- Supporting Information -

2-Methoxyethylamino-bis(phenolate)yttrium Catalysts for the Synthesis of Highly Isotactic Poly(2-vinylpyridine) by Rare-Earth Metal-Mediated Group Transfer Polymerization

Alexander Kronast,[‡] Dominik Reiter,[‡] Peter T. Altenbuchner, Sergei I. Vagin, and Bernhard Rieger*

WACKER-Lehrstuhl für Makromolekulare Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching b. München, Germany. *B. Rieger: E-Mail: rieger@tum.de; http://www.makro.ch.tum.de; Fax: +49-89-289-13562; Tel: +49-89-289-13570.

1. Exp	perimental	1
1.1	General	1
1.2	Proligand Precursor Synthesis	2
2. Kir	netic Investigations	6
3. Mi	crostructure Analysis	7
3.1	¹³ C NMR spectra	7
3.2	Theoretical Investigations	10
4. Thermoanalysis		11
4.1	DSC	11
4.2	TGA	12
5. Literature		13

1. Experimental

1.1 General

All air and moisture sensitive reactions were carried out under an argon atmosphere using standard Schlenk or glovebox techniques. All glassware was heat dried under vacuum prior to use. Unless otherwise stated, all chemicals were purchased from Acros Organics, Sigma-Aldrich, or ABCR and used as received. Dichloromethane, pentane, THF and toluene were dried using an MBraun SPS-800 solvent purification system. The precursor complex $[Y(CH_2SiMe_3)_3(THF)_2]$ was prepared following literature procedures.^[1] Triethylamine and 2-vinylpyridine were dried over calcium hydride and distilled prior to use. 2-(((2-methoxyethyl)amino)methyl)-4,6-dimethylphenol and 2,4-di-*tert*-butyl-6-(((2-methoxyethyl)amino)methyl)phenol were synthesized according to literature procedures.^[2] NMR Spectra were recorded on Bruker AVIII-300 and AVIII-500C spectrometers. ¹H NMR spectroscopic chemical shifts δ are referenced to the carbon atoms of the solvent. Coupling constants *J* are given in Hertz (Hz) as averaged values and refer to couplings between protons. The following abbreviations are used to describe signal multiplicities: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), br (broad signal). Deuterated solvents were obtained from Sigma-Aldrich and dried over 3 Å molecular sieves.

Quantitative elemental analyses (EA) were measured at the Laboratory for Microanalysis at the Institute of Inorganic Chemistry at the Technische Universität München. Low resolution mass spectrometry (LRMS) analytical measurements were obtained by electrospray ionization (ESI) with acetonitrile and toluene solutions on a Varian LC/MS 500-MS spectrometer. X-Ray Powder Diffraction was measured on a PANalytical Empyrean system. DSC was carried out on a Texas Instruments DSC Q2000 with a heating rate of 5 K min⁻¹. TGA was carried out on a Texas Instruments TGA Q5000 with a heating rate of 10 K min⁻¹. Gel permeation chromatography (GPC) measurements were carried out on a Varian 920-LC HPLC equipped with two PL Polargel columns.

Initiator efficiency ($I^* = M_{n,calc}/M_{n,exp}$) is determined by taking aliquots during and at the end of the polymerization. I^*_t is determined for polymerization kinetics as the average initiator efficiency I^* at the maximum rate of the reaction (maximum slope of the conversion-reaction time plot).

1.2 **Proligand Precursor Synthesis**

Scheme S1. Proligand synthesis starting from phenols 3 and 10 for Ligands L1-L4.

Tris(4-tert-butylphenyl)methanol (1)

C₃₁H₄₀O 428.65 g/mol

A solution of 1-bromo-4-tert-butylbenzene (24.4 mL, 30.0 g, 141 mmol, 3.0 eq) in dry THF (20 mL) was added dropwise to a stirred suspension of magnesium turnings (3.76 g, 155 mmol, 3.3 eq) in dry THF (200 mL). The reaction mixture was heated to initiate the reaction and stirred until the reaction subsided. A solution of diethyl carbonate (5.69 mL, 5.54 g, 46.9 mmol, 1.0 eq) in dry THF (100 mL) was added dropwise to the *Grignard* reagent and stirred for 3 h at room temperature. Ice-cold 2 M HCl (100 mL) was then poured into the reaction mixture and the organic phase was separated and washed with 2 M HCl (50 mL) and brine (50 mL). The organic phase was dried over MgSO4, filtered and the solution concentrated in vacuo. Addition of *n*-hexane led to precipitation of **1** as colorless crystals (12.4 g, 29.0 mmol, 62%).

¹H NMR (300 MHz, CDCl₃, 300 K): δ [ppm] = 1.31 (s, 27H, C(CH₃)₃), 7.19 (d, ³J = 8.5 Hz, 6H, Ar-H), 7.31 (d, ${}^{3}J = 8.5$ Hz, 6H, Ar-H).

¹³C NMR (75 MHz, CDCl₃, 300 K): δ [ppm] = 31.5, 34.6, 81.7, 124.8, 127.7, 144.3, 149.9.

Tris(4-tert-butylphenyl)methyl chloride (2)

To a vigorously stirred solution of 1 (12.4 g, 29.0 mmol, 1.0 eq) in dry toluene (30 mL) was added freshly distilled acetyl chloride (5.18 mL, 5.69 g, 72.6 mmol, 2.5 eq). The reaction mixture was heated under reflux for 30 min. After the solution was allowed to cool down to ambient temperature, n-hexane (40 mL) was added and the flask was left at 4 °C overnight. The resulting precipitate was filtered and dried under vacuum to afford 2 as a beige powder (10.0 g, 22.4 mmol, 77%).

¹H NMR (300 MHz, CDCl₃, 300 K): δ [ppm] = 1.33 (s, 27H, C(CH₃)₃), 7.16 (d, ³J = 8.6 Hz, 6H, Ar-H), 7.31 (d, ${}^{3}J$ = 8.6 Hz, 6H, Ar-H).

¹³C NMR (75 MHz, CDCl₃, 300 K): δ [ppm] = 31.5, 34.7, 81.8, 124.6, 129.5, 142.7, 150.6.

C₃₁H₃₉Cl 447.09 g/mol

4-tert-Butyl-2-(tris(4-tert-butylphenyl)methyl)phenol (3)

 $C_{41}H_{52}O$ 560.85 g/mol

To molten 4-tert-butylphenol (33.7 g, 224 mmol, 10.0 eq) was added sodium metal (722 mg, 31.4 mmol, 1.4 eq) at 110 °C with vigorous stirring. 2 (10.0 g, 22.4 mmol, 1.0 eq) was added to the melt of phenolate and the resulting mixture was heated to 145 °C for 3 h. The reaction mixture was treated with 7% aqueous NaOH (67 mL) and Et₂O (77 mL) after cooling down to 80 °C. The organic layer was separated and the aqueous phase extracted with Et₂O (3 \times 34 mL). The combined organic phases were washed with 7% aqueous NaOH (3×34 mL), distilled water (34 mL) and brine (34 mL). After drying over anhydrous MgSO₄ and filtration, the solvent of the amber solution was removed in vacuo. Recrystallization of the crude product from ethanol yielded **3** as colorless crystals (9.99 g, 17.8 mmol, 79%).

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.12 (s, 9H, C(CH₃)₃), 1.32 (s, 27H, C(CH₃)₃), 4.41 (s, 1H, Ar-OH), 6.78 (d, ${}^{3}J$ = 8.3 Hz, 1H, Ar-H), 6.86 (d, ${}^{4}J$ = 2.5 Hz, 1H, Ar-H), 7.13 (d, ${}^{3}J = 8.5$ Hz, 6H, Trit-H), 7.22 (dd, ${}^{4}J = 2.4$ Hz, ${}^{3}J = 8.3$ Hz, 1H, Ar-H), 7.31 (d, ${}^{3}J = 8.5$ Hz, 6H, Trit-H).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 31.5, 31.5, 34.3, 34.5, 61.8, 117.0, 124.7, 125.3, 128.1, 130.8, 133.0, 141.3, 142.5, 149.5, 152.2.

LRMS (ESI, MeCN): $m/z = 584.2 [(M+Na)^{+}].$

EA [%]: calculated: C 87.80 H 9.35; found: C 87.94 H 9.43

5-tert-Butyl-2-hydroxy-3-(tris(4-tert-butylphenyl)methyl)-benzaldehyde (4)

C42H52O2 588.86 g/mol A mixture of 3 (9.96 g, 17.8 mmol, 1.0 eq), hexamethylenetetramine (2.74 g, 19.5 mmol, 1.1 eq) and trifluoroacetic acid (100 mL) was heated at 110 °C under reflux for 40 h. Subsequently the warm reaction mixture was poured into vigorously stirred 2 M HCl (250 mL). The cold mixture was extracted with chloroform (3 \times 125 mL) and the combined organic layers were washed with 2 M HCl (3×75 mL), distilled water (175 mL) and brine (100 mL). After drying over MgSO₄ and filtration, the solvent was removed under reduced pressure. Silica gel column chromatography (n-hexane:EtOAc = 30:1) was utilized to purify the residue and afford **4** as a white powder (6.65 g, 11.3 mmol, 64%). TLC: $R_f = 0.19$ (silica gel, *n*-hexane:EtOAc = 30:1, [UV]).

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.16 (s, 9H, C(CH₃)₃), 1.31 (s, 27H, $C(CH_3)_3$, 7.09 (d, ${}^{3}J = 8.6$ Hz, 6H, Trit-H), 7.25 (d, ${}^{3}J = 8.5$ Hz, 6H, Trit-H), 7.33 (d, ${}^{4}J =$ 2.5 Hz, 1H, Ar-H), 7.43 (d, ⁴J = 2.5 Hz, 1H, Ar-H), 9.86 (s, 1H, CHO), 11.13 (s, 1H, Ar-OH).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 31.2, 31.5, 34.3, 34.4, 62.1, 120.2, 124.1, 128.8, 130.6, 136.0, 136.7, 141.4, 142.1, 148.5, 158.8, 197.0.

LRMS (ESI, MeCN): $m/z = 612.2 [(M+Na)^{+}].$

EA [%]: calculated: C 85.67, H 8.90; found: C 85.59, H 9.05.

4-tert-Butyl-2-hydroxymethyl-6-(tris(4-tert-butylphenyl)methyl)phenol (5)

C42H54O2 590.88 g/mol To a suspension of 4 (3.10 g, 5.26 mmol, 1.0 eq) in methanol (100 mL) was added sodium borohydride (398 mg, 10.5 mmol, 2.0 eq) in small portions. After the reaction mixture was stirred at room temperature for 1 h, the solvent was removed under reduced pressure. The residue was redissolved in distilled water (150 mL) and neutralized with glacial acetic acid. The aqueous phase was extracted with chloroform (3 \times 100 mL) and the combined organic layers were dried over anhydrous MgSO4. After filtration, the solvent was removed in vacuo to yield 6 as a white powder (3.09 g, 5.23 mmol, 99%). The product was utilized in the next step without further purification.

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.11 (s, 9H, C(CH₃)₃), 1.31 (s, 27H, $C(CH_3)_3$, 2.45 (br s, 1H, CH₂OH), 4.64 (s, 2H, CH₂), 4.86 (s, 1H, Ar-OH), 6.84 (d, ${}^4J =$ 2.4 Hz, 1H, Ar-H), 7.11 (d, ${}^{3}J$ = 8.5 Hz, 6H, Trit-H), 7.19 (d, ${}^{4}J$ = 2.4 Hz, 1H, Ar-H),

7.30 (d, ${}^{3}J = 8.5$ Hz, 6H, Trit-H).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 31.5, 31.5, 34.3, 34.5, 61.8, 63.5, 124.7, 125.0, 127.8, 127.9, 130.7, 133.2, 141.3, 142.2, 149.5, 150.6.

LRMS (ESI, MeCN): $m/z = 614.2 [(M+Na)^{+}]$.

EA [%]: calculated: C 85.37, H 9.21; found: C 79.31, H 8.63.

2-Bromomethyl-4-tert-butyl-6-(tris(4-tert-butylphenyl)methyl)phenol (6)

 $C_{42}H_{53}BrO$ 653.77 g/mol

To a solution of 5 (3.06 g, 5.18 mmol, 1.0 eq) in chloroform (100 mL) was added phosphorus tribromide (0.25 mL, 701 mg, 2.59 mmol, 0.5 eq). After the reaction mixture was stirred at room temperature for 1 h, iced water (40 mL) was added over 5 min. The resulting phases were separated and the aqueous phase was extracted with chloroform (3 \times 25 mL). The combined organic layers were dried over anhydrous MgSO₄, filtered and the solvent removed in vacuo to afford 7 as a white powder (3.39 g, 5.18 mmol, quantitative yield).

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.11 (s, 9H, C(CH₃)₃), 1.31 (s, 27H, $C(CH_3)_3)$, 4.53 (s, 2H, CH₂), 4.77 (s, 1H, Ar-OH), 6.87 (d, ${}^4J = 2.4$ Hz, 1H, Ar-H), 7.10 (d, ${}^{3}J = 8.6$ Hz, 6H, Trit-H), 7.25 (d, ${}^{4}J = 3.0$ Hz, 1H, Ar-H), 7.30 (d, ${}^{3}J = 8.6$ Hz, 6H, Trit-H).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 31.1, 31.4, 31.5, 34.3, 34.5, 61.9, 124.3, 124.8, 126.6, 129.2, 130.7, 133.7, 141.0, 142.4, 149.7, 150.7.

LRMS (ESI, MeCN): $m/z = 677.1 [(M+Na)^{+}]$.

Tris(3,5-dimethylphenyl)methanol (7)

C₂₅H₂₈O

344.49 g/mol

A solution of 1-bromo-3,5-dimethylbenzene (18.4 mL, 25.0 g, 135 mmol, 3.0 eq) in dry THF (20 mL) was added dropwise to a stirred suspension of magnesium turnings (3.61 g, 149 mmol, 3.3 eq) in dry THF (200 mL). The reaction mixture was heated to initiate the reaction and stirred until the reaction subsided. A solution of diethyl carbonate (5.46 mL, 5.32 g, 45.0 mmol, 1.0 eq) in dry THF (100 mL) was added dropwise to the *Grignard* reagent and stirred for 3 h at room temperature. Ice-cold 2 M HCl (100 mL) was then poured into the reaction mixture and the organic phase was separated and washed with 2 M HCl (50 mL) and brine (50 mL). The organic phase was dried over MgSO₄, filtered and the solution concentrated *in vacuo*. Addition of *n*-hexane led to precipitation of **8** as colorless crystals (7.96 g, 23.1 mmol, 51%).

¹H NMR (300 MHz, CDCl₃, 300 K): δ [ppm] = 2.27 (s, 18H, CH₃), 2.68 (s, 1H, OH), 6.88 (s, 6H, Ar-H), 6.91 (s, 3H, Ar-H).

¹³C NMR (75 MHz, CDCl₃, 300 K): δ [ppm] = 21.7, 83.2, 126.7, 128.6, 136.5, 143.7.

Tris(3,5-dimethylphenyl)methyl chloride (8)

To a vigorously stirred solution of 7 (7.96 g, 23.1 mmol, 1.0 eq) in dry toluene (25 mL) was added freshly distilled acetyl chloride (4.12 mL, 4.54 g, 57.8 mmol, 2.5 eq). The reaction mixture was heated under reflux for 30 min. After the solution was allowed to cool down to ambient temperature, *n*-hexane (35 mL) was added and the flask was left at 4 °C overnight. The resulting precipitate was filtered and dried under vacuum to furnish **9** as colorless crystals (6.44 g, 17.7 mmol, 77%).

C₂₅H₂₇Cl 362.93 g/mol

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 2.29 (s, 18H, CH₃), 6.88 (s, 6H, Ar-H), 6.95 (s, 3H, Ar-H).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.6, 82.2, 127.7, 129.5, 137.1, 145.6. EA [%]: calculated: C 82.73, H 7.50, Cl 9.77; found: C 82.23, H 7.45, Cl 9.30

4-tert-Butyl-2-(tris(3,5-dimethylphenyl)methyl)phenol (9)

C₃₅H₄₀O 476.69 g/mol

To molten 4-*tert*-butylphenol (25.7 g, 171 mmol, 10.0 eq) was added sodium metal (550 mg, 23.9 mmol, 1.4 eq) at 110 °C with vigorous stirring. **8** (6.20 g, 17.1 mmol, 1.0 eq) was added to the formed phenolate and the resulting mixture was heated at 145 °C under reflux for 3 h. The reaction mixture was treated with 7% aqueous NaOH (52 mL) and Et₂O (60 mL) after cooling down to about 80 °C. The organic layer was separated and the aqueous phase extracted with Et₂O (3×26 mL). The combined organic phases were washed with 7% aqueous NaOH (3×26 mL), distilled water (26 mL) and brine (26 mL). After drying over anhydrous MgSO₄ and filtration, the solvent of the amber solution was removed *in vacuo*. Recrystallization of the crude product from ethanol yielded **10** as colorless crystals (5.72 g, 12.0 mmol, 70%).

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.18 (s, 9H, C(CH₃)₃), 2.24 (s, 18H, CH₃), 4.52 (s, 1H, Ar-OH), 6.73 (d, ³*J* = 8.2 Hz, 1H, Ar-H), 6.81 (s, 6H, Trit-H), 6.86 (s, 3H, Trit-H), 7.16 (d, ⁴*J* = 2.4 Hz, 1H, Ar-H), 7.20 (dd, ⁴*J* = 2.4 Hz, ³*J* = 8.3 Hz, 1H, Ar-H).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8, 31.6, 34.3, 62.7, 117.1, 125.0, 128.3, 128.3, 128.9, 132.6, 137.0, 142.2, 144.6, 152.4.

LRMS (ESI, MeCN): $m/z = 500.2 [(M+Na)^{+}].$

EA [%]: calculated: C 88.19, H 8.46; found: C 88.09, H 8.57.

5-tert-Butyl-2-hydroxy-3-(tris(3,5-dimethylphenyl)methyl)benzaldehyde (10)

To a suspension of **9** (6.00 g, 12.6 mmol, 1.0 eq), anhydrous magnesium chloride (2.64 g, 27.7 mmol, 2.2 eq) and paraformaldehyde (831 mg, 27.7 mmol, 2.2 eq) in dry THF (70 mL) was added dropwise freshly distilled triethylamine (1.76 mL, 1.27 g, 12.6 mmol, 1.0 eq). The resulting reaction mixture was heated under reflux for 3 d. Subsequently the mixture was allowed to cool down to room temperature and diluted with distilled water (30 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic phases were washed with distilled water (75 mL) and brine (2 × 75 mL). After drying over anhydrous MgSO₄ and filtration, the solvent was removed *in vacuo*. Silica gel column chromatography (*n*-pentane/Et₂O = 40/1) and subsequent recrystallization from ethanol were utilized to purify the residue and afford **11** as colorless crystals (3.67 g, 7.27 mmol, 58%).

C₃₆H₄₀O₂ 504.70 g/mol

TLC: Rf = 0.23 (silica gel, *n*-pentane:Et₂O = 40:1, [UV]).

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.26 (s, 9H, C(CH₃)₃), 2.23 (s, 18H, CH₃), 6.80 (s, 3H, Trit-H), 6.89 (s, 6H, Trit-H), 7.41 (d, ⁴*J* = 2.4 Hz, 1H, Ar-H), 7.77 (d, ⁴*J* = 2.4 Hz, 1H, Ar-H), 9.83 (s, 1H, CHO), 11.22 (s, 1H, Ar-OH).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8, 31.2, 34.3, 63.0, 120.2, 127.3, 128.5, 128.7, 135.4, 136.3, 137.1, 141.3, 145.2, 158.8, 196.9.

LRMS (ESI, MeCN): $m/z = 527.4 [(M+Na)^{+}]$.

EA [%]: calculated: C 85.67, H 7.99; found: C 85.73, H 8.17.

4-tert-Butyl-2-hydroxymethyl-6-(tris(3,5-dimethylphenyl)methyl)phenol (11)

To a suspension of **10** (2.60 g, 5.15 mmol, 1.0 eq) in methanol (100 mL) was added sodium borohydride (390 mg, 10.3 mmol, 2.0 eq) in small portions. After the reaction mixture was stirred at room temperature for 2 h, the solvent was removed under reduced pressure. The residue was redissolved in water (125 mL) and neutralized with glacial acetic acid. The aqueous phase was extracted with chloroform (3×75 mL) and the combined organic layers were dried over anhydrous MgSO₄. After filtration, the solvent was removed *in vacuo* to yield **12** as a white powder (2.58 g, 5.09 mmol, 99%). The product was utilized in the next step without further purification.

C₃₆H₄₂O₂ 506.72 g/mol

¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.19 (s, 9H, C(CH₃)₃), 2.24 (s, 18H, CH₃), 4.63 (s, 2H, CH₂), 6.80 (s, 6H, Trit-H), 6.87 (s, 3H, Trit-H), 7.15 (d, ⁴*J* = 2.5 Hz, 1H, Ar-

H), 7.18 (d, ${}^{4}J$ = 2.5 Hz, 1H, Ar-H).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8, 31.6, 34.4, 62.7, 63.6, 124.7, 128.3, 128.9, 132.9, 136.3, 137.0, 142.0, 144.5, 145.2, 150.8.

LRMS (ESI, MeCN): $m/z = 529.4 [(M+Na)^{+}].$

EA [%]: calculated: C 85.33, H 8.35; found: C 85.04, H 8.99.

2-Bromomethyl-4-tert-butyl-6-(tris(3,5-dimethylphenyl)methyl)phenol (12)

 $\begin{array}{c|c} & acetonit \\ & {}^{1}H NMI \\ C_{36}H_{41}BrO \\ 569.91 \text{ g/mol} \end{array}$

 $(3 \times 25 \text{ mL})$. The combined organic layers were dried over anhydrous MgSO₄, filtered and the solvent removed under reduced pressure. The residue was recrystallized from acetonitrile to afford **13** as colorless crystals (2.60 g, 4.56 mmol, 90%). ¹H NMR (500 MHz, CDCl₃, 300 K): δ [ppm] = 1.18 (s, 9H, C(CH₃)₃), 2.24 (s, 18H, CH₃),

To a solution of **11** (2.58 g, 5.09 mmol, 1.0 equiv.) in chloroform (100 mL) was added phosphorus tribromide (0.24 mL, 689 mg, 2.55 mmol, 0.5 eq). After the reaction mixture was stirred at room temperature for 1 h, iced water (40 mL) was added over 5 min. The

resulting phases were separated and the aqueous phase was extracted with chloroform

4.52 (s, 2H, CH₂), 6.78 (s, 6H, Trit-H), 6.88 (s, 3H, Trit-H), 7.14 (d, ${}^{4}J$ = 2.4 Hz, 1H, Ar-H), 7.23 (d, ${}^{4}J$ = 2.5 Hz, 1H, Ar-H).

¹³C NMR (126 MHz, CDCl₃, 300 K): δ [ppm] = 21.8, 31.5, 31.5, 34.3, 62.8, 125.1, 126.2, 128.4, 129.0, 129.4, 133.4, 137.1, 142.1, 144.1, 151.0.

LRMS (ESI, MeCN): $m/z = 593.2 [(M+Na)^{+}].$

EA [%]: calculated: C 75.91, H 7.26; found: C 76.08, H 7.28.

2. Kinetic Investigations

Figure S1. Linear growth of the absolute molecular weight (M_n) as a function of monomer conversion (determined gravimetically) and the corresponding PDIs. Left: catalyst **1**, right: catalyst **2**.

3. Microstructure Analysis

3.1 ¹³C NMR spectra

Figure S2. Aromatic quaternary ¹³C NMR resonances (*i*, *h*, *s* proportions for *isotactic*, *heterotactic*, and *syndiotactic* triads) of poly(2-vinylpyridine) (30 mg of P2VP in 0.6 mL of CD₃OD for catalyst **5**. ([2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C)).

Figure S3. Aromatic quaternary ¹³C NMR resonances (*i*, *h*, *s* proportions for *isotactic*, *heterotactic*, and *syndiotactic* triads) of poly(2-vinylpyridine) (30 mg of P2VP in 0.6 mL of CD₃OD for catalyst **1**. ([2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C)).

Figure S4. Aromatic quaternary ¹³C NMR resonances (*i*, *h*, *s* proportions for *isotactic*, *heterotactic*, and *syndiotactic* triads) of poly(2-vinylpyridine) (30 mg of P2VP in 0.6 mL of CD₃OD for catalyst **2**. ([2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C)).

Figure S5. Aromatic quaternary ¹³C NMR resonances (*i*, *h*, *s* proportions for *isotactic*, *heterotactic*, and *syndiotactic* triads) of poly(2-vinylpyridine) (30 mg of P2VP in 0.6 mL of CD₃OD for catalyst **3.** ([2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C)).

Figure S6. Aromatic quaternary ¹³C NMR resonances (*i*, *h*, *s* proportions for *isotactic*, *heterotactic*, and *syndiotactic* triads) of poly(2-vinylpyridine) (30 mg of P2VP in 0.6 mL of CD₃OD for catalyst **4**. ([2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C)).

Figure S7. Aromatic quaternary ¹³C NMR resonances (*i*, *h*, *s* proportions for *isotactic*, *heterotactic*, and *syndiotactic* triads) of poly(2-vinylpyridine) (30 mg P2VP in 0.6 mL of CD₃OD for catalysts **1**. ([2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C: black, 50 °C: grey)).

Figure S8. Aromatic quaternary ¹³C NMR resonances (*i*, *h*, *s* proportions for *isotactic*, *heterotactic*, and *syndiotactic* triads) of poly(2-vinylpyridine) (30 mg P2VP in 0.6 mL of CD₃OD for catalysts **4**. ([2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C: black, 50 °C: grey)).

3.2 Theoretical Investigations

- P_m is the probability of meso linkages between monomer units and is determined by ¹³C NMR spectroscopy.
- Theoretical triad distributions are calculated using the following correlations:

Probability of prochiral monomer addition via *re* or *si* side of the catalyst, where $P_m = m = \sigma + (1 - \sigma)^2$ and $P_r = 1 - P_m$

 $mm = P_m^2$ $mr = P_m P_r$ $rr = P_r^2$

4. Thermoanalysis

Figure S9. DSC curves of crystallized P2VP samples at different crystallization temperatures T_c for 150 min (catalyst 4, [2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL toluene, 25 °C).

Figure S10. DSC curves of crystallized P2VP samples at a $T_c = 130^{\circ}$ C for 16 h (catalyst 1, [2VP]:[Cat.] = 200:1, [M] = 2.7 mmol, 2 mL of toluene, 25 °C).

Figure S11. TGA curves of atactic (a), highly *isotactic* amorphous ($P_m = 0.92$, b), and highly *isotactic* crystallized P2VP ($P_m = 0.92$, $T_c = 170$ °C, crystallization time 150 min, c).

5. Literature

- [1] K. C. Hultzsch, P. Voth, K. Beckerle, T. P. Spaniol, J. Okuda, *Organometallics* 2000, *19*, 228-243.
- [2] P. T. Altenbuchner, F. Adams, A. Kronast, E. Herdtweck, A. Pöthig, B. Rieger, *Polym. Chem.* **2015**, *6*, 6796-6801.