was used as internal 

standard. The TOFs of these three catalysts were calculated based on their total Pt content. 

TOF = n0C/tncat 
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Where n0 is the initial number of moles of substrate, C is the percentage conversion of the substrate at a reaction 

time of t (h), and ncat is number of moles of Pt in the catalyst.  

 

Table S2. TOFs calculated for PtCo@NHPC catalysts. 

catalyst Co (wt%) Pt (wt%) TOF (molconverted h-1 molPt
-1) 

PtCo@NHPC_1 3.74 1.72 872 

PtCo@NHPC_2 1.4 1.56 1136 

PtCo@NHPC_3 2.11 1.63 931 

 

 

4.9.7 Thermal stability of PtCo@NHPC_1 

PtCo@NHPC_1 was transferred into a ceramic crucible and placed into a temperature-programmable furnace 

under a dry argon flow and heated from room temperature to 900 °C over a period of 300 min. After reaching the 

target temperature, the sample was calcined for a further 3 h at 900 °C then cooled to room temperature. 
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Figure S58. TEM image and N2 adsorption (filled symbols) and desorption (open symbols) isotherms of 

PtCo@NHPC_1 after calcination at 900 °C for 3 h. 
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4.9.8 Large-scale hydrogenation of nitroarenes by PtCo@NHPC_1 and commercial Pt/C 

In a typical experiment, 5 mmol of nitroarenes, 5 mL of methanol and 50 mg of catalyst were added into an 

autoclave reactor (50 mL), which was sealed, purged with H2 several times, then heated to 80 °C under 6.8 bar H2 

for 3 h with stirring at 400 RPM. Volatiles were removed in vacuo then the products analysed by 1H NMR 

spectroscopy without further purification. 

 

Figure S59. 1H NMR spectrum of 4-aminophenol generated by hydrogenation of 4-nitrophenol on a 5 mmol scale 

by PtCo@NHPC_1. 

 

 

Figure S60. 1H NMR spectrum of the products generated by hydrogenation of 4-nitrophenol on a 5 mmol scale by 

commercial Pt/C. 
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Figure S61. 1H NMR spectrum of the 2-chloroaniline generated by hydrogenation of 1-chloro-2-nitrobenzene on a 5 

mmol scale by PtCo@NHPC_1. 

 

 

Figure S62. 1H NMR spectrum of the product generated by hydrogenation of 1-chloro-2-nitrobenzene on a 5 mmol 

scale by commercial Pt/C. 
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Figure S63. 1H NMR spectrum of the 4-aminoacetophenone generated by hydrogenation of 4-nitroacetophenone 

on a 5 mmol scale by PtCo@NHPC_1. 

 

 

Figure S64. 1H NMR spectrum of the product generated by hydrogenation of 4-nitroacetophenone on a 5 mmol 

scale by commercial Pt/C. 
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Figure S65. N2 adsorption (filled symbols) and desorption (open symbols) isotherms measured at 77 K. 

 

 

Figure S66. TEM images of commercial Pt/C before (a) and after (b) hydrogenation of 4-nitrophenol. The scale 

bars represent 50 nm. 
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